| [1] |
国务院.2014. 国务院关于依托黄金水道推动长江经济带发展的指导意见(国发[2014]39 号)[EB/OL].http://www.gov.cn/zhengce/content/2014-09/25/content_9092.htm.
Google Scholar
|
| [2] |
胡 玉, 帅 钰, 杜 永, 任良锁, 吴承明, 丁爱中.2019. 丹江口库区神定河水质污染成因分析[J]. 人民长江,50(11):44-48.
Google Scholar
|
| [3] |
黄艳雯, 杜 尧, 徐 宇, 陶艳秋, 邓娅敏, 马 腾.2020. 洞庭湖平原西部地区浅层承压水中铵氮的来源与富集机理[J]. 地质科技通报,39(6):165-174.
Google Scholar
|
| [4] |
李 典, 邓娅敏, 杜 尧, 颜港归, 孙晓梁, 范红晨.2021. 长江中游河湖平原浅层地下水中砷空间异质性的同位素指示[J]. 地球科学,46(12):4492-4502.
Google Scholar
|
| [5] |
梁 杏, 张婧玮, 蓝 坤, 沈 帅, 马 腾.2020. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报,39(1):21-33.
Google Scholar
|
| [6] |
罗义鹏, 邓娅敏, 杜 尧, 薛江凯, 孙晓梁.2022. 长江中游故道区高碘地下水分布与形成机理[J]. 地球科学,47(2):662-673.
Google Scholar
|
| [7] |
聂 京, 夏东升.2014. 丹江口库区及其上游流域水质污染特征及评价[J]. 环境监测管理与技术,26(4):31-34+62.
Google Scholar
|
| [8] |
王丽婧, 郑丙辉, 王圣瑞, 李 虹.2017. 长江经济带建设背景下“两湖”生态环境保护的问题与对策[J]. 环境保护,45(15):27-31.
Google Scholar
|
| [9] |
徐雨潇, 郑天亮, 高 杰, 邓娅敏, 蒋宏忱.2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响[J]. 地球科学,46(2):652-660.
Google Scholar
|
| [10] |
薛江凯, 邓娅敏, 杜尧, 罗义鹏, 程一涵.2021. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示[J]. 地球科学,46(11):4140-4149.
Google Scholar
|
| [11] |
杨达源.2006. 长江地貌过程[M]. 北京: 地质出版社.
Google Scholar
|
| [12] |
中国共产党中央委员会.2016. 长江经济带发展规划纲要[EB/OL]. http://baike.so.com/doc/25121588-26103009.html.
Google Scholar
|
| [13] |
朱 惇, 徐建锋, 湛若云, 张乐群.2019. 官山河流域氮素非点源输出负荷时空分布模拟研究[A]. 中国水利学会2019 学术年会论文集第五分册,213-219.
Google Scholar
|
| [14] |
Appelo C A J, Van Der Weiden M J J, Tournassat C, Charlet L. 2002. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic [J]. Environmental Science & Technology, 36(14):3096-3103.
Google Scholar
|
| [15] |
Bauer M, Blodau C. 2006. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments [J]. Science of Total Environment, 354(2-3):179-190.
Google Scholar
|
| [16] |
Boutton T W, Archer S R, Midwood A, Zitzer S F, Bol R. 1998. δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem [J]. Geoderma, 82:5-41.
Google Scholar
|
| [17] |
Cerling T E, Solomon D K, Quade J, Bowman J R. 1991. On the isotopic composition of carbon in soil carbon dioxide [J]. Geochimica et Cosmochimica Acta, 55:3403-3405.
Google Scholar
|
| [18] |
Deng Y M, Zheng T L, Wang Y X, Liu L, Jiang H C, Ma T. 2018. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin [J]. Science of The Total Environment., 619-620:1247-1258.
Google Scholar
|
| [19] |
Du Y, Deng Y M, Ma T, Lu Z J, Shen S, Gan Y Q, Wang Y X. 2018. Hydrogeochemical evidences for targeting sources of safe groundwater supply in arsenic-affected multi-level aquifer systems [J]. Science of The Total Environment, 645:1159-1171.
Google Scholar
|
| [20] |
Duan Y H, Gan Y Q, Wang Y X, Liu C X, Yu K, Deng Y M, Zhao K, Dong C J. 2017. Arsenic speciation in aquifer sediment under varying groundwater regime and redox conditions at Jianghan Plain of Central China [J]. Science of The Total Environment, 607-608:992-1000.
Google Scholar
|
| [21] |
Duan Y H, Schaefer M V, Wang Y X, Gan Y Q, Yu K, Deng Y M, Fendorf S. 2019. Experimental constraints on redox-induced arsenic release and retention from aquifer sediments in the central Yangtze River Basin [J]. Science of The Total Environment, 649:629-639.
Google Scholar
|
| [22] |
Gao J, Zheng T L, Deng Y M, Jiang H C. 2021. Microbially mediated mobilization of arsenic from aquifer sediments under bacterial sulfate reduction [J]. Science of The Total Environment, 768:144709.
Google Scholar
|
| [23] |
Ghosh A, Sáez A E, Ela W. 2006. Effect of pH, competitive anions and NOM on the leaching of arsenic from solid residuals [J]. Science of The Total Environment, 363(1-3):46-59.
Google Scholar
|
| [24] |
Heidmann I, Christl I, Leu C, Kretzschmar R. 2005. Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling [J]. Journal of Colloid and Interface Science, 282(2):270-282.
Google Scholar
|
| [25] |
Huang Y W, Du Y, Ma T, Deng Y M, Tao Y Q, Xu Y, Leng Z C. 2021. Dissolved organic matter characterization in high and low ammonium groundwater of Dongting Plain, Central China [J]. Ecotoxicology and Environmental Safety, 208:111779.
Google Scholar
|
| [26] |
Li J X, Zhou H L, Qian K, Xie X J, Xue X B, Yang Y J, Wang Y X. 2017. Fluoride and iodine enrichment in groundwater of North China Plain: Evidences from speciation analysis and geochemical modeling [J]. Science of The Total Environment, 598:239-248.
Google Scholar
|
| [27] |
Mukherjee A, Bhattacharya P, Shi F, Fryar A E, Mukherjee A B, Xie Z M, Jacks G, Bundschuh J. 2009. Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India) [J]. Applied Geochemistry, 24(10):1835-1851.
Google Scholar
|
| [28] |
Roy S, Gaillardet J, Allègre C J. 1999. Geochemistry of dissolved and suspended loads of the Seine river, France: Anthropogenic impact, carbonate and silicate weathering [J]. Geochimica et Cosmochimica Acta, 63(9):1277-1292.
Google Scholar
|
| [29] |
Sharma P, Rolle M, Kocar B, Fendorf S, Kappler A. 2011. Influence of natural organic matter on As transport and retention [J]. Environmental Science & Technology, 45(2):546-553.
Google Scholar
|
| [30] |
Sun L Q, Liang X, Jin M G, Zhang X. 2022. Sources and fate of excessive ammonium in the Quaternary sediments on the Dongting Plain, China [J]. Science of The Total Environment, 806:150479.
Google Scholar
|
| [31] |
Tao Y Q, Deng Y M, Du Y, Xu Y, Leng Z C, Ma T, Wang Y X. 2020. Sources and enrichment of phosphorus in groundwater of the Central Yangtze River Basin [J]. Science of The Total Environment, 737:139837.
Google Scholar
|
| [32] |
Telmer K, Veizer J. 1999. Carbon fluxes, PCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives [J]. Chemical Geology, 159:61-86.
Google Scholar
|
| [33] |
Wang Y X, Li J X, Ma T, Xie X J, Deng Y M, Gan Y Q. 2021. Genesis of geogenic contaminated groundwater: As, F and I [J]. Critical Reviews in Environmental Science and Technology, 51:2895-2933.
Google Scholar
|
| [34] |
Wu Y, Wang Y X. 2 0 1 4 . Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, northern China [J]. Environmental Science: Processes & Impacts, 16(6):1469-1479.
Google Scholar
|
| [35] |
Wu Y, Luo Z H, Luo W, Ma T, Wang Y X. 2018. Multiple isotope geochemistry and hydrochemical monitoring of karst water in a rapidly urbanized region [J]. Journal of Contaminant Hydrology, 218:44-58.
Google Scholar
|
| [36] |
Xiong Y J, Du Y, Deng Y M, Ma T, Li D, Sun X L, Liu G N, Wang Y X. 2021. Contrasting sources and fate of nitrogen compounds in different groundwater systems in the Central Yangtze River Basin [J]. Environmental Pollution, 290:118119.
Google Scholar
|
| [37] |
Xue J K, Deng Y M, Luo Y P, Du Y, Yang Y J, Cheng Y H, Xie X J, Gan Y Q, Wang Y X. 2022. Unraveling the impact of iron oxides-organic matter complexes on iodine mobilization in alluvial-lacustrine aquifers from central Yangtze River Basin [J]. Science of The Total Environment, 814:151930.
Google Scholar
|
| [38] |
Yang Y J, Yuan X F, Deng Y M, Xie X J, Gan Y Q, Wang Y X. 2020a. Seasonal dynamics of dissolved organic matter in high arsenic shallow groundwater systems [J]. Journal of Hydrology, 589:125120.
Google Scholar
|
| [39] |
Yang Y J, Deng Y M, Xie X J, Gan Y Q, Li J X. 2020b. Iron isotope evidence for arsenic mobilization in shallow multi-level alluvial aquifers of Jianghan Plain, central China [J]. Ecotoxicology and Environmental Safety, 206:111120.
Google Scholar
|
| [40] |
Zheng T L, Deng Y M, Wang Y X, Jiang H C, O’Loughlin E J, Flynn T M, Gan Y Q, Ma T. 2019. Seasonal microbial variation accounts for arsenic dynamics in shallow alluvial aquifer systems [J]. Journal of Hazardous Materials, 367:109-119.
Google Scholar
|
| [41] |
Zheng T L, Deng Y M, Wang Y X, Jiang H C, Xie X J, Gan Y Q. 2020. Microbial sulfate reduction facilitates seasonal variation of arsenic concentration in groundwater of Jianghan Plain, Central China [J]. Science of The Total Environment, 735:139327.
Google Scholar
|