| [1] |
Ridder R M. Global forest resources assessment 2010:Options and recommendations for a global remote sensing survey of forests[J]. FAO for Resources Assessment Programme Work Paper, 2007,141.
Google Scholar
|
| [2] |
张建龙. 中国森林资源报告[M]. 北京: 中国林业出版社, 2019.
Google Scholar
|
| [3] |
Zhang J L. Forest resources report of China[M]. Beijing: China Forestry Publishing House, 2019.
Google Scholar
|
| [4] |
Hansen M C, Potapov P V, Moore R, et al. High-resolution global maps of 21st-century forest cover change[J]. Science, 2013, 342(6160):850-853.
Google Scholar
|
| [5] |
Shimada M, Itoh T, Motooka T, et al. New global forest/non-forest maps from ALOS PALSAR data (2007—2010)[J]. Remote Sensing of Environment, 2014, 155:13-31.
Google Scholar
|
| [6] |
陈军, 廖安平, 陈晋, 等. 全球30m地表覆盖遥感数据产品-Globe Land30[J]. 地理信息世界, 2017, 24(1):1-8.
Google Scholar
|
| [7] |
Chen J, Liao A P, Chen J, et al. 30-Meter global land cover data product-globeLand30/GEOMATICS WORLD[J]. Geographical Information World, 2017, 24(1):1-8.
Google Scholar
|
| [8] |
Aurélie Bellavia, 徐希燕. 全球300米分辨率欧空局陆地覆盖数据(1992—2015)[Z]. 北京: 国家青藏高原科学数据中心, 2018.
Google Scholar
|
| [9] |
Aurélie B, Xu X Y. Global ESA CCI land cover classification map (1992—2015)[Z]. Beijing: National Xizang Plateau Data Center, 2018.
Google Scholar
|
| [10] |
Yu L, Wang J, Gong P. Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets:A segmentation-based approach[J]. International Journal of Remote Sensing, 2013, 34(16):5851-5867.
Google Scholar
|
| [11] |
Li C C, Wang J, Hu L Y, et al. A circa 2010 thirty meter resolution forest map for China[J]. Remote Sensing, 2014, 6(6):5325-5343.
Google Scholar
|
| [12] |
林芝地区统计局、 国家统计局林芝调查队编印. 林芝地区统计年鉴 2015[M]. 林芝: 林芝地区统计局, 2016.
Google Scholar
|
| [13] |
Nyingchi Regional Bureau of Statistics,Nyingchi Survey Team, National Bureau of Statistics. Nyingchi Regional Statistical Yearbook 2015[M]. Nyingch: Nyingchi Regional Bureau of Statistics, 2016.
Google Scholar
|
| [14] |
郝斌飞, 韩旭军, 马明国, 等. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4):600-611.
Google Scholar
|
| [15] |
Hao B F, Han X J, Ma M G, et al. Research progress on the application of Google Earth Engine in geoscience and environmental sciences[J]. Remote Sensing Technology and Application, 2018. 33(4):600-611.
Google Scholar
|
| [16] |
徐晗泽宇, 刘冲, 王军邦, 等. Google Earth Engine平台支持下的赣南柑橘果园遥感提取研究[J]. 地球信息科学学报, 2018, 20(3):396-404.
Google Scholar
|
| [17] |
Xu Han Z Y, Liu C, Wang J B, et al. Study on extraction of citrus orchard in Gannan region based on Google Earth Engine platform[J]. Journal of Geo-information Science, 2018, 20(3):396-404.
Google Scholar
|
| [18] |
Wang J, Xiao X M, Qin Y W, et al. Mapping the dynamics of eastern redcedar encroachment into grasslands during 1984—2010 through PALSAR and time series Landsat images[J]. Remote Sensing of Environment, 2017, 190:233-246.
Google Scholar
|
| [19] |
Barboza C E, Turpo C E Y, de Almeida C M, et al. Monitoring wildfires in the northeastern peruvian amazon using Landsat8 and Sentinel-2 imagery in the GEE platform[J]. ISPRS International Journal of Geo-Information, 2020, 9(10):564.
Google Scholar
|
| [20] |
Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633):418-422.
Google Scholar
|
| [21] |
Xiao W, Xu S, He T. Mapping paddy rice with sentinel-1/2 and phenology-,object-based algorithm-A implementation in Hangjiahu plain in China using GEE platform[J]. Remote Sensing, 2021, 13(5):990.
Google Scholar
|
| [22] |
Cao X M, Gao X H, Shen Z Y, et al. Expansion of urban impervious surfaces in Xining City based on GEE and Landsat time series data[J]. IEEE Access, 2020, 8:147097-147111.
Google Scholar
|
| [23] |
李若楠, 欧光龙, 代沁伶, 等. 基于GEE和Landsat时间序列数据的香格里拉森林类型分类研究[J]. 西南林业大学学报(自然科学), 2020, 40(5):115-125.
Google Scholar
|
| [24] |
Li R N, Ou G L, Dai Q L, et al. Forest types classification of Shangri-La based on Google Earth Engine and landsat time-series data[J]. Journal of Southwest Forestry University (Natural Science), 2020, 40(5):115-125.
Google Scholar
|
| [25] |
娄佩卿, 付波霖, 林星辰, 等. 基于GEE的1998—2018年京津冀土地利用变化对生态系统服务价值的影响[J]. 环境科学, 2019, 40(12):5473-5483.
Google Scholar
|
| [26] |
Lou P Q, Fu B L, Lin X C, et al. Influence of land use change on ecosystem service value based on GEE in the Beijing-Tianjin-Hebei region from 1998 to 2018[J]. Environmental Science, 2019, 40(12):5473-5483.
Google Scholar
|
| [27] |
Belgiu M, Dr?gu? L. Random forest in remote sensing:A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31.
Google Scholar
|
| [28] |
Mountrakis G J, Ogole I C. Support vector machines in remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66:247-259.
Google Scholar
|
| [29] |
Pal M, Mather P M. An assessment of the effectiveness of decision tree methods for land cover classification[J]. Remote Sensing of Environment, 2003, 86(4):554-565.
Google Scholar
|
| [30] |
Pal M. Random forest classifier for remote sensing classification[J]. International Journal of Remote Sensing. 2005, 26(1):217-222.
Google Scholar
|
| [31] |
Ghimire B, Rogan J, Galiano V R, et al. An evaluation of bagging,boosting,and random forests for land-cover classification in cape cod,massachusetts,USA[J]. GIScience & Remote Sensing, 2012, 49(5):623-643.
Google Scholar
|
| [32] |
Pal M, Mather P M. Support vector machines for classification in remote sensing[J]. International Journal of Remote Sensing, 2005, 26(5):1007-1011.
Google Scholar
|
| [33] |
Rogan J, Miller J, Stow D, et al. Land-cover change monitoring with classification trees using Landsat TM and ancillary data[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(7):793-804.
Google Scholar
|
| [34] |
Hansen M, Dubayah R, DeFries R. Classification trees:An alternative to traditional land cover classifiers[J]. International Journal of Remote Sensing, 1996, 17(5):1075-1081.
Google Scholar
|
| [35] |
Vega Isuhuaylas L A, Hirata Y, Ventura Santos L C, et al. Natural forest mapping in the Andes (Peru):A comparison of the performance of machine-learning algorithms[J]. Remote Sensing, 2018, 10(5):782.
Google Scholar
|
| [36] |
Liu Y N, Gong W S, Hu X Y, et al. Forest type identification with random forest using Sentinel-1A,Sentinel-2A,multi-temporal Landsat-8 and DEM data[J]. Remote Sensing, 2018, 10(6):946.
Google Scholar
|
| [37] |
Wang D Z, Wan B, Qiu P H, et al. Evaluating the performance of Sentinel-2,Landsat8 and Pléiades-1 in mapping mangrove extent and species[J]. Remote Sensing, 2018, 10(9):1468.
Google Scholar
|
| [38] |
柳应华. 西藏墨脱县产业发展研究[J]. 中国藏学, 2013(3):30-34.
Google Scholar
|
| [39] |
Liu Y H. Study on industrial development of Motuo County,Xizang Province[J]. Chinese Xizangology, 2013(3):30-34.
Google Scholar
|
| [40] |
朱文泉, 林文鹏. 遥感数字图像处理:原理与方法[M]. 北京: 高等教育出版社, 2015.
Google Scholar
|
| [41] |
Zhu W Q, Lin W P. Remote sensing digital image processing[M]. Beijing: Higher Education Press, 2015.
Google Scholar
|
| [42] |
Guo X J, Zhang C C, Luo W R, et al. Urban impervious surface extraction based on multi-features and random forest[J]. IEEE Access, 2020, 8:226609-226623.
Google Scholar
|
| [43] |
刘龙飞, 陈云浩, 李京. 遥感影像纹理分析方法综述与展望[J]. 遥感技术与应用, 2003(6):441-447.
Google Scholar
|
| [44] |
Liu L F, Chen Y H, Li J. Remote Sensing image texture analysis:A review and prospect[J]. Remote Sensing Technology and Application, 2003(6):441-447.
Google Scholar
|
| [45] |
董师师, 黄哲学. 随机森林理论浅析[J], 集成技术, 2013, 2(1):1-7.
Google Scholar
|
| [46] |
Dong S S, Huang Z X. A brief theoretical overview of random forests[J]. Journal of Integration Technology, 2013. 2(1):1-7.
Google Scholar
|
| [47] |
陈云, 戴锦芳, 李俊杰. 基于影像多种特征的CART决策树分类方法及其应用[J]. 地理与地理信息科学, 2008(2):33-36.
Google Scholar
|
| [48] |
Chen Y, Dai J Fg, Li J J. CART-based decision tree classifier using multi-feature of image and its application[J]. Geography and Geo-Information Science, 2008(2):33-36.
Google Scholar
|
| [49] |
张敬垚. 基于随机森林算法的关键蛋白识别方法研究[D]. 长春: 吉林农业大学, 2019.
Google Scholar
|
| [50] |
Zhang J Y. Research on essential protein recognition based on random forest algorithm[D]. Changchun: Jilin Agricultural University, 2019.
Google Scholar
|
| [51] |
魏梦莹. 林芝地区森林植被分布及动态变化监测研究[D]. 西安: 长安大学, 2018.
Google Scholar
|
| [52] |
Wei M Y. Study on forest vegetation distribution and forest resources change monitoring in Linzhi area[D]. Xi’an: Chang’an University, 2018.
Google Scholar
|
| [53] |
安森鹏, 高振岭, 王磊. 气候变化对大兴安岭北部森林生态系统的影响[J]. 农业与技术, 2013, 33(1):55.
Google Scholar
|
| [54] |
An S P, Gao Z L, Wang L. Effects of climate change on forest ecosystem in northern Daxing’an mountains[J]. Agriculture and Technology, 2013, 33(1):55.
Google Scholar
|
| [55] |
魏晨辉. 黑龙江流域景观与气候驱动的植物多样性和碳汇变化研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2021.
Google Scholar
|
| [56] |
Wei C H. Landscape and climate-driven changes in plant diversity and carbon sink in the Heilongjiang River Basin[D]. Changchun: University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences),2021.
Google Scholar
|
| [57] |
于世勇, 史绍林. 全球变化对森林的影响[J]. 温带林业研究, 2021, 4(2):8-12.
Google Scholar
|
| [58] |
Yu S Y, Shi S L. Research on essential protein recognition based on random forest algorithm[J]. Journal of Temperate Forestry Research, 2021, 4(2):8-12.
Google Scholar
|