2022 Vol. 38, No. 2
Article Contents

LIU Guang-Ning. 2022. The Main Water Environmental Issues and Assessment-zonation of Eco-environmental Geology Risks for Typical River-lake-wetland Systems in the Central Yangtze River. South China Geology, 38(2): 226-239. doi: 10.3969/j.issn.2097-0013.2022.02.004
Citation: LIU Guang-Ning. 2022. The Main Water Environmental Issues and Assessment-zonation of Eco-environmental Geology Risks for Typical River-lake-wetland Systems in the Central Yangtze River. South China Geology, 38(2): 226-239. doi: 10.3969/j.issn.2097-0013.2022.02.004

The Main Water Environmental Issues and Assessment-zonation of Eco-environmental Geology Risks for Typical River-lake-wetland Systems in the Central Yangtze River

  • To reveal the main eco-environmental geological issues of the typical river-lake-wetland systems in the central Yangtze River, this program performed a comprehensive geological survey in the Poyang Lake, Dongting Lake, and Guanshan River Catchment of Danjiangkou reservoir. One of the primary objectives of this program is to discover the major water environmental issues of the survey areas and assess the ecoenvironmental geology risks in the Guanshan River Catchment from both the river basin and regional scales. The obtained results show that (1) regional geogenic high content of As, NH4, Fe, and Mn have been detected in the groundwater in the Jianghan-Dongting and Poyang Lake plains, and groundwater with elevated I and P content have also been detected in the Poyang Lake and Jianghan-Dongting plains; Fe (Ⅲ) reduction is the primary mechanism responsible for genesis of the high As and P content in the groundwater, and microbial degradation of organic matter could be an important contribution for enrichment of NH4, P, and I in the groundwater; soil N, domestic wastewater, and chemical fertilizer are probably the major sources of groundwater NO3- in the Poyang plain; contaminated groundwater that discharged into the surface water would increases the contaminant loadings and, hence potentially causes contamination of the latter in the Dongting plain; (2) for the Guanshan River Catchment, the total N and P concentrations in surface water are frequently higher than the limit of level Ⅲ value of the Surface Water Environment Standards, leading the water fail to reach the level III Standard, in which organic N should have largely contributed to the total N loadings; the sub-catchments are characterized by variation of assessed risks concerning soil erosion, geological hazards, anthropogenic contamination, drinking water source, water environment, water ecology, and water habitat. The results of this study have enhanced the precision of geologic survey in this typical riverlake-wetland systems, providing the scientific basis for ecology conservation and recovery as well as water resource management and, furthermore, supporting the ‘The Yangtze River Protection’ and ‘Yangtze River Economic Belt’ strategies.
  • 加载中
  • [1] 国务院.2014. 国务院关于依托黄金水道推动长江经济带发展的指导意见(国发[2014]39 号)[EB/OL].http://www.gov.cn/zhengce/content/2014-09/25/content_9092.htm.

    Google Scholar

    [2] 胡 玉, 帅 钰, 杜 永, 任良锁, 吴承明, 丁爱中.2019. 丹江口库区神定河水质污染成因分析[J]. 人民长江,50(11):44-48.

    Google Scholar

    [3] 黄艳雯, 杜 尧, 徐 宇, 陶艳秋, 邓娅敏, 马 腾.2020. 洞庭湖平原西部地区浅层承压水中铵氮的来源与富集机理[J]. 地质科技通报,39(6):165-174.

    Google Scholar

    [4] 李 典, 邓娅敏, 杜 尧, 颜港归, 孙晓梁, 范红晨.2021. 长江中游河湖平原浅层地下水中砷空间异质性的同位素指示[J]. 地球科学,46(12):4492-4502.

    Google Scholar

    [5] 梁 杏, 张婧玮, 蓝 坤, 沈 帅, 马 腾.2020. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报,39(1):21-33.

    Google Scholar

    [6] 罗义鹏, 邓娅敏, 杜 尧, 薛江凯, 孙晓梁.2022. 长江中游故道区高碘地下水分布与形成机理[J]. 地球科学,47(2):662-673.

    Google Scholar

    [7] 聂 京, 夏东升.2014. 丹江口库区及其上游流域水质污染特征及评价[J]. 环境监测管理与技术,26(4):31-34+62.

    Google Scholar

    [8] 王丽婧, 郑丙辉, 王圣瑞, 李 虹.2017. 长江经济带建设背景下“两湖”生态环境保护的问题与对策[J]. 环境保护,45(15):27-31.

    Google Scholar

    [9] 徐雨潇, 郑天亮, 高 杰, 邓娅敏, 蒋宏忱.2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响[J]. 地球科学,46(2):652-660.

    Google Scholar

    [10] 薛江凯, 邓娅敏, 杜尧, 罗义鹏, 程一涵.2021. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示[J]. 地球科学,46(11):4140-4149.

    Google Scholar

    [11] 杨达源.2006. 长江地貌过程[M]. 北京: 地质出版社.

    Google Scholar

    [12] 中国共产党中央委员会.2016. 长江经济带发展规划纲要[EB/OL]. http://baike.so.com/doc/25121588-26103009.html.

    Google Scholar

    [13] 朱 惇, 徐建锋, 湛若云, 张乐群.2019. 官山河流域氮素非点源输出负荷时空分布模拟研究[A]. 中国水利学会2019 学术年会论文集第五分册,213-219.

    Google Scholar

    [14] Appelo C A J, Van Der Weiden M J J, Tournassat C, Charlet L. 2002. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic [J]. Environmental Science & Technology, 36(14):3096-3103.

    Google Scholar

    [15] Bauer M, Blodau C. 2006. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments [J]. Science of Total Environment, 354(2-3):179-190.

    Google Scholar

    [16] Boutton T W, Archer S R, Midwood A, Zitzer S F, Bol R. 1998. δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem [J]. Geoderma, 82:5-41.

    Google Scholar

    [17] Cerling T E, Solomon D K, Quade J, Bowman J R. 1991. On the isotopic composition of carbon in soil carbon dioxide [J]. Geochimica et Cosmochimica Acta, 55:3403-3405.

    Google Scholar

    [18] Deng Y M, Zheng T L, Wang Y X, Liu L, Jiang H C, Ma T. 2018. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin [J]. Science of The Total Environment., 619-620:1247-1258.

    Google Scholar

    [19] Du Y, Deng Y M, Ma T, Lu Z J, Shen S, Gan Y Q, Wang Y X. 2018. Hydrogeochemical evidences for targeting sources of safe groundwater supply in arsenic-affected multi-level aquifer systems [J]. Science of The Total Environment, 645:1159-1171.

    Google Scholar

    [20] Duan Y H, Gan Y Q, Wang Y X, Liu C X, Yu K, Deng Y M, Zhao K, Dong C J. 2017. Arsenic speciation in aquifer sediment under varying groundwater regime and redox conditions at Jianghan Plain of Central China [J]. Science of The Total Environment, 607-608:992-1000.

    Google Scholar

    [21] Duan Y H, Schaefer M V, Wang Y X, Gan Y Q, Yu K, Deng Y M, Fendorf S. 2019. Experimental constraints on redox-induced arsenic release and retention from aquifer sediments in the central Yangtze River Basin [J]. Science of The Total Environment, 649:629-639.

    Google Scholar

    [22] Gao J, Zheng T L, Deng Y M, Jiang H C. 2021. Microbially mediated mobilization of arsenic from aquifer sediments under bacterial sulfate reduction [J]. Science of The Total Environment, 768:144709.

    Google Scholar

    [23] Ghosh A, Sáez A E, Ela W. 2006. Effect of pH, competitive anions and NOM on the leaching of arsenic from solid residuals [J]. Science of The Total Environment, 363(1-3):46-59.

    Google Scholar

    [24] Heidmann I, Christl I, Leu C, Kretzschmar R. 2005. Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling [J]. Journal of Colloid and Interface Science, 282(2):270-282.

    Google Scholar

    [25] Huang Y W, Du Y, Ma T, Deng Y M, Tao Y Q, Xu Y, Leng Z C. 2021. Dissolved organic matter characterization in high and low ammonium groundwater of Dongting Plain, Central China [J]. Ecotoxicology and Environmental Safety, 208:111779.

    Google Scholar

    [26] Li J X, Zhou H L, Qian K, Xie X J, Xue X B, Yang Y J, Wang Y X. 2017. Fluoride and iodine enrichment in groundwater of North China Plain: Evidences from speciation analysis and geochemical modeling [J]. Science of The Total Environment, 598:239-248.

    Google Scholar

    [27] Mukherjee A, Bhattacharya P, Shi F, Fryar A E, Mukherjee A B, Xie Z M, Jacks G, Bundschuh J. 2009. Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India) [J]. Applied Geochemistry, 24(10):1835-1851.

    Google Scholar

    [28] Roy S, Gaillardet J, Allègre C J. 1999. Geochemistry of dissolved and suspended loads of the Seine river, France: Anthropogenic impact, carbonate and silicate weathering [J]. Geochimica et Cosmochimica Acta, 63(9):1277-1292.

    Google Scholar

    [29] Sharma P, Rolle M, Kocar B, Fendorf S, Kappler A. 2011. Influence of natural organic matter on As transport and retention [J]. Environmental Science & Technology, 45(2):546-553.

    Google Scholar

    [30] Sun L Q, Liang X, Jin M G, Zhang X. 2022. Sources and fate of excessive ammonium in the Quaternary sediments on the Dongting Plain, China [J]. Science of The Total Environment, 806:150479.

    Google Scholar

    [31] Tao Y Q, Deng Y M, Du Y, Xu Y, Leng Z C, Ma T, Wang Y X. 2020. Sources and enrichment of phosphorus in groundwater of the Central Yangtze River Basin [J]. Science of The Total Environment, 737:139837.

    Google Scholar

    [32] Telmer K, Veizer J. 1999. Carbon fluxes, PCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives [J]. Chemical Geology, 159:61-86.

    Google Scholar

    [33] Wang Y X, Li J X, Ma T, Xie X J, Deng Y M, Gan Y Q. 2021. Genesis of geogenic contaminated groundwater: As, F and I [J]. Critical Reviews in Environmental Science and Technology, 51:2895-2933.

    Google Scholar

    [34] Wu Y, Wang Y X. 2 0 1 4 . Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, northern China [J]. Environmental Science: Processes & Impacts, 16(6):1469-1479.

    Google Scholar

    [35] Wu Y, Luo Z H, Luo W, Ma T, Wang Y X. 2018. Multiple isotope geochemistry and hydrochemical monitoring of karst water in a rapidly urbanized region [J]. Journal of Contaminant Hydrology, 218:44-58.

    Google Scholar

    [36] Xiong Y J, Du Y, Deng Y M, Ma T, Li D, Sun X L, Liu G N, Wang Y X. 2021. Contrasting sources and fate of nitrogen compounds in different groundwater systems in the Central Yangtze River Basin [J]. Environmental Pollution, 290:118119.

    Google Scholar

    [37] Xue J K, Deng Y M, Luo Y P, Du Y, Yang Y J, Cheng Y H, Xie X J, Gan Y Q, Wang Y X. 2022. Unraveling the impact of iron oxides-organic matter complexes on iodine mobilization in alluvial-lacustrine aquifers from central Yangtze River Basin [J]. Science of The Total Environment, 814:151930.

    Google Scholar

    [38] Yang Y J, Yuan X F, Deng Y M, Xie X J, Gan Y Q, Wang Y X. 2020a. Seasonal dynamics of dissolved organic matter in high arsenic shallow groundwater systems [J]. Journal of Hydrology, 589:125120.

    Google Scholar

    [39] Yang Y J, Deng Y M, Xie X J, Gan Y Q, Li J X. 2020b. Iron isotope evidence for arsenic mobilization in shallow multi-level alluvial aquifers of Jianghan Plain, central China [J]. Ecotoxicology and Environmental Safety, 206:111120.

    Google Scholar

    [40] Zheng T L, Deng Y M, Wang Y X, Jiang H C, O’Loughlin E J, Flynn T M, Gan Y Q, Ma T. 2019. Seasonal microbial variation accounts for arsenic dynamics in shallow alluvial aquifer systems [J]. Journal of Hazardous Materials, 367:109-119.

    Google Scholar

    [41] Zheng T L, Deng Y M, Wang Y X, Jiang H C, Xie X J, Gan Y Q. 2020. Microbial sulfate reduction facilitates seasonal variation of arsenic concentration in groundwater of Jianghan Plain, Central China [J]. Science of The Total Environment, 735:139327.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1155) PDF downloads(193) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint