| [1] | He L, Li J, Liu C, et al. Recent advances on spectral-spatial hyperspectral image classification:An overview and new guidelines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3):1579-1597. 						Google Scholar
						 | 
					
									 					| [2] | Ghamisi P, Plaza J, Chen Y, et al. Advanced spectral classifiers for hyperspectral images:A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1):8-32. 						Google Scholar
						 | 
					
									 					| [3] | Tao C, Pan H, Li Y, et al. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12):2438-2442. 						Google Scholar
						 | 
					
									 					| [4] | Li T, Zhang J, Zhang Y. Classification of hyperspectral image based on deep belief networks[C]// Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), 2014. 						Google Scholar
						 | 
					
									 					| [5] | Zhang X R, Sun Y J, Jiang K, et al. Spatial sequential recurrent neural network for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11):4141-4155. 						Google Scholar
						 | 
					
									 					| [6] | Xu Q, Xiao Y, Wang D, et al. CSA-MSO3DCNN:Multiscale octave 3D CNN with channel and spatial attention for hyperspectral image classification[J]. Remote Sensing, 2020, 12(1):188. 						Google Scholar
						 | 
					
									 					| [7] | Gao K, Guo W, Yu X, et al. Deep induction network for small samples classification of hyperspectral images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3462-3477. 						Google Scholar
						 | 
					
									 					| [8] | 高奎亮, 张鹏强, 余旭初, 等. 基于Network In Network网络结构的高光谱影像分类方法[J]. 测绘科学技术学报, 2019, 36(5):500-504,510. 						Google Scholar
						 | 
					
									 					| [9] | Gao K L, Zhang P Q, Yu X C, et al. Classification method of hyperspectral image based on Network In Network structure[J]. Journal of Geomatics Science and Technology, 2019, 36(5):500-504,510. 						Google Scholar
						 | 
					
									 					| [10] | Li Y, Zhang H, Shen Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1):67. 						Google Scholar
						 | 
					
									 					| [11] | Xu X, Li J, Li S. Multiview intensity-based active learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):669-680. 						Google Scholar
						 | 
					
									 					| [12] | He X, Chen Y. Transferring CNN ensemble for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5):876-880. 						Google Scholar
						 | 
					
									 					| [13] | Mou L, Ghamisi P, Zhu X X. Unsupervised spectral-spatial feature learning via deep residual Conv-Deconv network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1):391-406. 						Google Scholar
						 | 
					
									 					| [14] | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Thirty-first Conference on Neural Information Processing Systems, 2017. 						Google Scholar
						 | 
					
									 					| [15] | Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16[Z]. Transformers for Image Recognition at Scale, 2020. 						Google Scholar
						 | 
					
									 					| [16] | Yue J, Zhao W, Mao S, et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks[J]. Remote Sensing Letters, 2015, 6(4-6):468-477. 						Google Scholar
						 | 
					
									 					| [17] | 刘冰, 余旭初, 张鹏强, 等. 联合空-谱信息的高光谱影像深度三维卷积网络分类[J]. 测绘学报, 2019, 48(1):53-63. 						Google Scholar
						 | 
					
									 					| [18] | Liu B, Yu X C, Zhang P Q, et al. Deep 3D convolutional network combined with spatial-spectral features for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):53-63. 						Google Scholar
						 |