| [1] |
李根军, 杨雪松, 张兴, 等. ZY1-02D高光谱数据在地质矿产调查中的应用与分析[J]. 国土资源遥感, 2021, 33(2):134-140.doi: 10.6046/gtzyyg.2020190.
Google Scholar
|
| [2] |
Li G J, Yang X S, Zhang X, et al. Application and analysis of ZY1-02D hyperspectral data in geological and mineral survey[J]. Remote Sensing for Land and Resources, 2021, 33(2):134-140.doi: 10.6046/gtzyyg.2020190.
Google Scholar
|
| [3] |
田青林, 潘蔚, 李瑶, 等. 基于小波包变换和权重光谱角度制图的岩心高光谱蚀变信息提取[J]. 国土资源遥感, 2019, 31(4):41-46.doi: 10.6046/gtzyyg.2019.04.06.
Google Scholar
|
| [4] |
Tian Q L, Pan W, Li Y, et al. Extraction of alteration information from hyperspectral core imaging based on wavelet packet transform and weight spectral angle mapper[J]. Remote Sensing for Land and Resources, 2019, 31(4):41-46.doi: 10.6046/gtzyyg.2019.04.06.
Google Scholar
|
| [5] |
张帅洋, 华文深, 应家驹, 等. 高光谱线性解混研究进展[J]. 激光杂志, 2021, 42(3):17-21.
Google Scholar
|
| [6] |
Zhang S Y, Hua W S, Ying J J, et al. Research on the development of hyperspectral linear unmixing[J]. Laser Journal, 2021, 42(3):17-21.
Google Scholar
|
| [7] |
甘甫平, 王润生, 马蔼乃. 基于特征谱带的高光谱遥感矿物谱系识别[J]. 地学前缘, 2003, 10(2):445-454.
Google Scholar
|
| [8] |
Gan F P, Wang R S, Ma A N. Spectral identification tree(SIT) for mineral extraction based on spectral characteristics of minerals[J]. Earth Science Frontiers, 2003, 10(2):445-454.
Google Scholar
|
| [9] |
张川, 叶发旺, 徐清俊, 等. 新疆白杨河铀铍矿区航空高光谱矿物填图及蚀变特征分析[J]. 国土资源遥感, 2017, 29(2):160-166.doi: 10.6046/gtzyyg.2017.02.23.
Google Scholar
|
| [10] |
Zhang C, Ye F W, Xu Q J, et al. Mineral mapping and analysis of alteration characteristics using airborne hyperspectral remote sensing data in the Baiyanghe uranium and beryllium ore district,Xinjiang[J]. Remote Sensing for Land and Resources, 2017, 29(2):160-166.doi: 10.6046/gtzyyg.2017.02.23.
Google Scholar
|
| [11] |
Chaudhry F, Wu C C, Liu W M, et al. Pixel purity index-based algorithms for endmember extraction from hyperspectral imagery[J]. Recent Advances in Hyperspectral Signal and Image Processing, 2006:29-62.
Google Scholar
|
| [12] |
Winter M E. Comparison of approaches for determining endmembers in hyper-spectral data[C]// IEEE Aerospace Conference Proceedings.IEEE, 2000(3):305-313.
Google Scholar
|
| [13] |
Nascimento J M P, Dias J M B. Vertex component analysis:A fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2):898-910.
Google Scholar
|
| [14] |
吴波, 汪小钦, 张良培. 端元光谱自动提取的总体最小二乘迭代分解[J]. 武汉大学学报(信息科学版), 2008, 33(5):457-460.
Google Scholar
|
| [15] |
Wu B, Wang X Q, Zhang L P. Iterative abstraction of endmember based on total least square for mixture pixel decomposition[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5):457-460.
Google Scholar
|
| [16] |
Roberts D A, Gardner M, Church R, et al. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models[J]. Remote Sensing of Environment, 1998, 65(3):267-279.
Google Scholar
|
| [17] |
Asner G P, Lobell D B. A biogeophysical approach for automated SWIR unmixing of soils and vegetation[J]. Remote Sensing of Environment, 2000, 74(1):99-112.
Google Scholar
|
| [18] |
Song C. Spectral mixture analysis for subpixel vegetation fractions in the urban environment:How to incorporate endmember variability?[J]. Remote Sensing of Environment, 2005, 95(2):248-263.
Google Scholar
|
| [19] |
吴柯, 张良培, 李平湘. 一种端元变化的神经网络混合像元分解方法[J]. 遥感学报, 2007, 11(1):20-26.
Google Scholar
|
| [20] |
Wu K, Zhang L P, Li P X. A neural network method of selective endmember for pixel unmixing[J]. Journal of Remote Sensing, 2007, 11(1):20-26.
Google Scholar
|
| [21] |
林红磊, 张霞, 孙艳丽. 基于单次散射反照率的矿物高光谱稀疏解混[J]. 遥感学报, 2016, 20(1):53-61.
Google Scholar
|
| [22] |
Lin H L, Zhang X, Sun Y L. Hyperspectral sparse unmixing of minerals with single scattering albedo[J]. Journal of Remote Sensing, 2016, 20(1):53-61.
Google Scholar
|
| [23] |
Xu L L, Li J, Wong A, et al. K-P-Means:A clustering algorithm of K “Purified” Means for hyperspectral endmember estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10):1787-1791.
Google Scholar
|
| [24] |
Fischler M A, Bolles R C. Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):381-395.
Google Scholar
|
| [25] |
王润生, 杨苏明, 阎柏琨. 成像光谱矿物识别方法与识别模型评述[J]. 国土资源遥感, 2007, 19(1):1-9.doi: 10.6046/gtzyyg.2007.01.01.
Google Scholar
|
| [26] |
Wang R S, Yang S M, Yan B K. A review of mineral spectral identification methods and models with imaging spectrometer[J]. Remote Sensing for Land and Resources, 2007, 19(1):1-9.doi: 10.6046/gtzyyg.2007.01.01.
Google Scholar
|
| [27] |
Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society(Series B), 1977, 39(1):1-38.
Google Scholar
|
| [28] |
Lawson C L, Hanson R J. Solving least squares problems[M]. Englewood Cliffs: Prentice-Hall, 1974:161.
Google Scholar
|
| [29] |
郭继东, 向辉. 一个基本矩阵的鲁棒估计算法[J]. 计算机应用, 2005, 25(12):2845-2848.
Google Scholar
|
| [30] |
Guo J D, Xiang H. A robust method for estimating the fundamental matrix[J]. Computer Applications, 2005, 25(12):2845-2848.
Google Scholar
|
| [31] |
Chang C I, Heinz D C. Constrained subpixel detection for remotely sensed images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3):1144-1159.
Google Scholar
|
| [32] |
Zhou W, Alan C B, Hamid R S, et al. Image quality assessment:From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
Google Scholar
|
| [33] |
Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13):800-801.
Google Scholar
|