| [1] | 赵洪臣, 周兴华, 彭聪, 等. 一种去除遥感影像混合噪声的集成BM3D方法[J]. 武汉大学学报(信息科学版), 2019, 44(6):925-932. 						Google Scholar
						 | 
					
									 					| [2] | Zhao H C, Zhou X H, Peng C et al. An integrated BM3D method for removing mixed noise in remoting sensing image[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6):925-932. 						Google Scholar
						 | 
					
									 					| [3] | 汪贵平, 杜晶晶, 宋京, 等. 基于梯度倒数的无人机遥感图像融合滤波方法[J]. 科学技术与工程, 2018, 18(31):190-194. 						Google Scholar
						 | 
					
									 					| [4] | Wang G P, Du J J, Song J, et al. A fusion filter method for unmanned aerial vehicle remote sensing image based on gradient inverse[J]. Science Technology and Engineering, 2018, 18(31):190-194. 						Google Scholar
						 | 
					
									 					| [5] | 朱建军, 周靖鸿, 周璀, 等. 一种新的去除遥感影像混合噪声组合滤波方法[J]. 武汉大学学报(信息科学版), 2017, 42(3):348-354. 						Google Scholar
						 | 
					
									 					| [6] | Zhu J J, Zhou J H, Zhou C, et al. A new combination filtering method to removing mixed noise of remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3):348-354. 						Google Scholar
						 | 
					
									 					| [7] | 刘帅. 基于分层稀疏学习和协同表示的高光谱图像去噪和分类[D]. 西安: 西安电子科技大学, 2016. 						Google Scholar
						 | 
					
									 					| [8] | Liu S. Hierarchical sparse learning and collaborative representation for hyperspectral imagery restoration and classification[D]. Xi’an: Xidian University, 2016. 						Google Scholar
						 | 
					
									 					| [9] | Srinivasan K S, Ebenezer D. A new fast and efficient decision-based algorithm for removal of high-density impulse noises[J]. IEEE Signal Processing Letters, 2007, 14(3):189-192. 						Google Scholar
						 | 
					
									 					| [10] | Jayaraj V, Ebenezer D. A new switching-based median filtering scheme and algorithmfor removal of high density salt and pepper noise in images[J]. Journal on Advances in Signal Processing, 2010(1):409-413. 						Google Scholar
						 | 
					
									 					| [11] | Dempster A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2):325-339. 						Google Scholar
						 | 
					
									 					| [12] | 蒋雯. 邓鑫洋. D-S证据理论信息建模与应用[M]. 北京: 科学出版社, 2018. 						Google Scholar
						 | 
					
									 					| [13] | Jiang W, Deng X Y. D-S evidence theory information modeling and application[M]. Beijing: Science Press, 2018. 						Google Scholar
						 | 
					
									 					| [14] | 童涛, 杨桄, 李昕, 等. 基于D-S证据理论的多特征融合SAR图像目标识别方法[J]. 国土资源遥感, 2013, 25(2):37-41.doi: 10.6046/gtzyyg.2013.02.07. 						Google Scholar
						 | 
					
									 					| [15] | Tong T, Yang G, Li X, et al. Recognition method of multi-feature fusion based on D-S evidence theory in SAR image[J]. Remote Sensing for Land and Resources, 2013, 25(2):37-41.doi: 10.6046/gtzyyg.2013.02.07. 						Google Scholar
						 | 
					
									 					| [16] | 李华朋, 张树清, 孙妍. 证据理论结合遥感分类数据能力定量评价研究[J]. 国土资源遥感, 2011, 23(1):26-32.doi: 10.6046/gtzyyg.2011.01.05. 						Google Scholar
						 | 
					
									 					| [17] | Li H P, Zhang S Q, Sun Y. The quantitative evaluation of remoting sensing data for supervised evidential classification[J]. Remote sensing for Land and Resources, 2011, 23(1):26-32.doi: 10.6046/gtzyyg.2011.01.05. 						Google Scholar
						 | 
					
									 					| [18] | Zhang Z, Han D, Dezert J, et al. A new adaptive switching median filter for impulse noise reduction with predetection based on evidential reasoning[J]. Signal Processing, 2018(147):173-189. 						Google Scholar
						 | 
					
									 					| [19] | Ng P E, Ma K. A switching median filter with boundary discriminative noise detection for extremely corrupted images[J]. IEEE Transactions on Image Processing, 2006, 15(6):1506-1516. 						Google Scholar
						 | 
					
									 					| [20] | Han D, Dezert J, Duan Z. Evaluation of probability transformations of belief functions fordecision making[J]. IEEE Transactions on Systems,Man,and Cybernetics, 2016, 46(1):93-108. 						Google Scholar
						 | 
					
									 					| [21] | Irpino R V. Dynamic clustering of interval data using a wasserstein based distance[J]. Pattern Recognition Letter, 2008, 29(11):1648-1658. 						Google Scholar
						 | 
					
									 					| [22] | 钱晓亮, 郭雷, 余博. 基于目标尺度的自适应高斯滤波[J]. 计算机工程与应用, 2010, 46(12):14-16. 						Google Scholar
						 | 
					
									 					| [23] | Qian X L, Guo L, Yu B. Adaptive Gaussian filter based on object scale[J]. Computer Engineering and Applications, 2010, 46(12):14-16. 						Google Scholar
						 | 
					
									 					| [24] | Xiao F. Multi-sensor data fusion based on the belief divergence measure of evidencesand the belief entropy[J]. Information Fusion, 2019,(46):23-32. 						Google Scholar
						 | 
					
									 					| [25] | Deng Y. Deng entropy[J]. Chaos,Solitons & Fractals, 2016(91):549-553. 						Google Scholar
						 | 
					
									 					| [26] | Jafar I F, AlNa’mneh R A, Darabkh K A. Efficient improvements on the BDND filtering algorithm for the removal of high-density impulse noise[J]. IEEE Transactios on Image Processing, 2013, 22(3):1223-1232. 						Google Scholar
						 | 
					
									 					| [27] | Zhao B, Zhong Y, Xia G S, et al. Dirichlet-derived multiple topic scene classification model fusing heterogeneous features for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4):2108-2123. 						Google Scholar
						 | 
					
									 					| [28] | Zhao B, Zhong Y, Zhang L, et al. The fisher kernel coding framework for high spatial resolution scene classification[J]. Remote Sensing, 2016, 8(2):157-176. 						Google Scholar
						 | 
					
									 					| [29] | Zhu Q, Zhong Y, Zhao B, et al. Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6):747-751. 						Google Scholar
						 | 
					
									 					| [30] | Haidi I, Nicholas S P K, Theam F N. Simple adaptive median filter for the removal of impulse noise from highly corrupted images[J]. IEEE Transactions on Consumer Electronics, 2008, 544(4):1920-1927. 						Google Scholar
						 |