China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 35, No. 1
Article Contents

ZHANG Yu, MING Dongping, ZHAO Wenyi, XU Lu, ZHAO Zhi, LIU Ran. 2023. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images. Remote Sensing for Natural Resources, 35(1): 161-170. doi: 10.6046/zrzyyg.2022434
Citation: ZHANG Yu, MING Dongping, ZHAO Wenyi, XU Lu, ZHAO Zhi, LIU Ran. 2023. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images. Remote Sensing for Natural Resources, 35(1): 161-170. doi: 10.6046/zrzyyg.2022434

The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images

  • On September 5, 2022, a Ms 6.8 earthquake occurred in Luding County, Ganzi Prefecture, Sichuan Province, inducing numerous landslides. This study collected the pre- and post-earthquake images from the GF-2 and GF-6 satellites, as well as the DEM data of Luding. Then, using the object-oriented method, the stepwise optimization multi-scale segmentation method, and the nearest neighbor classification method, this study extracted the landslide information according to the spectrum, thematic index, geometric texture, and topographic features of the objects in the experimental area. The overall identification accuracy of pre- and post-earthquake landslides was 92.3% and 95.4%, respectively. The comprehensive analysis of the distribution of pre- and post-earthquake landslide landslides shows that 23.91 km2 of new landslides were induced by the earthquake. This study summarized the distribution characteristics of post-earthquake landslides through the spatial statistical analysis of seven topographic factors. The results are as follows: ① The post-earthquake landslides were mainly affected by the Xianshuihe fault zone, and they show a banded distribution along rivers and a lamellar, dense distribution along the hillsides and valleys near the fault zone; ② Compared with the historical landslides, the new landslides have a relatively stable elevation range and a large slope range. Moreover, there is a significantly negative correlation between the area of the post-earthquake landslides and the surface roughness.
  • 加载中
  • [1] 李强, 张景发, 罗毅, 等. 2017年“8·8”九寨沟地震滑坡自动识别与空间分布特征[J]. 遥感学报, 2019, 23(4):785-789.

    Google Scholar

    [2] Li Q, Zhang J F, Luo Y, et al. Recognition of earthquake-induced landslide and spatial distribution patterns triggered by the Jiuzhaigou earthquake in August 8,2017[J]. Journal of Remote Sensing, 2019, 23(4):785-789.

    Google Scholar

    [3] 苏凤环, 刘洪江, 韩用顺. 汶川地震山地灾害遥感快速提取及其分布特点分析[J]. 遥感学报, 2008(6):956-963.

    Google Scholar

    [4] Su F H, Liu H J, Han Y S. The extraction of mountain hazard induced by Wenchuan earthquake and analysis of its distributing characteristic[J]. Journal of Remote Sensing, 2008(6):956-963.

    Google Scholar

    [5] Nichol J, Wong M S. Satellite remote sensing for detailed landslide inventories using change detection and image fusion[J]. International Journal of Remote Sensing, 2005, 26(9):1913-1926.

    Google Scholar

    [6] 顾海燕, 李海涛, 闫利. 地理本体驱动的遥感影像面向对象分析方法[J]. 武汉大学学报(信息科学版), 2018, 43(1):31-36.

    Google Scholar

    [7] Gu H Y, Li H T, Yan L. A geographic object-based image analysis methodology based on geo-ontology[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1):31-36.

    Google Scholar

    [8] 魏家旺, 惠文华, 程梦真, 等. 地理本体驱动的面向对象滑坡识别[J]. 遥感信息, 2020, 35(2):94-99.

    Google Scholar

    [9] Wei J W, Hui W H, Cheng M Z, et al. Geographic ontology-driven object oriented landslide recognition[J]. Remote Sensing Information, 2020, 35(2):94-99.

    Google Scholar

    [10] 刘辰, 刘修国, 陈启浩, 等. 面向对象滑坡信息提取中DEM空间分辨率影响分析[J]. 遥感技术与应用, 2014(4):631-638.

    Google Scholar

    [11] Liu C, Liu X G, Chen Q H, et al. Impact of DEM spatial resolution on landslide extraction using object-oriented methods[J]. Remote Sensing Technology and Application, 2014(4):631-638.

    Google Scholar

    [12] 张群, 赵超英. 基于面向对象的高分遥感数据甘肃黑方台黄土滑坡半自动识别[J]. 灾害学, 2017, 32(3):210-215.

    Google Scholar

    [13] Zhang Q, Zhao C Y. Semiautomatic object-oriented loose landslide recognition based on high resolution remote sensing images in Heifangtai,Gansu[J]. Journal of Catastrophology, 2017, 32(3):210-215.

    Google Scholar

    [14] 丁永辉, 张勤, 杨成生, 等. 基于高分遥感的金沙江流域滑坡识别——以巴塘县王大龙村为例[J]. 测绘通报, 2022,(4):51-55.

    Google Scholar

    [15] Ding Y H, Zhang Q, Yang C S, et al. Landslide identification in Jinsha River basin based on high-resolution remote sensing:Taking Wangdalong Village of Batang County as an example[J]. Bulletin of Surveying and Mapping, 2022,(4):51-55.

    Google Scholar

    [16] 彭令, 徐素宁, 梅军军, 等. 地震滑坡高分辨率遥感影像识别[J]. 遥感学报, 2017, 21(4):509-518.

    Google Scholar

    [17] Peng L, Xu S N, Mei J J, et al. Earthquake-induced landslide recognition using high-resolution remote sensing images[J]. Journal of Remote Sensing, 2017, 21(4):509-518.

    Google Scholar

    [18] 唐尧. 利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测[J]. 遥感学报, 2019, 23(2):252-261.

    Google Scholar

    [19] Tang Y. Emergency monitoring of high-level landslide disasters in Jinsha River using domestic remote sensing satellites[J]. Journal of Remote Sensing, 2019, 23(2):252-261.

    Google Scholar

    [20] Han Y, Wang P, Zheng Y, et al. Extraction of landslide information based on object-oriented approach and cause analysis in Shuicheng,China[J]. Remote Sensing, 2022, 14(3):502.

    Google Scholar

    [21] Tavakkoli P S, Shahabi H, Jarihani B, et al. Landslide detection using multi-scale image segmentation and different machine learning models in the higher himalayas[J]. Remote Sensing, 2019, 11(21):2575.

    Google Scholar

    [22] Barlow J, Martin Y, Franklin S E. Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains,British Columbia[J]. Canadian Journal of Remote Sensing, 2003, 29(4):510-517.

    Google Scholar

    [23] Martha T R K N, Jetten V. Characterising spectral,spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods[J]. Geomorphology, 2010, 116(1-2):24-36.

    Google Scholar

    [24] 林齐根. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5):931-937.

    Google Scholar

    [25] Lin Q G. Object-oriented detection of landslides based on the spectral,spatial and morphometric properties of landslides[J]. Remote Sensing Technology and Application, 2017, 32(5):931-937.

    Google Scholar

    [26] Ji S, Yu D, Shen C, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6):1337-1352.

    Google Scholar

    [27] Sameen M I, Pradhan B. Landslide detection using residual networks and the fusion of spectral and topographic information[J]. IEEE Access, 2019, 7:114363-114373.

    Google Scholar

    [28] Cai H, Chen T, Niu R, et al. Landslide detection using densely connected convolutional networks and environmental conditions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:5235-5247.

    Google Scholar

    [29] Bragagnolo L, Rezende L R, Dasilva R V, et al. Convolutional neural networks applied to semantic segmentation of landslide scars[J]. Catena, 2021, 201:105189.

    Google Scholar

    [30] Prakash N, Manconi A, Loew S. Mapping landslides on EO data:performance of deep learning models vs.traditional machine learning models[J]. Remote Sensing, 2020, 12(3):346.

    Google Scholar

    [31] Liu T, Chen T, Niu R, et al. Landslide detection mapping employing CNN,ResNet,and DenseNet in the Three Gorges Reservoir,China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:11417-11428.

    Google Scholar

    [32] 王欣, 方成勇, 唐小川, 等. 泸定 Ms 6.8 级地震诱发滑坡应急评价研究[J]. 武汉大学学报(信息科学版), 2023, 48(1):25-35.

    Google Scholar

    [33] Wang X, Fang C Y, Tang X C, et al. Research on emergency evaluation of landslides induced by Luding Ms 6.8 earthquake[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1):25-35.

    Google Scholar

    [34] 陈扬洋. 基于对地观测数据的滑坡灾害解译与分析[D]. 北京: 中国地质大学(北京), 2022.

    Google Scholar

    [35] Chen Y Y. Interpretation and analysis of landslide hazard based on earth observation data[D]. Beijing: China University of Geosciences (Beijing), 2022.

    Google Scholar

    [36] Liu P, Wei Y, Wang Q, et al. Research on post-earthquake landslide extraction algorithm based on improved U-Net model[J]. Remote Sensing, 2020, 12(5):894.

    Google Scholar

    [37] Liu P, Wei Y, Wang Q, et al. A research on landslides automatic extraction model based on the improved mask R-CNN[J]. ISPRS International Journal of Geo-Information, 2021, 10(3):168.

    Google Scholar

    [38] Shi W, Zhang M, Ke H, et al. Landslide recognition by deep convolutional neural network and change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6):4654-4672.

    Google Scholar

    [39] 王运生, 程万强, 刘江伟. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制[J]. 地球科学, 2022, 47(3):950-958.

    Google Scholar

    [40] Wang Y S, Cheng W Q, Liu J W. Forming process and mechanisms of geo-hazards in Luding section of the Sichuan-Xizang railway[J]. Earth Science, 2022, 47(3):950-958.

    Google Scholar

    [41] 黄志坚. 面向对象影像分析中的多尺度方法研究[D]. 长沙: 国防科学技术大学, 2014.

    Google Scholar

    [42] Huang Z J. Research on multiscale methods in object-based image analysis[D]. Changsha: National University of Defence Technology, 2014.

    Google Scholar

    [43] 关元秀, 王学恭, 郭涛, 等. eCognition基于对象影像分析教程[M]. 北京: 科学出版社, 2019.

    Google Scholar

    [44] Guan Y X, Wang X G, Guo T, et al. eCognition object-based image analysis tutorial[M]. Beijing: Science Press, 2019.

    Google Scholar

    [45] 熊华伟, 俞春生, 李小玉, 等. 基于高分辨率遥感影像的不透水面信息快速提取[J]. 国土与自然资源研究, 2015, 1:52-54.

    Google Scholar

    [46] Xiong H W, Yu C S, Li X Y, et al. Rapid extraction of impervious surface information based on high-resolution remote sensing images[J]. Territory and Natural Resources Study, 2015, 1:52-54.

    Google Scholar

    [47] Ming D, Li J, Wang J, et al. Scale parameter selection by spatial statistics for GEOBIA:Using mean-shift based multi-scale segmentation as an example[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106:28-41.

    Google Scholar

    [48] 范雷, 张琪. 金沙江苏洼龙—奔子栏河段滑坡灾害发育分布规律[J]. 长江科学院院报, 2016, 33(3):38-41.

    Google Scholar

    [49] Fan L, Zhang Q. Occurrence and distribution characteristics of landslides at Suwalong-Benzilan along Jinsha River[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(3):38-41.

    Google Scholar

    [50] Dragut L, Csillik O, Eisank C, et al. Automated parameterisation for multi-scale image segmentation on multiple layers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88:119-127.

    Google Scholar

    [51] Dragut L, Tiede D, Levick S R. ESP:A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010, 24(6):859-871.

    Google Scholar

    [52] 黄汀, 白仙富, 庄齐枫, 等. 高分一号汶川极震区滑坡提取研究[J]. 测绘通报, 2018,(2):67-71,82.

    Google Scholar

    [53] Huang T, Bai X F, Zhuang Q F, et al. Research on landslides extraction based on the Wenchuan earthquake in GF-1 remote sensing image[J]. Bulletin of Surveying and Mapping, 2018,(2):67-71,82.

    Google Scholar

    [54] 陈晓利, 刘春国, 传一健, 等. 鲁甸地震的滑坡物质运移规律与地形特征[J]. 地震地质, 2021, 43(1):92-104.

    Google Scholar

    [55] Chen X L, Liu C G, Chuan Y J, et al. Study on the distribution of co-seismic landslides and terrain features in the Ms 6.5 Ludian earthquake affected area[J]. Seismology and Geology, 2021, 43(1):92-104.

    Google Scholar

    [56] Chigira M, Yagi H. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan[J]. Engineering Geology, 2006, 82(4):202-221.

    Google Scholar

    [57] 铁永波, 张宪政, 卢佳燕, 等. 四川省泸定县Ms 6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质, 2022, 49(6):1-12.

    Google Scholar

    [58] Tie Y B, Zhang X Z, Lu J Y, et al. Characteristics of geological hazards and it’s mitigations of the Ms 6.8 earthquake in Luding County,Sichuan Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6):1-12.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1704) PDF downloads(250) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint