2022 Vol. 38, No. 2
Article Contents

HE Jun. 2022. Practice and Effect of Multi Factor Urban Geological Survey -- A Case Study of Wuhan City. South China Geology, 38(2): 240-249. doi: 10.3969/j.issn.2097-0013.2022.02.005
Citation: HE Jun. 2022. Practice and Effect of Multi Factor Urban Geological Survey -- A Case Study of Wuhan City. South China Geology, 38(2): 240-249. doi: 10.3969/j.issn.2097-0013.2022.02.005

Practice and Effect of Multi Factor Urban Geological Survey -- A Case Study of Wuhan City

  • In order to serve the construction of new urbanization in Wuhan accurately, the China Geological Survey has organized and implemented “Wuhan Multi-factor Urban Geological Survey” in conjunction with the Wuhan Government, focusing on the major geological environment problems of urban planning, construction, operation and management. A number of important achievements and understandings have been achieved by means of environmental geological survey, evaluation, monitoring, and comprehensive research. The investigation shows that most region of Wuhan are suitable for engineering construction and development of underground space, while the adverse effect of engineering geological bodies such as concealed karst and soft soil should be considered in some local areas. There are 6 medium-deep geothermal target areas, 11 deep water-richlands, 5 concentrated contiguous selenium-rich farmlands, 73 geological cultural resource areas, water source places as 9 for emergency ( backup ) groundwater and 13 strontium or metasilicate natural drinking mineral water in Wuhan City, as well as abundant shallow geothermal energy sources. With the mostly good ecological environment, the city has to focus on the exceeding of mercury, fluoride and total phosphorus in rivers and canals entering the Yangtze River, the enrichment of heavy metal elements in fluctuation zone, the atrophy of river and lake wetlands, as well as the eutrophication of water bodies. The crust of Wuhan is relatively stable, so are the regional deep faults. The high-risk area of karst collapse, about 130 km2 wide, can be detected by different combined geophysical methods on the primary geological conditions as development degree, thickness and structure of cover layer and groundwater. Three-dimensional geological models of different scales are constructed by surveying and mapping technology of multi-level combination table. The urban geological assistant decision-making information system is preliminarily established to provide references for urban planning, construction and security problems.
  • 加载中
  • [1] 陈 钰, 雷 琨, 杜 尧, 马 腾.2021. 沉湖湿地近50 年退化过程识别[J]. 地球科学,46(2):661-670.

    Google Scholar

    [2] 陈志浩, 陈少平, 吴礼生.2015. 武汉地区软土特征的实验分析[J]. 资源环境与工程,29(6):974-977.

    Google Scholar

    [3] 党丽娜, 杨 勇.2015. 武汉市土壤重金属空间分布特征及污染评价[J]. 华中农业大学学报,34(6):66-72.

    Google Scholar

    [4] 范士凯.2006. 武汉(湖北)地区岩溶地面塌陷[J]. 资源环境与工程,20(S1):608-616.

    Google Scholar

    [5] 冯小铭, 郭坤一, 王爱华, 刘红樱, 王敬东, 龚建师.2003.城市地质工作的初步探讨[J]. 地质通报,22(8):571-579.

    Google Scholar

    [6] 葛伟亚, 王 睿, 张 庆, 邢怀学, 周 洁.2021. 城市地下空间资源综合利用评价工作构想[J]. 地质通报,40(10):1601-1608.

    Google Scholar

    [7] 官善友, 廖建生, 庞设典, 杨育文.2011. 武汉市都市发展区规划用地地质环境调查与评价[J]. 城市勘测,(5):151-154+158.

    Google Scholar

    [8] 何 军, 刘 磊, 黎清华, 刘道涵, 陈标典, 张 傲, 赵永波.2020.隐伏岩溶区地下空间探测技术方法研究——以武汉市为例[J]. 水文地质工程地质,47(6):47-56.

    Google Scholar

    [9] 黄强兵, 彭建兵, 王飞永, 刘妮娜.2019. 特殊地质城市地下空间开发利用面临的问题与挑战[J]. 地学前缘,26(3):85-94.

    Google Scholar

    [10] 李 伟, 聂邦亮, 康俊杰.2012. 武汉市浅层地温能地质勘查评价方法探讨[J]. 资源环境与工程,26(S1):79-82.

    Google Scholar

    [11] 李晓昭, 王 睿, 顾 倩, 周丹坤, 辛韫潇.2019. 城市地下空间开发的战略需求[J]. 地学前缘,26(3):32-38.

    Google Scholar

    [12] 李长安, 张玉芬, 庞设典, 官善友.2019. 以地貌单元为依据的工程地质分区研究——以武汉市都市发展区城市地质研究为例[J]. 地质论评,65(3):645-652.

    Google Scholar

    [13] 林良俊, 李亚民, 葛伟亚, 胡秋韵, 李晓昭, 李 云, 孟 晖,张礼中, 杨建锋.2017. 中国城市地质调查总体构想与关键理论技术[J]. 中国地质,44(6):1086-1101.

    Google Scholar

    [14] 柳七一, 孙志伟, 王郝立.1994. 长江武汉江段近岸水域水质污染致突变性研究[J]. 人民长江,25(8):37-40.

    Google Scholar

    [15] 罗国煜, 李晓昭, 阎长虹.2004. 我国城市地质研究的历史演化与发展前景的认识[J]. 工程地质学报,12(1):1-5.

    Google Scholar

    [16] 牛俊强, 李 嵘, 江越潇, 苏 呈, 王富强.2019. 武汉市中深层地热赋存模式研究[J]. 资源环境与工程,33(4):530-535.

    Google Scholar

    [17] 庞设典, 姚建伟, 占爱民.2005. 武汉市区域地壳稳定性分析[J]. 土工基础,19(5):9-11.

    Google Scholar

    [18] 彭汉发, 谢纪海, 张娅婷, 夏冬生.2018. 武汉城市地质调查成果应用探索与思考[J]. 探矿工程(岩土钻掘工程),45(10):1-5.

    Google Scholar

    [19] 彭建兵, 黄伟亮, 王飞永, 刘 阳.2019. 中国城市地下空间地质结构分类与地质调查方法[J]. 地学前缘,26(3):9-21.

    Google Scholar

    [20] 田望学, 毛新武, 何仁亮, 李雄伟, 胡万强, 江天风, 黄建军.2011. 武汉地区1︰5 万区调第四系研究进展[J]. 华南地质与矿产,27(4):286-291.

    Google Scholar

    [21] 涂 婧, 魏瑞均, 杨戈欣, 刘长宪, 金小刚, 李海涛.2019. 湖北武汉岩溶塌陷时空分布规律及其影响因素分析[J].中国地质灾害与防治学报,30(6):68-73+93.

    Google Scholar

    [22] 王焰新, 李义连, 付素蓉, 蔡鹤生,Broder Merkel, Dana Ihm.2002. 武汉市区第四系含水层地下水有机污染敏感性研究[J]. 地球科学,27(5):616-620.

    Google Scholar

    [23] 温周瑞, 王丛丹, 李文华, 叶 嵘, 张从义.2013. 武汉城市湖泊水质及水体富营养化现状评价[J]. 水生态学杂志,34(5):96-100.

    Google Scholar

    [24] 文冬光, 刘长礼.2006. 中国主要城市环境地质调查评价[J].城市地质,1(2):4-7.

    Google Scholar

    [25] 吴庆华, 汪 啸, 崔皓东, 范 越, 张 伟, 王金龙, 肖 利.2022.地下水资源战略储备评价与应急利用——以武汉市为例[J/OL]. 长江科学院院报,https://kns.cnki.net/kcms/detail/42.1171.tv.20220224.1406.002.html.

    Google Scholar

    [26] 肖尚德, 牛俊强, 李 嵘.2007. 武汉市地下水开发利用的环境地质问题与防治对策[J]. 资源环境与工程,21(S1):57-60.

    Google Scholar

    [27] 谢连平, 钟洛加, 周衍龙.2009. 武汉城市地下空间开发利用与环境地质[J]. 环境科学与技术,32(12):209-214.

    Google Scholar

    [28] 熊 峰, 吴 超, 陶 良, 庞设典.2019. 地质灾害危险性区域评估方法探讨[J]. 城市勘测,(5):191-194.

    Google Scholar

    [29] 徐贵来.2016. 武汉市覆盖层岩溶地面塌陷形成机理与危险性评价[D]. 中国地质大学(武汉)博士学位论文.

    Google Scholar

    [30] 许 珂, 徐亚杏.2018. 基于MapGIS-K9 软件的城市三维地质建模方法探讨——以武汉市为例[J]. 华南地质与矿产,34(3):244-252.

    Google Scholar

    [31] 杨忠芳, 余 涛, 侯青叶, 杨 奕, 傅杨荣, 赵相雷.2012. 海南岛农田土壤Se 的地球化学特征[J]. 现代地质,26(5):837-849.

    Google Scholar

    [32] 张茂省, 李同录, 程秀娟, 孙萍萍, 李 强, 乔志甜, 赵权利.2019. 山区城市地下空间资源评价与开发利用模式——以延安市为例[J]. 山地学报,37(3):303-315.

    Google Scholar

    [33] 张茂省, 王化齐, 王 尧, 董 英, 孙萍萍.2018. 中国城市地质调查进展与展望[J]. 西北地质,51(4):1-9.

    Google Scholar

    [34] 周小娟, 张 嫣, 祝莉玲, 万 翔, 徐宏林.2016. 武汉侏儒-消泗地区农田系统中硒的分布特征及有效性研究[J].地质科技情报,35(4):158-163+171.

    Google Scholar

    [35] 周圆心, 郑桂森, 何 静, 李 超, 刘 予, 何晗晗, 肖景泽.2019.北京平原区地下空间建设地质安全监测问题探讨[J].中国地质,46(3):455-467.

    Google Scholar

    [36] 朱晛亭, 罗 红, 陶 良, 祝安安, 徐 聪.2020. 武汉市长江沿岸带地表水化学特征及成因[J]. 环境科学与技术,43(7):180-186.

    Google Scholar

    [37] Bobylev N. 2009. Main streaming sustainable development into a city’s Master plan: A case of Urban Underground Space use[J]. Land Use Policy, 26(4): 1128-1137.

    Google Scholar

    [38] Hunt D V L, Makana L O, Jefferson I, Rogers C D F. 2016. Liveable cities and urban underground space[J]. Tunnelling and Underground Space Technology, 55: 8-20.

    Google Scholar

    [39] Sharma N, Prakash R, Srivastava A, Sadana U S, Acharya R, Prakash N T, Reddy A V R. 2009. Profile of selenium in soil and crops in seleniferous area Punjab, India by neutron activation analysis[J]. Journal of Radioanalytical & Nuclear Chemistry,281(1):59-62.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1058) PDF downloads(164) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint