China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 34, No. 3
Article Contents

WANG Chunxia, ZHANG Jun, LI Yixu, PHOUMILAY. 2022. The construction and verification of a water index in the complex environment based on GF-2 images. Remote Sensing for Natural Resources, 34(3): 50-58. doi: 10.6046/zrzyyg.2021227
Citation: WANG Chunxia, ZHANG Jun, LI Yixu, PHOUMILAY. 2022. The construction and verification of a water index in the complex environment based on GF-2 images. Remote Sensing for Natural Resources, 34(3): 50-58. doi: 10.6046/zrzyyg.2021227

The construction and verification of a water index in the complex environment based on GF-2 images

  • The high spatial resolution of GF-2 images helps to obtain more accurate water distribution information. This study constructed a water index based on GF-2 images and verified it, aiming to solve the problem that the salt and pepper noise is prone to occur when the existing water indices are used to extract information on water bodies in complex environments from high-resolution remote sensing images. Firstly, this study established a comprehensive water index (CWI) by analyzing the spectral information of surface coverings and verified its precision. Secondly, information on water bodies was extracted through image segmentation combined with the CWI, and the extraction precision was verified. Then, to fully utilize the spectral information and the advantages of a classifier, the spectral information on the segmented homogeneous objects and the CWI were combined as the input data of the classifier to extract information on water bodies and verify the extraction precision. Finally, this study verified the applicability of the CWI in both WorldView-2 and GF-1 images. The results are as follows. ① The newly constructed CWI can effectively suppress the impacts of surface coverings, such as shadow, buildings, roads, vegetation, and bare soil, thus significantly improving the extraction precision. ② Extracting information on water bodies through image segmentation combined with the CWI can effectively inhibit the occurrence of the pepper and salt noise. ③ A classifier combined with a water index can effectively improve the information extraction precision of water bodies. ④ The CWI is applicable to both WorldView-2 and GF-1 images. In sum, the CWI can be used to effectively extract information on water bodies and applies to the information extraction and renewal of rivers and lakes and the surveys of the cultivation area of pounds and thereby is a high-precision method for extraction information of water bodies.
  • 加载中
  • [1] Yang C J, Wei Y M, Wang S Y, et al. Extracting the flood extent from satellite SAR image with the support of topographic data[C]// International Conferences on Info-Tech and Info-Net.IEEE Computer Society, 1998.

    Google Scholar

    [2] 何红术, 黄晓霞, 李红旮, 等. 基于改进U-Net网络的高分遥感影像水体提取[J]. 地球信息科学学报, 2020, 22(10):2010-2022.

    Google Scholar

    [3] He H S, Huang X X, Li H G, et al. Water body extraction of high resolution remote sensing image basedon improved U-Net network[J]. Journal of Geo-Information Science, 2020, 22(10):2010-2022.

    Google Scholar

    [4] 梁泽毓, 吴艳兰, 杨辉, 等. 基于密集连接全卷积神经网络的遥感影像水体全自动提取方法[J]. 遥感信息, 2020, 35(4):68-77.

    Google Scholar

    [5] Liang Z Y, Wu Y L, Yang H, et al. Full-automatic water extraction method for remote sensing image based on densely connected full convolutional neural network[J]. Remote Sensing Information, 2020, 35(4):68-77

    Google Scholar

    [6] 陈前, 郑利娟, 李小娟, 等. 基于深度学习的高分遥感影像水体提取模型研究[J]. 地理与地理信息科学, 2019, 35(4):43-49.

    Google Scholar

    [7] Chen Q, Zheng L J, Li X J, et al. Water boby extraction form high-resolution satellite remote sensing images based on deep learning[J]. Geography and Geo-Information Science, 2019, 35(4):43-49.

    Google Scholar

    [8] Gulcan S, Mehmet O. Water body extraction and change detection using time series: A case study of Lake Burdur,Turkey[J]. Journal of Taibah University for Science, 2017, 11(3):381-391.

    Google Scholar

    [9] 王瑾杰, 丁建丽, 张成, 等. 基于GF-1卫星影像的改进SWI水体提取方法[J]. 国土资源遥感, 2017, 29(1):29-35.doi: 10.6046/gtzyyg.2017.01.05.

    Google Scholar

    [10] Wang J J, Ding J L, Zhang C, et al. Method of water information extraction by improved SWI based on GF-1 satellite image[J]. Remote Sensing for Land and Resources, 2017, 29(1):29-35.doi: 10.6046/gtzyyg.2017.01.05.

    Google Scholar

    [11] 毛莹莹, 陈友飞. 基于面向对象法的Landsat8影像山区细小水体提取方法[J]. 亚热带资源与环境学报, 2015, 10(4):86-92.

    Google Scholar

    [12] Mao Y Y, Chen Y F. Water body extraction method based on object-oriented in mountainous area with Landsat8 image[J]. Journal of Subtropical Resources and Environment, 2015, 10(4):86-92.

    Google Scholar

    [13] 胡卫国, 孟令奎, 张东映, 等. 资源一号02C星图像水体信息提取方法[J]. 国土资源遥感, 2014, 26(2):43-47.doi: 10.6046/gtzyyg.2014.02.08.

    Google Scholar

    [14] Hu W G, Meng L K, Zhang D Y, et al. Method of water extraction from ZY-1 02C satellite image[J]. Remote Sensing for Land and Resources, 2014, 26(2):43-47.doi: 10.6046/gtzyyg.2014.02.08.

    Google Scholar

    [15] 王小标, 谢顺平, 都金康. 水体指数构建及其在复杂环境下有效性研究[J]. 遥感学报, 2018, 22(2):360-372.

    Google Scholar

    [16] Wang X B, Xie S P, Du J K. Water index formulation and its effectiveness research on the complicated surface water surroundings[J]. Journal of Remote Sensing, 2018, 22(2): 360-372.

    Google Scholar

    [17] 杨树文, 李轶鲲, 刘涛, 等. 基于SPOT5影像自动提取水体的新方法[J]. 武汉大学学报(信息科学版), 2015, 40(3):308-314.

    Google Scholar

    [18] Yang S W, Li Y K, Liu T, et al. A new automatic water boby feature extraction method based on SPOT5 images[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3):308-314.

    Google Scholar

    [19] Gudina L F, Henrik M, Rasmus F, et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140(1):23-35.

    Google Scholar

    [20] 沈占锋, 夏列钢, 李均力, 等. 采用高斯归一化水体指数实现遥感影像河流的精确提取[J]. 中国图象图形学报, 2013, 18(4):421-428.

    Google Scholar

    [21] Shen Z F, Xia L G, Li J L, et al. Automatic and high-precision extraction of rivers from remotely sensed images with Gaussian normalized water index[J]. Journal of Image and Graphics, 2013, 18(4):421-428.

    Google Scholar

    [22] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.

    Google Scholar

    [23] Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.

    Google Scholar

    [24] Rogers A S, Kearney M S. Reducing signature variability in unmixing coastal marsh thematic mapper scenes using spectral indices[J]. International Journal of Remote Sensing, 2004, 25(12):2317-2335.

    Google Scholar

    [25] McFEETERS S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.

    Google Scholar

    [26] 段纪维, 钟九生, 江丽, 等. 基于GF-2影像的雨后洪涝区超绿水体指数提取方法[J]. 地理与地理信息科学, 2021, 37(3):35-41.

    Google Scholar

    [27] Duan J W, Zhong J S, Jiang L, et al. Extraction method of ultra-green water index for flood area after rain based on GF-2 image[J]. Geography and Geo-Information Science, 2021, 37(3):35-41.

    Google Scholar

    [28] 邹橙, 杨学志, 董张玉, 等. 基于GF-2遥感影像的一种快速水体信息提取方法[J]. 图学学报, 2019, 40(1):99-104.

    Google Scholar

    [29] Zhou C, Yang X Z, Dong Z Y, et al. A fast water information extraction method based on GF-2 remote sensing image[J]. Journal of Graphics, 2019, 40(1):99-104.

    Google Scholar

    [30] 谷金英, 晏明, 张晓娇, 等. 利用高分一号影像提取水体信息的方法研究[J]. 农业与技术, 2018, 38(11):24-26,109.

    Google Scholar

    [31] Gu J Y, Yan M, Zhang X J, et al. Research on the method of extracting water information from gaofen-1 image[J]. Agriculture and Technology, 2018, 38(11):24-26,109.

    Google Scholar

    [32] 陈文倩, 丁建丽, 李艳华, 等. 基于国产GF-1遥感影像的水体提取方法[J]. 资源科学, 2015, 37(6):1166-1172.

    Google Scholar

    [33] Chen W Q, Ding J L, Li Y H, et al. Extraction of water information based on China-made GF-1 remote sense image[J]. Resources Science, 2015, 37(6):1166-1172.

    Google Scholar

    [34] 王冬梅, 陈琳, 冯峰. 面向对象的GF-2影像水体信息提取研究[J]. 人民黄河, 2021, 43(5):80-83,90.

    Google Scholar

    [35] Wand D M, Chen L, Feng F. Study on water information extraction from GF-2 image based on object-oriented method[J]. Yellow River, 2021, 43(5):80-83,90.

    Google Scholar

    [36] 黄帅, 丁建丽, 李艳华. 面向对象的国产GF-1遥感影像水体信息提取研究[J]. 人民长江, 2016, 47(5):23-28.

    Google Scholar

    [37] Huang S, Ding J L, Li Y H. Study of water information extraction based on domestic GF-1 remote sensing image by using object-oriented method[J]. Yangtze River, 2016, 47(5):23-28.

    Google Scholar

    [38] 洪亮, 黄雅君, 杨昆, 等. 复杂环境下高分二号遥感影像的城市地表水体提取[J]. 遥感学报, 2019, 23(5):871-882.

    Google Scholar

    [39] Hong L, Huang Y J, Yang K, et al. Study on urban surface water extraction from heterogeneous environments using GF-2 remotely sensed images[J]. Journal of Remote Sensing, 2019, 23(5): 871-882.

    Google Scholar

    [40] 王胜蕾. 基于水色指数的大范围长时序湖库水质遥感监测研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2018.

    Google Scholar

    [41] Wang S L. Large-scale and long-time water quality remote sensing monitoring over lakes based on water color index[D]. Beijing: University of Chinese Academy of Sciences, 2018.

    Google Scholar

    [42] 段秋亚, 孟令奎, 樊志伟, 等. GF-1卫星影像水体信息提取方法的适用性研究[J]. 国土资源遥感, 2015, 27(4):79-84.doi: 10.6046/gtzyyg.2015.04.13.

    Google Scholar

    [43] Duan Q Y, Meng L K, Fan Z W, et al. Applicability of the water information extraction method based on GF-1 image[J]. Remote Sensing for Land and Resources, 2015, 27(4):79-84.doi: 10.6046/gtzyyg.2015.04.13.

    Google Scholar

    [44] Jain S K, Singh R D, Jain M K, et al. Delineation of flood-prone areas using remote sensing techniques[J]. Water Resources Management, 2005, 19(4):333-347.

    Google Scholar

    [45] Zhang F, Li J, Zhang B, et al. A simple automated dynamic thresho-ld extraction method for the classification of large water bodies from Landsat8 OLI water index images[J]. International Journal of Remote Sensing, 2018, 39(11):3429-3451.

    Google Scholar

    [46] Fieuzal R, Sicre C M, Baup F. Estimation of corn yield using multi-temporal optical and Radar satellitedata and artificial neural networks[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 57(1):14-23.

    Google Scholar

    [47] 刘双童, 王明孝, 杨树文, 等. 基于GF-2高分辨率遥感影像的水体提取方法研究[J]. 全球定位系统, 2018, 43(6):37-43.

    Google Scholar

    [48] Liu S T, Wang M X, Yang S W, et al. Research on water body extraction method based on GF-2 high resolution remote sensing image[J]. GNSS World of China, 2018, 43(6):37-43.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(832) PDF downloads(62) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint