| [1] |
李强, 张景发, 罗毅, 等. 2017年“8·8”九寨沟地震滑坡自动识别与空间分布特征[J]. 遥感学报, 2019, 23(4):785-789.
Google Scholar
|
| [2] |
Li Q, Zhang J F, Luo Y, et al. Recognition of earthquake-induced landslide and spatial distribution patterns triggered by the Jiuzhaigou earthquake in August 8,2017[J]. Journal of Remote Sensing, 2019, 23(4):785-789.
Google Scholar
|
| [3] |
苏凤环, 刘洪江, 韩用顺. 汶川地震山地灾害遥感快速提取及其分布特点分析[J]. 遥感学报, 2008(6):956-963.
Google Scholar
|
| [4] |
Su F H, Liu H J, Han Y S. The extraction of mountain hazard induced by Wenchuan earthquake and analysis of its distributing characteristic[J]. Journal of Remote Sensing, 2008(6):956-963.
Google Scholar
|
| [5] |
Nichol J, Wong M S. Satellite remote sensing for detailed landslide inventories using change detection and image fusion[J]. International Journal of Remote Sensing, 2005, 26(9):1913-1926.
Google Scholar
|
| [6] |
顾海燕, 李海涛, 闫利. 地理本体驱动的遥感影像面向对象分析方法[J]. 武汉大学学报(信息科学版), 2018, 43(1):31-36.
Google Scholar
|
| [7] |
Gu H Y, Li H T, Yan L. A geographic object-based image analysis methodology based on geo-ontology[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1):31-36.
Google Scholar
|
| [8] |
魏家旺, 惠文华, 程梦真, 等. 地理本体驱动的面向对象滑坡识别[J]. 遥感信息, 2020, 35(2):94-99.
Google Scholar
|
| [9] |
Wei J W, Hui W H, Cheng M Z, et al. Geographic ontology-driven object oriented landslide recognition[J]. Remote Sensing Information, 2020, 35(2):94-99.
Google Scholar
|
| [10] |
刘辰, 刘修国, 陈启浩, 等. 面向对象滑坡信息提取中DEM空间分辨率影响分析[J]. 遥感技术与应用, 2014(4):631-638.
Google Scholar
|
| [11] |
Liu C, Liu X G, Chen Q H, et al. Impact of DEM spatial resolution on landslide extraction using object-oriented methods[J]. Remote Sensing Technology and Application, 2014(4):631-638.
Google Scholar
|
| [12] |
张群, 赵超英. 基于面向对象的高分遥感数据甘肃黑方台黄土滑坡半自动识别[J]. 灾害学, 2017, 32(3):210-215.
Google Scholar
|
| [13] |
Zhang Q, Zhao C Y. Semiautomatic object-oriented loose landslide recognition based on high resolution remote sensing images in Heifangtai,Gansu[J]. Journal of Catastrophology, 2017, 32(3):210-215.
Google Scholar
|
| [14] |
丁永辉, 张勤, 杨成生, 等. 基于高分遥感的金沙江流域滑坡识别——以巴塘县王大龙村为例[J]. 测绘通报, 2022,(4):51-55.
Google Scholar
|
| [15] |
Ding Y H, Zhang Q, Yang C S, et al. Landslide identification in Jinsha River basin based on high-resolution remote sensing:Taking Wangdalong Village of Batang County as an example[J]. Bulletin of Surveying and Mapping, 2022,(4):51-55.
Google Scholar
|
| [16] |
彭令, 徐素宁, 梅军军, 等. 地震滑坡高分辨率遥感影像识别[J]. 遥感学报, 2017, 21(4):509-518.
Google Scholar
|
| [17] |
Peng L, Xu S N, Mei J J, et al. Earthquake-induced landslide recognition using high-resolution remote sensing images[J]. Journal of Remote Sensing, 2017, 21(4):509-518.
Google Scholar
|
| [18] |
唐尧. 利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测[J]. 遥感学报, 2019, 23(2):252-261.
Google Scholar
|
| [19] |
Tang Y. Emergency monitoring of high-level landslide disasters in Jinsha River using domestic remote sensing satellites[J]. Journal of Remote Sensing, 2019, 23(2):252-261.
Google Scholar
|
| [20] |
Han Y, Wang P, Zheng Y, et al. Extraction of landslide information based on object-oriented approach and cause analysis in Shuicheng,China[J]. Remote Sensing, 2022, 14(3):502.
Google Scholar
|
| [21] |
Tavakkoli P S, Shahabi H, Jarihani B, et al. Landslide detection using multi-scale image segmentation and different machine learning models in the higher himalayas[J]. Remote Sensing, 2019, 11(21):2575.
Google Scholar
|
| [22] |
Barlow J, Martin Y, Franklin S E. Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains,British Columbia[J]. Canadian Journal of Remote Sensing, 2003, 29(4):510-517.
Google Scholar
|
| [23] |
Martha T R K N, Jetten V. Characterising spectral,spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods[J]. Geomorphology, 2010, 116(1-2):24-36.
Google Scholar
|
| [24] |
林齐根. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5):931-937.
Google Scholar
|
| [25] |
Lin Q G. Object-oriented detection of landslides based on the spectral,spatial and morphometric properties of landslides[J]. Remote Sensing Technology and Application, 2017, 32(5):931-937.
Google Scholar
|
| [26] |
Ji S, Yu D, Shen C, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6):1337-1352.
Google Scholar
|
| [27] |
Sameen M I, Pradhan B. Landslide detection using residual networks and the fusion of spectral and topographic information[J]. IEEE Access, 2019, 7:114363-114373.
Google Scholar
|
| [28] |
Cai H, Chen T, Niu R, et al. Landslide detection using densely connected convolutional networks and environmental conditions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:5235-5247.
Google Scholar
|
| [29] |
Bragagnolo L, Rezende L R, Dasilva R V, et al. Convolutional neural networks applied to semantic segmentation of landslide scars[J]. Catena, 2021, 201:105189.
Google Scholar
|
| [30] |
Prakash N, Manconi A, Loew S. Mapping landslides on EO data:performance of deep learning models vs.traditional machine learning models[J]. Remote Sensing, 2020, 12(3):346.
Google Scholar
|
| [31] |
Liu T, Chen T, Niu R, et al. Landslide detection mapping employing CNN,ResNet,and DenseNet in the Three Gorges Reservoir,China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:11417-11428.
Google Scholar
|
| [32] |
王欣, 方成勇, 唐小川, 等. 泸定 Ms 6.8 级地震诱发滑坡应急评价研究[J]. 武汉大学学报(信息科学版), 2023, 48(1):25-35.
Google Scholar
|
| [33] |
Wang X, Fang C Y, Tang X C, et al. Research on emergency evaluation of landslides induced by Luding Ms 6.8 earthquake[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1):25-35.
Google Scholar
|
| [34] |
陈扬洋. 基于对地观测数据的滑坡灾害解译与分析[D]. 北京: 中国地质大学(北京), 2022.
Google Scholar
|
| [35] |
Chen Y Y. Interpretation and analysis of landslide hazard based on earth observation data[D]. Beijing: China University of Geosciences (Beijing), 2022.
Google Scholar
|
| [36] |
Liu P, Wei Y, Wang Q, et al. Research on post-earthquake landslide extraction algorithm based on improved U-Net model[J]. Remote Sensing, 2020, 12(5):894.
Google Scholar
|
| [37] |
Liu P, Wei Y, Wang Q, et al. A research on landslides automatic extraction model based on the improved mask R-CNN[J]. ISPRS International Journal of Geo-Information, 2021, 10(3):168.
Google Scholar
|
| [38] |
Shi W, Zhang M, Ke H, et al. Landslide recognition by deep convolutional neural network and change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6):4654-4672.
Google Scholar
|
| [39] |
王运生, 程万强, 刘江伟. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制[J]. 地球科学, 2022, 47(3):950-958.
Google Scholar
|
| [40] |
Wang Y S, Cheng W Q, Liu J W. Forming process and mechanisms of geo-hazards in Luding section of the Sichuan-Xizang railway[J]. Earth Science, 2022, 47(3):950-958.
Google Scholar
|
| [41] |
黄志坚. 面向对象影像分析中的多尺度方法研究[D]. 长沙: 国防科学技术大学, 2014.
Google Scholar
|
| [42] |
Huang Z J. Research on multiscale methods in object-based image analysis[D]. Changsha: National University of Defence Technology, 2014.
Google Scholar
|
| [43] |
关元秀, 王学恭, 郭涛, 等. eCognition基于对象影像分析教程[M]. 北京: 科学出版社, 2019.
Google Scholar
|
| [44] |
Guan Y X, Wang X G, Guo T, et al. eCognition object-based image analysis tutorial[M]. Beijing: Science Press, 2019.
Google Scholar
|
| [45] |
熊华伟, 俞春生, 李小玉, 等. 基于高分辨率遥感影像的不透水面信息快速提取[J]. 国土与自然资源研究, 2015, 1:52-54.
Google Scholar
|
| [46] |
Xiong H W, Yu C S, Li X Y, et al. Rapid extraction of impervious surface information based on high-resolution remote sensing images[J]. Territory and Natural Resources Study, 2015, 1:52-54.
Google Scholar
|
| [47] |
Ming D, Li J, Wang J, et al. Scale parameter selection by spatial statistics for GEOBIA:Using mean-shift based multi-scale segmentation as an example[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106:28-41.
Google Scholar
|
| [48] |
范雷, 张琪. 金沙江苏洼龙—奔子栏河段滑坡灾害发育分布规律[J]. 长江科学院院报, 2016, 33(3):38-41.
Google Scholar
|
| [49] |
Fan L, Zhang Q. Occurrence and distribution characteristics of landslides at Suwalong-Benzilan along Jinsha River[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(3):38-41.
Google Scholar
|
| [50] |
Dragut L, Csillik O, Eisank C, et al. Automated parameterisation for multi-scale image segmentation on multiple layers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88:119-127.
Google Scholar
|
| [51] |
Dragut L, Tiede D, Levick S R. ESP:A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010, 24(6):859-871.
Google Scholar
|
| [52] |
黄汀, 白仙富, 庄齐枫, 等. 高分一号汶川极震区滑坡提取研究[J]. 测绘通报, 2018,(2):67-71,82.
Google Scholar
|
| [53] |
Huang T, Bai X F, Zhuang Q F, et al. Research on landslides extraction based on the Wenchuan earthquake in GF-1 remote sensing image[J]. Bulletin of Surveying and Mapping, 2018,(2):67-71,82.
Google Scholar
|
| [54] |
陈晓利, 刘春国, 传一健, 等. 鲁甸地震的滑坡物质运移规律与地形特征[J]. 地震地质, 2021, 43(1):92-104.
Google Scholar
|
| [55] |
Chen X L, Liu C G, Chuan Y J, et al. Study on the distribution of co-seismic landslides and terrain features in the Ms 6.5 Ludian earthquake affected area[J]. Seismology and Geology, 2021, 43(1):92-104.
Google Scholar
|
| [56] |
Chigira M, Yagi H. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan[J]. Engineering Geology, 2006, 82(4):202-221.
Google Scholar
|
| [57] |
铁永波, 张宪政, 卢佳燕, 等. 四川省泸定县Ms 6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质, 2022, 49(6):1-12.
Google Scholar
|
| [58] |
Tie Y B, Zhang X Z, Lu J Y, et al. Characteristics of geological hazards and it’s mitigations of the Ms 6.8 earthquake in Luding County,Sichuan Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6):1-12.
Google Scholar
|