China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 34, No. 3
Article Contents

YAN Junjie, GUO Xuexing, QU Jianhua, HAN Min. 2022. An FY-4A/AGRI cloud detection model based on the naive Bayes algorithm. Remote Sensing for Natural Resources, 34(3): 33-42. doi: 10.6046/zrzyyg.2021259
Citation: YAN Junjie, GUO Xuexing, QU Jianhua, HAN Min. 2022. An FY-4A/AGRI cloud detection model based on the naive Bayes algorithm. Remote Sensing for Natural Resources, 34(3): 33-42. doi: 10.6046/zrzyyg.2021259

An FY-4A/AGRI cloud detection model based on the naive Bayes algorithm

  • This study developed an automatic cloud detection method based on the naive Bayes algorithm for the cloud detection of the advanced geosynchronous radiation imager (AGRI) aboard the FY-4A satellite. In this method, the naive Bayes algorithm serves as the core structure, and appropriate infrared channels are selected as the parameters of the characteristic classifier according to the basic cloud detection principle of optical payload to ensure the consistency of cloud detection between day and night. After the classified training and construction for different surface types and different months, a cloud detection model based on the naive Bayes algorithm was finally established. Moreover, the classifier for FY-4A/AGRI data used in the method was established considering seven typical cloud detection characteristics and one characteristic based on the infrared composite images. As indicated by the learning tests and verification using the business cloud detection product of the National Satellite Meteorological Center (NSMC) in 2019, the classifier yielded a probability of detection (POD) greater than 98% for land, desert, shallow water, and deep sea, greater than 80% for snow cover, and greater than 80% for North and South poles. The comparison between the cloud detection results of this study and those obtained using the NSMC business system showed that the cloud detection results of this study had an average monthly POD of the whole year greater than 98%, a false alarm ratio (FAR) less than 5%, and all Kuiper’s skill scores (KSSs) greater than 90%.
  • 加载中
  • [1] 林晔. 大气探测学教程[M]. 北京: 气象出版社, 1995.

    Google Scholar

    [2] Lin Y. Course of atmospheric exploration[M]. Beijing: China Meteorological Press, 1995.

    Google Scholar

    [3] 杨亦萍, 董晓刚, 戴聪明, 等. 利用MODIS数据对北极夏季卷云特性的研究[J]. 红外与激光工程, 2016, 45(4):30-37.

    Google Scholar

    [4] Yang Y P, Dong X G, Dai C M, et al. Cirrus clouds properties in the arctic in summer based on MODIS data[J]. Infrared and Laser Engineering, 2016, 45(4):30-37.

    Google Scholar

    [5] 秦永, 付仲良, 周凡, 等. 一种利用TM影像自动检测云层的方法[J]. 武汉大学学报(信息科学版), 2014, 39(2):234-238.

    Google Scholar

    [6] Qin Y, Fu Z L, Zhou F, et al. A method of automatic cloud detection using TM image[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2):234-238.

    Google Scholar

    [7] 赵忠明, 朱重光. 遥感图象中薄云的去除方法[J]. 环境遥感, 1996, 11(3):195-199.

    Google Scholar

    [8] Zhao Z M, Zhu C G. Approach to removing cloud cover from satellite imagery[J]. Remote Sensing of Environment, 1996, 11(3):195-199.

    Google Scholar

    [9] Rossow W B, Schiffer R A. ISCCP cloud data products[J]. Bulletin of the American Meteorological Society, 1991, 72(1):2-20.

    Google Scholar

    [10] Seze G, Rossow W B. Time-cumulated visible and infrared radiance histograms used as descriptors of surface and cloud variations[J]. International Journal of Remote Sensing, 1991, 12(5):877-920.

    Google Scholar

    [11] Rossow W B, Garder L C. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP[J]. Journal of Climate, 1993, 6(12):2341-2369.

    Google Scholar

    [12] 刘健. FY-2云检测中动态阈值提取技术改进方法研究[J]. 红外与毫米波学报, 2010, 29(4):288-292.

    Google Scholar

    [13] Liu J. Improvement of dynamic threshold value extraction technic in FY-2 cloud detection[J]. Journal of Infrared and Millimeter Waves, 2010, 29(4):288-292.

    Google Scholar

    [14] Saunders R W, Kriebel K T. An improved method for detecting clear sky and cloudy radiances from AVHRR data[J]. International Journal of Remote Sensing, 1988, 9(1):123-150.

    Google Scholar

    [15] Kriebel K T, Saunders R W, Gesell G. Optical properties of clouds derived from fully cloudy AVHRR pixels[J]. Beitrage zur Physik der freien Atmosphare, 1989, 62:165-171.

    Google Scholar

    [16] Gesell G. An algorithm for snow and ice detection using AVHRR data an extension to the APOLLO software package[J]. International Journal of Remote Sensing, 1989, 10:4-5,897-905.

    Google Scholar

    [17] Stowe L L, McClain E P, Carey R, et al. Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data[J]. Advances in Space Research, 1991, 11(3):51-54.

    Google Scholar

    [18] Stowe L L, Vemury S K, Rao A V. AVHRR clear sky radiation data sets at NOAA/NESDIS[J]. Advance in Space Research, 1994, 14(1):113-116.

    Google Scholar

    [19] Menzel W P, Wylie D P, Strabala K I. Seasonal and diurnal changes in cirrus clouds as seen in four years of observations with the VAS[J]. Journal of Applied Meteorology, 1992, 31(4):370-385.

    Google Scholar

    [20] Wylie D P, Menzel W P, Woolf H M, et al. Four years of global cirrus cloud statistics using HIRS[J]. Journal of Climate, 1994, 7(12):1972-1986.

    Google Scholar

    [21] Shan N, Zheng T Y, Wang Z S. High-speed and high-accuracy algorithm for cloud detection and its application[J]. Journal of Remote Sensing, 2009, 13(6):1138-1146.

    Google Scholar

    [22] Goodman A H, Henderson-Sellers A. Cloud detection and analysis:A review of recent progress[J]. Atmospheric Research, 1988, 21(3-4):203-228.

    Google Scholar

    [23] 韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015, 30(4):505-516.

    Google Scholar

    [24] Han C M, Li Y D, Shi X K. Overview of researches on cloud analysis and prediction methods[J]. Advances in Earth Science, 2015, 30(4):505-516.

    Google Scholar

    [25] 孙汝星, 范荣双. 基于支持向量机的多特征融合影像云检测[J]. 测绘与空间地理信息, 2018, 41(6):153-156,160.

    Google Scholar

    [26] Sun R X, Fan R S. Multi-feature fusion image cloud detection based on SVM[J]. Geomatics and Spatial Information Technology, 2018, 41(6):153-156,160.

    Google Scholar

    [27] 关峥嵘, 谭毅华, 田金文. 一种快速的遥感卫星图像云检测算法. 计算机与数字工程, 2019, 47(11):2808-2811.

    Google Scholar

    [28] Guan Z R, Tan Y H, Tian J W. A fast cloud detection method in remote sensing satellite images[J]. Computer and Digital Engineering, 2019, 47(11):2808-2811.

    Google Scholar

    [29] 瞿建华, 鄢俊洁, 薛娟, 等. 基于深度学习的FY3D/MERSI和EOS/MODIS云检测模型研究[J]. 气象与环境学报, 2019, 35(3):87-93.

    Google Scholar

    [30] Qu J H, Yan J J, Xue J, et al. Research on the cloud detection model of FY3D /MERSI and EOS /MODIS based on deep learning[J]. Journal of Meteorology and Environment, 2019, 35(3):87-93.

    Google Scholar

    [31] 董瑶海. 风云四号气象卫星及其应用展望[J]. 上海航天, 2016, 33(2):1-8.

    Google Scholar

    [32] Dong Y H. Fy-4 meteorological satellite and its application prospect[J]. Aerospace Shanghai, 2016, 33(2):1-8.

    Google Scholar

    [33] 陆风, 张晓虎, 陈博洋, 等. 风云四号气象卫星成像特性及其应用前景[J]. 海洋气象学报, 2017, 37(2):1-12.

    Google Scholar

    [34] Lu F, Zhang X H, Chen B Y, et al. FY-4 geostationary meteorological satellite imaging characteristics and its application prospects[J]. Journal of Marine Meteorology, 2017, 37(2):1-12.

    Google Scholar

    [35] 杨军. 气象卫星及其应用[M]. 北京: 气象出版社. 2012.

    Google Scholar

    [36] Yang J. Meteorological satellites and their applications[M]. Beijing: China Meteorological Press, 2012.

    Google Scholar

    [37] Ackerman S A, Smith W L, Revercomb H E, et al. The 27-28 October 1986 FIRE IFO cirrus case study:Spectral properties of cirrus clouds in the 8-12μm[J]. Monthly Weather Review, 1990, 118(11),2377-2388.

    Google Scholar

    [38] Miller S D, Lindsey D T, Seaman C J, et al. GeoColor:A blending technique for satellite imagery[J]. Journal of Atmospheric and Oceanic Technology, 2020, 37(3):429-448.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(761) PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint