Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 46, No. 1
Article Contents

WANG He, WU Minglin, QIN Yongli, ZHENG Wanying, JIANG Yongrong, LI Xuejun. Remediation of Cadmium-contaminated Soil by Cadmium-resistant Sulfate-reducing Bacteria[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 86-94. doi: 10.3969/j.issn.1000-6532.2025.01.009
Citation: WANG He, WU Minglin, QIN Yongli, ZHENG Wanying, JIANG Yongrong, LI Xuejun. Remediation of Cadmium-contaminated Soil by Cadmium-resistant Sulfate-reducing Bacteria[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 86-94. doi: 10.3969/j.issn.1000-6532.2025.01.009

Remediation of Cadmium-contaminated Soil by Cadmium-resistant Sulfate-reducing Bacteria

More Information
  • In order to investigate the cadmium reduction effect of cadmium-tolerant sulfate-reducing bacteria (SRB) on cadmium-contaminated soil, cadmium-tolerant SRB was screened and isolated using cadmium-tolerant sulfate-reducing sludge as seed sludge, and was injected into soils with different degrees of cadmium contamination (mild, moderate, and severe) to investigate the fugitive morphology of soil cadmium, the changes in sulfate reduction activity and microbial community structure. The results showed that after 53 d of Cd-tolerant SRB remediation, the total Cd content of soils with different Cd contamination levels did not change significantly, the proportion of unstable Cd (exchangeable state, carbonate-bound state) decreased from the initial 45%~68% to 26%~40%, and the proportion of stable Cd (Fe-Mn oxidation state, organic-bound state, residue state) increased significantly from the initial 30%~50% to 60%~75%. The effective passivation of cadmium in soils with different degrees of heavy metal cadmium pollution was achieved. The sulfate content of soils with different degrees of cadmium pollution showed a trend of gradually decreasing and then increasing during the remediation process, while the sulfate reduction activity gradually decreased, and there was regeneration of sulfate in the system. The change trend of each contaminated soil bacterial phylum during the remediation of cadmium-tolerant SRB was more or less the same, with Proteobacteria and Bacteroidetes as the main phylum, Desulfosporosinus and Desulfobacca as the main SRB genera, and their abundance gradually decreased during the remediation process, while sulfur-oxidizing bacteria had a tendency to increase. This shows that cadmium-tolerant SRB can reduce the content of unstable cadmium in cadmium-contaminated soil, and reduce the mobility of cadmium, but it is necessary to optimize the remediation parameters to enhance sulfate reduction and inhibit sulfur oxidation in the remediation process.

  • 加载中
  • [1] 朱晓丽, 寇志健, 王军强, 等. 生物炭固定化硫酸盐还原菌对Cd2+吸附及作用机制分析[J]. 环境科学学报, 2021, 41(7):2682-2690.ZHU X L, KOU Z J, WANG J Q, et al. Adsorption of Cd2+ by sulfate reducing bacteria immobilized biochar[J]. Acta Scientiae Circumstantiae, 2021, 41(7):2682-2690.

    Google Scholar

    ZHU X L, KOU Z J, WANG J Q, et al. Adsorption of Cd2+ by sulfate reducing bacteria immobilized biochar[J]. Acta Scientiae Circumstantiae, 2021, 41(7):2682-2690.

    Google Scholar

    [2] 杨飞, 房晓红, 曾凡桂, 等. 高岭石表面吸附铅和镉的模拟计算[J]. 矿产综合利用, 2020(5):196-202.YANG F, FANG X H, ZENG F G, et al. Simulation calculation of adsorption of lead and cadmium on kaolinite surface[J]. Multipurpose Utilization of Mineral Resources, 2020(5):196-202. doi: 10.3969/j.issn.1000-6532.2020.05.031

    CrossRef Google Scholar

    YANG F, FANG X H, ZENG F G, et al. Simulation calculation of adsorption of lead and cadmium on kaolinite surface[J]. Multipurpose Utilization of Mineral Resources, 2020(5):196-202. doi: 10.3969/j.issn.1000-6532.2020.05.031

    CrossRef Google Scholar

    [3] 邓敏, 程蓉, 舒荣波, 等. 攀西矿区典型重金属污染土壤化学-微生物联合修复技术探索[J]. 矿产综合利用, 2021(4):1-9.DENG M, CHENG R, SHU R B, et al. Exploration of chemical-microbial remediation technology for soil contaminated by typical heavy metals in Panxi mining area[J]. Multipurpose Utilization of Mineral Resources, 2021(4):1-9. doi: 10.3969/j.issn.1000-6532.2021.04.001

    CrossRef Google Scholar

    DENG M, CHENG R, SHU R B, et al. Exploration of chemical-microbial remediation technology for soil contaminated by typical heavy metals in Panxi mining area[J]. Multipurpose Utilization of Mineral Resources, 2021(4):1-9. doi: 10.3969/j.issn.1000-6532.2021.04.001

    CrossRef Google Scholar

    [4] 石浩, 胡静敏, 陈忻, 等. 矿山土壤镉污染微生物修复技术研究进展[J]. 矿产保护与利用, 2020, 40(4):17-22.SHI H, HU J M, CHEN X, et al. Research progress on microbial remediation technology of cadmium contaminated mine soil[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4):17-22.

    Google Scholar

    SHI H, HU J M, CHEN X, et al. Research progress on microbial remediation technology of cadmium contaminated mine soil[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4):17-22.

    Google Scholar

    [5] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5):1689-1692.Ministry of Environmental Protection, Ministry of Land and Resources, Ministry of Natural Resources of the People's Republic of China. Bulletin of national soil pollution survey[J]. China Environmental Protection Industry, 2014, 36(5):1689-1692.

    Google Scholar

    Ministry of Environmental Protection, Ministry of Land and Resources, Ministry of Natural Resources of the People's Republic of China. Bulletin of national soil pollution survey[J]. China Environmental Protection Industry, 2014, 36(5):1689-1692.

    Google Scholar

    [6] 马娇阳, 保欣晨, 王坤, 等. 土壤镉污染的人体健康风险评价研究: 生物有效性与毒性效应[J/OL]. 生态毒理学报, 2022. https://kns.cnki.net/kcms/detail/11.5470.X.20220106.1717.004.html.MA J Y, BAO X C, WANG K, et al. Human health risk assessment of cadmium in soils: role of bioavailability and toxic effects [J/OL]. Asian Journal of Ecotoxicology. https://kns. cnki. net/kcms/detail/11. 5470.X.20220106. 1717. 004. html, 2022.

    Google Scholar

    MA J Y, BAO X C, WANG K, et al. Human health risk assessment of cadmium in soils: role of bioavailability and toxic effects [J/OL]. Asian Journal of Ecotoxicology. https://kns. cnki. net/kcms/detail/11. 5470.X.20220106. 1717. 004. html, 2022.

    Google Scholar

    [7] 蒋永荣, 梁英, 张学洪, 等. 铅锌矿区不同程度尾矿砂重金属污染土壤的纵向微生物群落结构分析[J]. 生态环境学报, 2019, 28(10):2079-2088.JIANG Y R, LIANG Y, ZHANG X H, et al. Vertical microbial community structure of heavy metal contaminated soils from mine tailings of different degrees in lead-zinc mining areas[J]. Ecology and Environmental Sciences, 2019, 28(10):2079-2088.

    Google Scholar

    JIANG Y R, LIANG Y, ZHANG X H, et al. Vertical microbial community structure of heavy metal contaminated soils from mine tailings of different degrees in lead-zinc mining areas[J]. Ecology and Environmental Sciences, 2019, 28(10):2079-2088.

    Google Scholar

    [8] 陈灿明, 卫泽斌, 彭建兵, 等. 土壤有效态镉与稻米镉污染风险广东案例研究[J/OL]. 农业环境科学学报. https://kns.cnki.net/kcms/detail/12.1347.S.20220104.1534.002.html, 2022.CHEN C M, WEI Z B, PENG J B, et al. Risk assessment of cadmium contamination of rice using soil available cadmium in paddy fields: Case studies of Guangdong Province[J/OL]. Journal of Agro-Environment Science. https://kns. cnki. net/kcms/detail/12. 1347. S. 20220104. 1534. 002. html, 2022.

    Google Scholar

    CHEN C M, WEI Z B, PENG J B, et al. Risk assessment of cadmium contamination of rice using soil available cadmium in paddy fields: Case studies of Guangdong Province[J/OL]. Journal of Agro-Environment Science. https://kns. cnki. net/kcms/detail/12. 1347. S. 20220104. 1534. 002. html, 2022.

    Google Scholar

    [9] LI J R, XU Y M. Immobilization of Cd in paddy soil using moisture management and amendment[J]. Environmental Science and Pollution Research, 2015, 22(7):5580-5586. doi: 10.1007/s11356-014-3788-5

    CrossRef Google Scholar

    [10] 邵佳, 赵远来, 冯琰玉, 等. 生物质炭对长期铅镉复合污染土壤微生物群落丰度及活性的影响[J]. 农业环境科学学报, 2022, 41(1):66-74.SHAO J, ZHAO Y L, FENG Y Y, et al. Effects of biochar on microbial community abundance and activity in long-term Pb and Cd contaminated soils[J]. Journal of Agro-environment Science, 2022, 41(1):66-74. doi: 10.11654/jaes.2021-0478

    CrossRef Google Scholar

    SHAO J, ZHAO Y L, FENG Y Y, et al. Effects of biochar on microbial community abundance and activity in long-term Pb and Cd contaminated soils[J]. Journal of Agro-environment Science, 2022, 41(1):66-74. doi: 10.11654/jaes.2021-0478

    CrossRef Google Scholar

    [11] 刘马养, 张玉盛, 肖欢, 等. 新型改良剂"良田宝"对土壤有效镉及稻米镉含量的影响[J]. 作物研究, 2020, 34(3):258-261,278.LIU M Y, ZHANG Y S, XIAO H, et al. The effect of a new modifier “Liangtianbao”on cadmium content in the soil and rice[J]. Crop Research, 2020, 34(3):258-261,278.

    Google Scholar

    LIU M Y, ZHANG Y S, XIAO H, et al. The effect of a new modifier “Liangtianbao”on cadmium content in the soil and rice[J]. Crop Research, 2020, 34(3):258-261,278.

    Google Scholar

    [12] 童辉, 乔江涛, 周继梅, 等. 硫酸盐还原菌介导针铁矿表面硫的转化及镉固定脱毒效应[J]. 生态环境学报, 2021, 30(5):1069-10.TONG H, QIAO J T, ZHOU J M, et al. Coupled transformation of sulfur and cadmium on goethite induced by sulfate-reducing bacterium[J]. Ecology and Environmental Sciences, 2021, 30(5):1069-10.

    Google Scholar

    TONG H, QIAO J T, ZHOU J M, et al. Coupled transformation of sulfur and cadmium on goethite induced by sulfate-reducing bacterium[J]. Ecology and Environmental Sciences, 2021, 30(5):1069-10.

    Google Scholar

    [13] 董净, 代群威, 赵玉连, 等. 硫酸盐还原菌的分纯及对Cd2+钝化研究[J]. 环境科学与技术, 2019, 42(5):34-40.DONG J, DAI Q W, ZHAO Y L, et al. Isolation of sulfate-reducing bacteria and study on its passivation of Cd2+[J]. Environmental Science & Technology, 2019, 42(5):34-40.

    Google Scholar

    DONG J, DAI Q W, ZHAO Y L, et al. Isolation of sulfate-reducing bacteria and study on its passivation of Cd2+[J]. Environmental Science & Technology, 2019, 42(5):34-40.

    Google Scholar

    [14] ZHANG M L, WANG H X. Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis[J]. Minerals Engineering, 2016, 92:63-71. doi: 10.1016/j.mineng.2016.02.008

    CrossRef Google Scholar

    [15] YAN J, ZHONG K Q, WANG S J, et al. Carbon metabolism and sulfate respiration by a non-conventional Citrobacter freundii strain SR10 with potential application in removal of metals and metalloids[J]. International Biodeterioration & Biodegradation, 2018, 133:238-246.

    Google Scholar

    [16] 朱煜. 硫酸盐还原菌对重金属污染土壤的处理研究[J]. 环境污染与防治, 2021, 43(8):952-955.ZHU Y. Treatment of heavy metal contaminated soil using sulfate reducing bacteria[J]. Environmental Pollution & Control, 2021, 43(8):952-955.

    Google Scholar

    ZHU Y. Treatment of heavy metal contaminated soil using sulfate reducing bacteria[J]. Environmental Pollution & Control, 2021, 43(8):952-955.

    Google Scholar

    [17] 范文宏, 姜维, 王宁. 硫酸盐还原菌修复污染土壤过程中镉的地球化学形态分布变化[J]. 环境科学学报, 2008, 28(11):2291-2298.FAN W H, JIANG W, WANG N. Changes of cadmiumgeo chemical speciation in the process of soil bioremediation by Sulfate-Reducing Bacteria[J]. Acta Scientiae Circumstantia, 2008, 28(11):2291-2298. doi: 10.3321/j.issn:0253-2468.2008.11.019

    CrossRef Google Scholar

    FAN W H, JIANG W, WANG N. Changes of cadmiumgeo chemical speciation in the process of soil bioremediation by Sulfate-Reducing Bacteria[J]. Acta Scientiae Circumstantia, 2008, 28(11):2291-2298. doi: 10.3321/j.issn:0253-2468.2008.11.019

    CrossRef Google Scholar

    [18] 郑婉盈, 张色, 吴明林, 等. 耐镉硫酸盐还原活性污泥的驯化及其微生物群落结构分析[J]. 环境污染与防治, 2021, 43(1):47-51,56.ZHENG W Y, ZHANG S, WU M L, et al. The domestication of cadmium-resistant sulfate reducing activated sludge and analysis of its microbial community[J]. Environmental Pollution & Control, 2021, 43(1):47-51,56.

    Google Scholar

    ZHENG W Y, ZHANG S, WU M L, et al. The domestication of cadmium-resistant sulfate reducing activated sludge and analysis of its microbial community[J]. Environmental Pollution & Control, 2021, 43(1):47-51,56.

    Google Scholar

    [19] 蒋永荣, 周亶, 容翠娟, 等. 高效硫酸盐还原菌的分离及特性研究[J]. 环境科学与技术, 2009, 32(11):13-17.JIANG Y R, ZHOU D, RONG C J, et al. Isolation of high efficient sulfate-reducing bacteria and its biological desulfurization capability[J]. Environmental Science & Technology, 2009, 32(11):13-17. doi: 10.3969/j.issn.1003-6504.2009.11.004

    CrossRef Google Scholar

    JIANG Y R, ZHOU D, RONG C J, et al. Isolation of high efficient sulfate-reducing bacteria and its biological desulfurization capability[J]. Environmental Science & Technology, 2009, 32(11):13-17. doi: 10.3969/j.issn.1003-6504.2009.11.004

    CrossRef Google Scholar

    [20] 杜刚, 孙静贤, 张广求, 等. 硫酸盐还原菌的分离筛选及鉴定[J]. 基因组学与应用生物学, 2017, 36(1):246-251.DU G, SUN J X, ZHANG G Q, et al. Isolation screening and identification of sulfate-reducing bacteria[J]. Genomics and Applied Biology, 2017, 36(1):246-251.

    Google Scholar

    DU G, SUN J X, ZHANG G Q, et al. Isolation screening and identification of sulfate-reducing bacteria[J]. Genomics and Applied Biology, 2017, 36(1):246-251.

    Google Scholar

    [21] ALBORES A F, CID B P, GOMEZ E F, et al. Comparison between sequential extraction procedures and single extractions for metal partitioning in sewage sludge samples[J]. Analyst, 2000, 125(7):1353-1357. doi: 10.1039/b001983f

    CrossRef Google Scholar

    [22] 朱晓丽, 张建霞, 徐雅雅, 等. 常温等离子体诱变选育高效耐镉硫酸盐还原菌[J]. 西北大学学报, 2015, 45(2):304-306.ZHU X L, ZHANG J X, XU Y Y, et al. Screening of sulfur efficient and Cd-tolerant sulfate reducing bacteria by DBD Plasma mutation[J]. Journal of Northwest University, 2015, 45(2):304-306.

    Google Scholar

    ZHU X L, ZHANG J X, XU Y Y, et al. Screening of sulfur efficient and Cd-tolerant sulfate reducing bacteria by DBD Plasma mutation[J]. Journal of Northwest University, 2015, 45(2):304-306.

    Google Scholar

    [23] 国家环境保护总局. 水和废水监测分析方法[M]. (第四版). 北京: 中国环境科学出版社, 2002.State Environmental Protection Administration. Monitoring and analysis methods of water and wastewater [M]. (Fourth Edition). Beijing: China Environmental Press, 2002.

    Google Scholar

    State Environmental Protection Administration. Monitoring and analysis methods of water and wastewater [M]. (Fourth Edition). Beijing: China Environmental Press, 2002.

    Google Scholar

    [24] 陈立航, 李顺群, 程学磊, 等. 基于EDTA淋洗离心—硫酸盐还原菌固化法去除污泥中重金属镉的研究[J]. 水资源与水工程学报, 2021, 31(6):109-115.CHEN L H, LI S Q, CHENG X L, et al. Removal of heavy metal-cadmium in sludge based on EDTA eluting centrifugation-sulfate-reducing bacteria solidification method[J]. Journal of Water Resources & Water Engineering, 2021, 31(6):109-115. doi: 10.11705/j.issn.1672-643X.2021.06.15

    CrossRef Google Scholar

    CHEN L H, LI S Q, CHENG X L, et al. Removal of heavy metal-cadmium in sludge based on EDTA eluting centrifugation-sulfate-reducing bacteria solidification method[J]. Journal of Water Resources & Water Engineering, 2021, 31(6):109-115. doi: 10.11705/j.issn.1672-643X.2021.06.15

    CrossRef Google Scholar

    [25] 韩林宝. 典型菌株的硫价态双向调控行为对镉赋存状态影响研究[D]. 绵阳: 西南科技大学, 2018.HAN L B. Study on the effect of S-valence-state bidirectional regulation behavior on the occurrence of Cd in typical bacteria[D]. Mianyang: Southwest University of Science and Technology, 2018.

    Google Scholar

    HAN L B. Study on the effect of S-valence-state bidirectional regulation behavior on the occurrence of Cd in typical bacteria[D]. Mianyang: Southwest University of Science and Technology, 2018.

    Google Scholar

    [26] 徐伯钧. 土壤重金属植物有效性的控制因素研究[J]. 种子科技, 2018, 36(4):117-118.XU B J. Study on controlling factors of plant availability of heavy metals in soil[J]. Seed Science & Technology, 2018, 36(4):117-118. doi: 10.3969/j.issn.1005-2690.2018.04.094

    CrossRef Google Scholar

    XU B J. Study on controlling factors of plant availability of heavy metals in soil[J]. Seed Science & Technology, 2018, 36(4):117-118. doi: 10.3969/j.issn.1005-2690.2018.04.094

    CrossRef Google Scholar

    [27] 闫潇, 刘兴宇, 张明江, 等. 分离自活性污泥的硫酸盐还原菌用于铅锌冶炼渣重金属污染修复[J]. 微生物学通报, 2019, 46(8):1907-1916.YAN X, LIU X Y, ZHANG M J, et al. Remediation of heavy metal pollution by sulfate reducing bacteria (SRB) isolated from activated sludge in lead-zinc smelter slag[J]. Microbiology China, 2019, 46(8):1907-1916.

    Google Scholar

    YAN X, LIU X Y, ZHANG M J, et al. Remediation of heavy metal pollution by sulfate reducing bacteria (SRB) isolated from activated sludge in lead-zinc smelter slag[J]. Microbiology China, 2019, 46(8):1907-1916.

    Google Scholar

    [28] 吕琴, 陈中云, 闵航. 重金属污染对水稻田土壤硫酸盐还原菌种群数量及其活性的影响[J]. 植物营养与肥料学报, 2005, 11(3):399-405.LYU Q, CHEN Z Y, MIN H. Effect of heavy metal contamination on the population of sulfate-reducing bacteria and the sulfate-reducing activity in paddy rice soils[J]. Journal of Plant Nutrition and Fertilizers, 2005, 11(3):399-405. doi: 10.3321/j.issn:1008-505X.2005.03.020

    CrossRef Google Scholar

    LYU Q, CHEN Z Y, MIN H. Effect of heavy metal contamination on the population of sulfate-reducing bacteria and the sulfate-reducing activity in paddy rice soils[J]. Journal of Plant Nutrition and Fertilizers, 2005, 11(3):399-405. doi: 10.3321/j.issn:1008-505X.2005.03.020

    CrossRef Google Scholar

    [29] LIU M, XUE Y Y, Yang J. Rare plankton subcommunities are far more affected by DNA extraction kits than abundant plankton [J]. Frontiers in Microbiology, 2019, 10.

    Google Scholar

    [30] 冯云飞. 硫氧化细菌的分离鉴定及其氧化除硫的研究[D]. 大庆: 东北石油大学, 2021.FENG Y F. Isolation and identification of sulfur oxidizing bacteria and their study on sulfur removal by oxidation [D]. Daqing: Northeast Petroleum University, 2021.

    Google Scholar

    FENG Y F. Isolation and identification of sulfur oxidizing bacteria and their study on sulfur removal by oxidation [D]. Daqing: Northeast Petroleum University, 2021.

    Google Scholar

    [31] 徐帆. Pseudomonas C27代谢碳氮硫过程中单质硫的生成与胞内外分布规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.XU F. Study on the formation and distribution of biosulfur during the metabolismof carbon nitrogen and sulfide in pseudomonas c27 [D]. Harbin: Harbin Institute of Technology, 2021.

    Google Scholar

    XU F. Study on the formation and distribution of biosulfur during the metabolismof carbon nitrogen and sulfide in pseudomonas c27 [D]. Harbin: Harbin Institute of Technology, 2021.

    Google Scholar

    [32] 黄瑞林, 张娜, 孙波, 等. 典型农田根际土壤伯克霍尔德氏菌群落结构及其多样性[J]. 土壤学报, 2020, 57(4):975-985.HUANG R L, ZHANG N, SUN B, et al. Community structure of burkholderiales and its diversity in typical maize rhizosphere soil[J]. Acta Pedologica Sinica, 2020, 57(4):975-985. doi: 10.11766/trxb201901040008

    CrossRef Google Scholar

    HUANG R L, ZHANG N, SUN B, et al. Community structure of burkholderiales and its diversity in typical maize rhizosphere soil[J]. Acta Pedologica Sinica, 2020, 57(4):975-985. doi: 10.11766/trxb201901040008

    CrossRef Google Scholar

    [33] 龙冬艳. 解糖假苍白杆菌Pseudochrobactrum saccharolyticum LY10还原Cr(Ⅵ)的机制研究[D]. 杭州: 浙江大学, 2013.LONG D Y. The mechanism of Cr(Ⅵ) reduction by Pseudochrobactrum saccharolyticum LY10 [D]. Hangzhou: Zhejiang University, 2013.

    Google Scholar

    LONG D Y. The mechanism of Cr(Ⅵ) reduction by Pseudochrobactrum saccharolyticum LY10 [D]. Hangzhou: Zhejiang University, 2013.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(605) PDF downloads(269) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint