Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 46, No. 1
Article Contents

ZHANG Chuanfeng, ZHU Xiaping, ZHONG Jiaqi, ZHU Ziling, ZHAO Ping, REN Wei. Improvement of Acidic Yellow Soil by Wollastonite- sodium Silicate- biochar Composites[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 95-102. doi: 10.3969/j.issn.1000-6532.2025.01.010
Citation: ZHANG Chuanfeng, ZHU Xiaping, ZHONG Jiaqi, ZHU Ziling, ZHAO Ping, REN Wei. Improvement of Acidic Yellow Soil by Wollastonite- sodium Silicate- biochar Composites[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 95-102. doi: 10.3969/j.issn.1000-6532.2025.01.010

Improvement of Acidic Yellow Soil by Wollastonite- sodium Silicate- biochar Composites

More Information
  • Wollastonite-sodium silicate-biochar composite material (Ca-Si-C) was prepared by calcination with wollastonite as the matrix material and adding a certain amount of rape straw and sodium silicate. And then the Ca-Si-C was applied to the improvement of acidic yellow soil. The optimum preparation conditions of the composite materials is as follows∶ the mass ratio of wollastonite, rape rod, sodium silicate is 7∶1∶2, the mixture calcines in 600 ℃and muffle furnace for 1.5 h. The results of XRD, IR and SEM show that Ca-Si-C composite loaded with biochar has more surface pores and contains functional groups such as -OH, C≡C, -COOH and C-O. When 2% Ca-Si-C is applied to yellow soil with pH value 4.7, the initial pH value of the soil increases by 1.4 units compared with the control, and the acid damage capacity increases by 11.5 mmol/kg, the dissolution of sodium and potassium in soil increases, the dissolution of calcium, magnesium and aluminum decreases, the intersection point of soil acid buffer curve and aluminum ion dissolution curve increases from pH value 3.5 to 4.1. The Ca-Si-C has a good application prospect in acid soil improvement.

  • 加载中
  • [1] 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2):238-244.XU R K. Research progress of soil acidification and its control[J]. Soils, 2015, 47(2):238-244.

    Google Scholar

    XU R K. Research progress of soil acidification and its control[J]. Soils, 2015, 47(2):238-244.

    Google Scholar

    [2] 吴道铭, 傅友强, 于智卫, 等. 我国南方红壤酸化和铝毒现状及防治[J]. 土壤, 2013, 45(4):577-584.WU D M, FU Y Q, YU Z W, et al. Status of red soil acidification and aluminum toxicity in south china and prevention[J]. Soils, 2013, 45(4):577-584.

    Google Scholar

    WU D M, FU Y Q, YU Z W, et al. Status of red soil acidification and aluminum toxicity in south china and prevention[J]. Soils, 2013, 45(4):577-584.

    Google Scholar

    [3] 倪中应, 谢国雄, 章明奎. 酸化对耕地土壤镉铅有效性及农产品中镉铅积累的影响[J]. 江西农业学报, 2017, 29(8):52-56.NI Z Y, XIE G X, ZHANG M K. Effects of acidification on bioavailability of cadmium and lead in cultivated land soil and their accumulation in agricultural products[J]. Acta Agriculturae Jiangxi, 2017, 29(8):52-56.

    Google Scholar

    NI Z Y, XIE G X, ZHANG M K. Effects of acidification on bioavailability of cadmium and lead in cultivated land soil and their accumulation in agricultural products[J]. Acta Agriculturae Jiangxi, 2017, 29(8):52-56.

    Google Scholar

    [4] Hu Y, Cheng H, Tao S. The challenges and solutions for cadmium-contaminated rice in China: a critical review[J]. Environment international, 2016, 92:515-532.

    Google Scholar

    [5] Fageria N K, Nascente A S. Management of soil acidity of South American soils for sustainable crop production[J]. Advances in Agronomy, 2014, 128:221-275.

    Google Scholar

    [6] Zhang X, Guo J, Vogt R D, et al. Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands[J]. Geoderma, 2020, 366:114234. doi: 10.1016/j.geoderma.2020.114234

    CrossRef Google Scholar

    [7] Pan X Y, Li J Y, Deng K Y, et al. Four-year effects of soil acidity amelioration on the yields of canola seeds and sweet potato and N fertilizer efficiency in an ultisol[J]. Field Crops Research, 2019, 237:1-11. doi: 10.1016/j.fcr.2019.03.019

    CrossRef Google Scholar

    [8] 张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应[J]. 生态学杂志, 2019, 38(6):1900-1908.ZHANG L Y, ZHAO X Q, SHEN R F. Soil acidification and its ecological effects[J]. Chinese Journal of Ecology, 2019, 38(6):1900-1908.

    Google Scholar

    ZHANG L Y, ZHAO X Q, SHEN R F. Soil acidification and its ecological effects[J]. Chinese Journal of Ecology, 2019, 38(6):1900-1908.

    Google Scholar

    [9] 靳辉勇, 齐绍武, 朱益, 等. 硅酸盐土壤调理剂对蔬菜Cd污染的治理效果[J]. 中国土壤与肥料, 2017(1):149-152.JIN H Y, QI S W, ZHU Y, et al. The governance effect of siliate soil conditioner on cadmium-contaminated in vegetables[J]. Soil and Fertilizer Sciences in China, 2017(1):149-152. doi: 10.11838/sfsc.20170125

    CrossRef Google Scholar

    JIN H Y, QI S W, ZHU Y, et al. The governance effect of siliate soil conditioner on cadmium-contaminated in vegetables[J]. Soil and Fertilizer Sciences in China, 2017(1):149-152. doi: 10.11838/sfsc.20170125

    CrossRef Google Scholar

    [10] 庄钟娟, 杜迎辉, 朱瑞艳, 等. 硅酸盐菌剂对水稻生物学性状及养分累积的影响[J]. 中国稻米, 2015, 21(6):88-90+93.ZHUANG Z J, DU Y H, ZHU R Y, et al. Effects of sillicate bacterium on biological character and nutrients accumulation of rice vegetables[J]. China Rice, 2015, 21(6):88-90+93. doi: 10.3969/j.issn.1006-8082.2015.06.020

    CrossRef Google Scholar

    ZHUANG Z J, DU Y H, ZHU R Y, et al. Effects of sillicate bacterium on biological character and nutrients accumulation of rice vegetables[J]. China Rice, 2015, 21(6):88-90+93. doi: 10.3969/j.issn.1006-8082.2015.06.020

    CrossRef Google Scholar

    [11] Shepherd J G, Joseph S, Sohi S P, et al. Biochar and enhanced phosphate capture: mapping mechanisms to functional properties[J]. Chemosphere, 2017, 179:57-74. doi: 10.1016/j.chemosphere.2017.02.123

    CrossRef Google Scholar

    [12] Zhang M, Shu L, Shen X, et al. Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds[J]. Environmental pollution, 2014, 195:84-90. doi: 10.1016/j.envpol.2014.08.018

    CrossRef Google Scholar

    [13] Yilangai R M, Manu A S, Pineau W, et al. The effect of biochar and crop veil on growth and yield of Tomato (Lycopersicum esculentus Mill) in Jos, North central Nigeria[J]. Current Agriculture Research Journal, 2014, 2(1):37. doi: 10.12944/CARJ.2.1.05

    CrossRef Google Scholar

    [14] 刘慧屿, 娄春荣, 韩英祚, 等. 秸秆生物炭与减量氮肥配施对玉米氮素利用率及土壤结构的影响[J]. 土壤通报, 2020, 51(5):1180-1188.LIU H Y, LOU C R, HAN Y Z, et al. Impact of biochar addition combined with reduced nitrogen fertilizer on nitrogen use efficiency and soil structure in brown earth[J]. Chinese Journal of Soil Science, 2020, 51(5):1180-1188.

    Google Scholar

    LIU H Y, LOU C R, HAN Y Z, et al. Impact of biochar addition combined with reduced nitrogen fertilizer on nitrogen use efficiency and soil structure in brown earth[J]. Chinese Journal of Soil Science, 2020, 51(5):1180-1188.

    Google Scholar

    [15] 赵明柳, 唐守寅, 董海霞, 等. 硅酸钠对重金属污染土壤性质和水稻吸收Cd Pb Zn的影响[J]. 农业环境科学学报, 2016, 35(9):1653-1659.ZHAO M L, TANG S Y, DONG H X, et al. Effects of sodium silicate on soil properties and Cd, Pb and Zn absorption by rice plant[J]. Journal of Agro-Environment Science, 2016, 35(9):1653-1659. doi: 10.11654/jaes.2016-0288

    CrossRef Google Scholar

    ZHAO M L, TANG S Y, DONG H X, et al. Effects of sodium silicate on soil properties and Cd, Pb and Zn absorption by rice plant[J]. Journal of Agro-Environment Science, 2016, 35(9):1653-1659. doi: 10.11654/jaes.2016-0288

    CrossRef Google Scholar

    [16] 刘鸣达, 张婧婷, 马聪, 等. 施硅降低碱性土壤铅生物有效性的机制研究[J]. 农业环境科学学报, 2019, 38(3):555-562.LIU M D, ZHANG J T, MA C, et al. Preliminary study on the mechanism by which silicon application reduces lead bioavailability in alkaline soil[J]. Journal of Agro-Environment Science, 2019, 38(3):555-562. doi: 10.11654/jaes.2018-1414

    CrossRef Google Scholar

    LIU M D, ZHANG J T, MA C, et al. Preliminary study on the mechanism by which silicon application reduces lead bioavailability in alkaline soil[J]. Journal of Agro-Environment Science, 2019, 38(3):555-562. doi: 10.11654/jaes.2018-1414

    CrossRef Google Scholar

    [17] 王敬华, 张效年, 于天仁. 华南红壤对酸雨酸敏感性的研究[J]. 土壤学报, 1994, 31(4):348-355 .WANG J H, ZHANG X N, YU T R. Study on acid sensitivity of red soil in South China to acid rain[J]. Acta Pedologica Sinica, 1994, 31(4):348-355.

    Google Scholar

    WANG J H, ZHANG X N, YU T R. Study on acid sensitivity of red soil in South China to acid rain[J]. Acta Pedologica Sinica, 1994, 31(4):348-355.

    Google Scholar

    [18] Ulrich B. Natural and anthropogenic components of soil acidification[J]. Zeitschrift für Pflanzenernä hrung und Bodenkunde, 1986, 149(6):702-717.

    Google Scholar

    [19] 张祥, 王典, 姜存仓, 等. 生物炭对我国南方红壤和黄棕壤理化性质的影响[J]. 中国生态农业学报, 2013, 21(8):979-984.ZHANG X, WANG D, JIANG C C, et al. Effect of biochar on physicochemical properties of red and yellow brown soils in the South China Region[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8):979-984. doi: 10.3724/SP.J.1011.2013.00979

    CrossRef Google Scholar

    ZHANG X, WANG D, JIANG C C, et al. Effect of biochar on physicochemical properties of red and yellow brown soils in the South China Region[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8):979-984. doi: 10.3724/SP.J.1011.2013.00979

    CrossRef Google Scholar

    [20] 廖柏寒, 李长生. 土壤对酸沉降缓冲机制探讨[J]. 环境科学, 1989, 10(1):30-34.LIAO B H, LI C S. Buffering mechanism of soil for acidic precipitation[J]. Environmental Science, 1989, 10(1):30-34. doi: 10.3321/j.issn:0250-3301.1989.01.001

    CrossRef Google Scholar

    LIAO B H, LI C S. Buffering mechanism of soil for acidic precipitation[J]. Environmental Science, 1989, 10(1):30-34. doi: 10.3321/j.issn:0250-3301.1989.01.001

    CrossRef Google Scholar

    [21] 朱霞萍, 汪模辉, 李锡坤, 等. 珠江三角洲潮土和水稻土酸缓冲特性实验研究[J]. 环境污染与防治, 2010(1):47-50.ZHU X P, WANG M H, LI X K, et al. Study on acid buffer characters of fluvo-quic soil and paddy soil in the Pearl River Delta South China Region[J]. Environmental Pollution & Control, 2010(1):47-50. doi: 10.3969/j.issn.1001-3865.2010.01.011

    CrossRef Google Scholar

    ZHU X P, WANG M H, LI X K, et al. Study on acid buffer characters of fluvo-quic soil and paddy soil in the Pearl River Delta South China Region[J]. Environmental Pollution & Control, 2010(1):47-50. doi: 10.3969/j.issn.1001-3865.2010.01.011

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(454) PDF downloads(83) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint