Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 4
Article Contents

LI Mingxi, TIAN Xiaosong, WANG Feiwang, LIANG Zeyue, DAI Huixin, YANG Bin. Research Status of the Mechanism of Action between Spodumene Crystal Structure and Flotation Agent[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 27-34. doi: 10.3969/j.issn.1000-6532.2024.04.004
Citation: LI Mingxi, TIAN Xiaosong, WANG Feiwang, LIANG Zeyue, DAI Huixin, YANG Bin. Research Status of the Mechanism of Action between Spodumene Crystal Structure and Flotation Agent[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 27-34. doi: 10.3969/j.issn.1000-6532.2024.04.004

Research Status of the Mechanism of Action between Spodumene Crystal Structure and Flotation Agent

More Information
  • This is an article in the field of mineral processing engineering. Lithium ore is an important strategic resource in China. At present, flotation is the most commonly used method for the separation of lithium ore. In this article, the crystal structure characteristics of spodumene and its interaction mechanism with flotation agent are discussed from the point of view of spodumene crystal structure. This article describes it from seven aspects: metal cationic activator, organic inhibitor, inorganic inhibitor, anionic collector, cationic collector, mixed collector and new collector. It is of great significance to understand the characteristics of the interaction between spodumene and reagents, to develop new and efficient flotation reagents and to optimize the mineral processing process.

  • 加载中
  • [1] 舒宇, 乘舟越洋, 汪灵, 等. 我国锂辉石矿的工艺矿物学特征及其对浮选行为的影响[J]. 现代矿业, 2022, 38(12):55-61.SHU Y, CHENGZHOU Y Y, WANG L, et al. Process mineralogy characteristics of spodumene ore in China and its effecton flotation behavior[J]. Modern Mining, 2022, 38(12):55-61. doi: 10.3969/j.issn.1674-6082.2022.12.013

    CrossRef Google Scholar

    SHU Y, CHENGZHOU Y Y, WANG L, et al. Process mineralogy characteristics of spodumene ore in China and its effecton flotation behavior[J]. Modern Mining, 2022, 38(12):55-61. doi: 10.3969/j.issn.1674-6082.2022.12.013

    CrossRef Google Scholar

    [2] 夏自发, 邓朝安, 邹毅仁, 等. 提高锂辉石矿选矿指标的工程化关键技术研究[J]. 中国矿山工程, 2022, 51(3):68-72.XIA Z F, DENG C A, ZOU R Y, et al. Study on key engineering technologies for improving mineral processing indexes of spodumene[J]. China Mine Engineering, 2022, 51(3):68-72. doi: 10.3969/j.issn.1672-609X.2022.03.013

    CrossRef Google Scholar

    XIA Z F, DENG C A, ZOU R Y, et al. Study on key engineering technologies for improving mineral processing indexes of spodumene[J]. China Mine Engineering, 2022, 51(3):68-72. doi: 10.3969/j.issn.1672-609X.2022.03.013

    CrossRef Google Scholar

    [3] 朱加乾, 徐宝金, 宋学文, 等. 西澳某锂辉石矿石浮选试验[J]. 金属矿山, 2018(505):127-130.ZHU J Q, XU B J, SONG X W, et al. Flotation test on a spodumene ore from Western Australia[J]. Metal Mine, 2018(505):127-130.

    Google Scholar

    ZHU J Q, XU B J, SONG X W, et al. Flotation test on a spodumene ore from Western Australia[J]. Metal Mine, 2018(505):127-130.

    Google Scholar

    [4] 梅亚军, 李潇雨, 李成秀, 等. 四川可尔因选锂尾矿锂辉石再选实验研究[J]. 矿产综合利用, 2023(4): 83-87+94.MEI Y J, LI X Y, LI C X, et al. Re-election of spodumene from lithium processing tailings in Keeryin, Sichuan[J]. Multipurpose Utilization of Mineral Resources. 2023(4): 83-87+94.

    Google Scholar

    MEI Y J, LI X Y, LI C X, et al. Re-election of spodumene from lithium processing tailings in Keeryin, Sichuan[J]. Multipurpose Utilization of Mineral Resources. 2023(4): 83-87+94.

    Google Scholar

    [5] 董栋, 程宏伟, 郭保万, 等. 锂辉石选矿技术现状及展望[J]. 矿产保护与利用, 2018(216):130-134.DONG D, CHENG H W, GUO B W, et al. Research situation and prospect on the mineral processing technology of spodumene[J]. Conservation and Utilization of Mineral Resources, 2018(216):130-134.

    Google Scholar

    DONG D, CHENG H W, GUO B W, et al. Research situation and prospect on the mineral processing technology of spodumene[J]. Conservation and Utilization of Mineral Resources, 2018(216):130-134.

    Google Scholar

    [6] 李强. 锂辉石提锂工艺方法综述[J]. 化工管理, 2022(647):147-149.LI Q. Overview of lithium extraction process from spodumene[J]. Chemical Engineering Management, 2022(647):147-149.

    Google Scholar

    LI Q. Overview of lithium extraction process from spodumene[J]. Chemical Engineering Management, 2022(647):147-149.

    Google Scholar

    [7] 王核, 黄亮, 白洪阳, 等. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 2022, 46(5):848-866.WANG H, HUANG L, BAI H Y, et al. Types, distribution, development and utilization of lithium mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 2022, 46(5):848-866.

    Google Scholar

    WANG H, HUANG L, BAI H Y, et al. Types, distribution, development and utilization of lithium mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 2022, 46(5):848-866.

    Google Scholar

    [8] 程仁举, 李成秀, 刘星, 等. 新疆某伟晶岩型锂辉石矿浮选实验研究[J]. 矿产综合利用, 2023(4):88-94.CHENG R J, LI C X, LIU X, et al. Flotation of a pegmatite type spodumene ore in Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2023(4):88-94. doi: 10.3969/j.issn.1000-6532.2023.04.014

    CrossRef Google Scholar

    CHENG R J, LI C X, LIU X, et al. Flotation of a pegmatite type spodumene ore in Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2023(4):88-94. doi: 10.3969/j.issn.1000-6532.2023.04.014

    CrossRef Google Scholar

    [9] 李成秀, 程仁举, 刘星. 我国锂辉石矿选矿技术研究现状及展望[J]. 矿产综合利用, 2021(5):1-8.LI C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8. doi: 10.3969/j.issn.1000-6532.2021.05.001

    CrossRef Google Scholar

    LI C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8. doi: 10.3969/j.issn.1000-6532.2021.05.001

    CrossRef Google Scholar

    [10] 马广鹏, 韩建儒, 仪修杰, 等. 氧化锌单晶的水热生长与结晶习性[J]. 人工晶体学报, 2005, 34(5):772-777.MA G P, HAN J R, YI X J, et al. Hydrothermal growth and crystalline morphology of bulk ZnO single crystal[J]. Journal of Synthetic Crystals, 2005, 34(5):772-777. doi: 10.3969/j.issn.1000-985X.2005.05.002

    CrossRef Google Scholar

    MA G P, HAN J R, YI X J, et al. Hydrothermal growth and crystalline morphology of bulk ZnO single crystal[J]. Journal of Synthetic Crystals, 2005, 34(5):772-777. doi: 10.3969/j.issn.1000-985X.2005.05.002

    CrossRef Google Scholar

    [11] 幸伟中. 矿物的可浮性及其分类[J]. 金属学报, 1965(2):259-269.XING W Z. The floatability of minerals and their classification[J]. Acta Metallurgica Sinica, 1965(2):259-269.

    Google Scholar

    XING W Z. The floatability of minerals and their classification[J]. Acta Metallurgica Sinica, 1965(2):259-269.

    Google Scholar

    [12] 印万忠, 孙传尧. 矿物晶体结构与表面特性和可浮性关系的研究[J]. 国外金属矿选矿, 1998(4):8-11.YIN W Z, SUN C Y. Study on the relationship between mineral crystal structure and surface properties and floatability[J]. Metallic Ore Dressing Abroad, 1998(4):8-11.

    Google Scholar

    YIN W Z, SUN C Y. Study on the relationship between mineral crystal structure and surface properties and floatability[J]. Metallic Ore Dressing Abroad, 1998(4):8-11.

    Google Scholar

    [13] 孙传尧, 周俊武, 贾木欣, 等. 基因矿物加工工程研究[J]. 有色金属(选矿部分), 2018(1):1-7.SUN C Y, ZHOU J W, JIA M X, et. al. Research on genetic mineral processing engineering[J]. Nonferrous Metals(Mineral Processing Section), 2018(1):1-7.

    Google Scholar

    SUN C Y, ZHOU J W, JIA M X, et. al. Research on genetic mineral processing engineering[J]. Nonferrous Metals(Mineral Processing Section), 2018(1):1-7.

    Google Scholar

    [14] 于福顺, 闫平科, 蒋曼, 等. 锂辉石、钾长石矿物基因特性及其可浮性分析[J]. 金属矿山, 2020(528):75-80.YU F S, YAN P K, JIANG M, et al. Minerals genetic properties and their floatability of spodumene and potassium feldspar[J]. Metal Mine, 2020(528):75-80.

    Google Scholar

    YU F S, YAN P K, JIANG M, et al. Minerals genetic properties and their floatability of spodumene and potassium feldspar[J]. Metal Mine, 2020(528):75-80.

    Google Scholar

    [15] Duan Yonghua, Ma Lishi, Li Ping, et al. First-principles calculations of electronic structures and optical, phononic and thermodynamic properties of monoclinica-spodumene[J]. Ceramics International, 2017, 43:6312-6321. doi: 10.1016/j.ceramint.2017.02.038

    CrossRef Google Scholar

    [16] Xu Longhua, Tian Jia, Wu Houqin, et al. Anisotropic surface chemistry proper tesandadsorption behavior of silicate mineral crystals[J]. Advances in Colloi d and Interface Science, 2018, 256:340-351. doi: 10.1016/j.cis.2018.02.004

    CrossRef Google Scholar

    [17] 徐龙华, 巫侯琴, 田佳, 等. 伟晶岩型铝硅酸盐矿物的晶体化学特征计算与分析[J]. 有色金属(选矿部分), 2017(6):22-27.XU L H, WU H Q, TIAN J, et al. Theoretical calculation and analysis of crystallochemical characteristic of pegmatite aluminosolicate minerals[J]. Nonferrous Metals(Mineral Processing Section), 2017(6):22-27.

    Google Scholar

    XU L H, WU H Q, TIAN J, et al. Theoretical calculation and analysis of crystallochemical characteristic of pegmatite aluminosolicate minerals[J]. Nonferrous Metals(Mineral Processing Section), 2017(6):22-27.

    Google Scholar

    [18] K·S·孟 , D·W·富尔斯特瑙 , 于福顺, 等. 从多种铝硅酸盐矿物中选择性浮选锂辉石的表面晶体化学研究[J]. 国外金属矿选矿, 2004(4): 25-31+9.K S MENG , D W Fuerstenau , YU F X, et al. Surface crystal chemistry study of selective flotation spodumene from a variety of aluminosilicate minerals[J]. Metallic Ore Dressing Abroad, 2004(4): 25-31+9.

    Google Scholar

    K S MENG , D W Fuerstenau , YU F X, et al. Surface crystal chemistry study of selective flotation spodumene from a variety of aluminosilicate minerals[J]. Metallic Ore Dressing Abroad, 2004(4): 25-31+9.

    Google Scholar

    [19] Beena R , Sathish P, Jyotsna T , et al. Amolecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals[J]. Journal of Colloid and Interface Science, 2011, (362): 510-516.

    Google Scholar

    [20] 谢瑞琦, 朱一民, 刘杰, 等. 基于密度泛函理论的锂辉石晶体结构及(110)面表面化学基因特性研究[J]. 金属矿山, 2020(6):68-74.XIE R Q, ZHU Y M, LIU J, et al. The first principle calculation of spodumene electronic structure and surface chemistry features of spodumene(110)surface[J]. Metal Mine, 2020(6):68-74.

    Google Scholar

    XIE R Q, ZHU Y M, LIU J, et al. The first principle calculation of spodumene electronic structure and surface chemistry features of spodumene(110)surface[J]. Metal Mine, 2020(6):68-74.

    Google Scholar

    [21] 周贺鹏. 微细粒锂辉石聚团浮选特性及矿物表面反应机理[D]. 北京: 中国矿业大学, 2020.ZHOU H P. Flotation characteristics of fine-grained spodumene agglomeration and reaction mechanism of mineral surface[D]. Beijing: China University of Mining and Technology, 2020.

    Google Scholar

    ZHOU H P. Flotation characteristics of fine-grained spodumene agglomeration and reaction mechanism of mineral surface[D]. Beijing: China University of Mining and Technology, 2020.

    Google Scholar

    [22] 印万忠, 姚金, 唐远. 硅酸盐矿物分选[M]. 沈阳: 东北大学出版社, 2020, 12.YIN W Z, YAO J, TANG Y. Silicate mineral sorting[M]. Shenyang: Northeastern University Press, 2020, 12.

    Google Scholar

    YIN W Z, YAO J, TANG Y. Silicate mineral sorting[M]. Shenyang: Northeastern University Press, 2020, 12.

    Google Scholar

    [23] 石海兰, 朱文龙. Fe3+对锂辉石浮选的影响及机理研究[J]. 稀有金属与硬质合金, 2015, 43(4):5-9.SHI H L, ZHU W L. Study on influence of Fe3+ on Spodumene flotation and its mechanism[J]. Rare Metals and Cemented Carbides, 2015, 43(4):5-9.

    Google Scholar

    SHI H L, ZHU W L. Study on influence of Fe3+ on Spodumene flotation and its mechanism[J]. Rare Metals and Cemented Carbides, 2015, 43(4):5-9.

    Google Scholar

    [24] Wei jun Liu, Shi qiu Zhang, Wei qing, et al, The effects of Ca(II) and Mg(II) ions on the flotation of spodumene using NaOL[J]. Minerals Engineering, Volume 79, 2015, Pages 40-46,

    Google Scholar

    [25] GAO J D, SUN W L, YU F. Understanding the activation mechanism of Ca2+ ion in sodium oleate fotation of spodumene: A new perspective[J/OL]. Chemical Engineering Science, 2021, 244: 116742.

    Google Scholar

    [26] 于福顺, 孙永峰, 蒋曼, 等. 金属阳离子在锂辉石浮选中的活化行为及作用机理[J]. 中国有色金属学报, 2021, 31(1):203-210.YU F S, SUN Y F, JIANG M, et al. Activation behavior and mechanism of metallic cations in spodumene flotation[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1):203-210. doi: 10.11817/j.ysxb.1004.0609.2021-36509

    CrossRef Google Scholar

    YU F S, SUN Y F, JIANG M, et al. Activation behavior and mechanism of metallic cations in spodumene flotation[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1):203-210. doi: 10.11817/j.ysxb.1004.0609.2021-36509

    CrossRef Google Scholar

    [27] Fu-Shun Yu, Yu-Hua Wang, Jin-Ming Wang, et al. First-principle investigation on mechanism of Ca ion activating flotation of spodumene[J]. Rare Metals, 2014, 33(3):358-362. doi: 10.1007/s12598-014-0304-5

    CrossRef Google Scholar

    [28] 王淀佐, 林强, 蒋玉仁. 选矿与冶金药剂分子设计[M]. 长沙: 中南大学出版社, 1996. 220.WANG D Z, LIN Q, JIANG Y R. Mineral processing and metallurgical agent molecular design[M]. Changsha: Central South University Press, 1996. 220.

    Google Scholar

    WANG D Z, LIN Q, JIANG Y R. Mineral processing and metallurgical agent molecular design[M]. Changsha: Central South University Press, 1996. 220.

    Google Scholar

    [29] 张良柱. 有机抑制剂对锂辉石和钠长石、石英浮选分离的影响及机理研究[D]. 赣州: 江西理工大学, 2022.ZHANG L Z. Effect and mechanism of organic inhibitors on flotation separation of spodumene, albite and quartz[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.

    Google Scholar

    ZHANG L Z. Effect and mechanism of organic inhibitors on flotation separation of spodumene, albite and quartz[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.

    Google Scholar

    [30] 王毓华, 于福顺, 陈兴华, 等. 锂辉石与绿柱石浮选分离的试验研究[J]. 稀有金属, 2005(3):320-324.WANG Y H, YU F S, CHEN X H, et al. Selective flotation between spodumene and beryl[J]. Chinese Journal of Rare Metals, 2005(3):320-324. doi: 10.3969/j.issn.0258-7076.2005.03.015

    CrossRef Google Scholar

    WANG Y H, YU F S, CHEN X H, et al. Selective flotation between spodumene and beryl[J]. Chinese Journal of Rare Metals, 2005(3):320-324. doi: 10.3969/j.issn.0258-7076.2005.03.015

    CrossRef Google Scholar

    [31] 张忠汉 , 李毓康 , 孙籍 , 等. 关于碳酸钠、氟化钠、硫化钠对Ca2+、Fe3+活化的绿柱石、锂辉石作用规律及作用机理的研究[J]. 稀有金属, 1983(4): 2-9.ZHANG Z H, LI Y K, SUN J, et al. The action law and mechanism of sodium carbonate, sodium fluoride and sodium sulfide on the activation of Ca2+, Fe3+ beryl and spodumene[J]. Chinese Journal of Rare Metals, 1983(4): 2-9.

    Google Scholar

    ZHANG Z H, LI Y K, SUN J, et al. The action law and mechanism of sodium carbonate, sodium fluoride and sodium sulfide on the activation of Ca2+, Fe3+ beryl and spodumene[J]. Chinese Journal of Rare Metals, 1983(4): 2-9.

    Google Scholar

    [32] 徐龙华, 田佳, 董发勤, 等. 油酸钠浮选锂辉石的表面晶体化学及各向异性[J]. 中国有色金属学报, 2016, 26(10):2214-2221.XU L H. TIAN J, DONG F Q, et al. Surface crystal chemistry and anisotropy of spodumene flotation with sodium oleate[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(10):2214-2221.

    Google Scholar

    XU L H. TIAN J, DONG F Q, et al. Surface crystal chemistry and anisotropy of spodumene flotation with sodium oleate[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(10):2214-2221.

    Google Scholar

    [33] ZHOU H , XIE F , ZHANG Y , et al. Insights into the floatability between spodumene and albite from crystal chemistry standpoint[J]. International Journal of Mining Science and Technology, 2022, 32(6): 11.

    Google Scholar

    [34] ZHU G, WANG X, LI E , et al. Wetting characteristics of spodumene surfaces as influenced by collector adsorption[J]. Minerals Engineering, 2019, 130: 117-128.

    Google Scholar

    [35] 蒋巍. 锂辉石吸附药剂分子的动力学模拟[D]. 赣州: 江西理工大学, 2015.JIANG W. Kinetic simulation of spodumene adsorption agent molecules[D]. Ganzhou: Jiangxi University of Science and Technology, 2015.

    Google Scholar

    JIANG W. Kinetic simulation of spodumene adsorption agent molecules[D]. Ganzhou: Jiangxi University of Science and Technology, 2015.

    Google Scholar

    [36] 舒超. 分选川西呷基卡锂辉石不同类型捕收剂的浮选行为[D]. 武汉: 武汉工程大学, 2018.SHU C. Flotation behavior of different types of collectors of Sichuanxi siakika spodumene[D]. Wuhan: Wuhan Institute of Technology, 2018.

    Google Scholar

    SHU C. Flotation behavior of different types of collectors of Sichuanxi siakika spodumene[D]. Wuhan: Wuhan Institute of Technology, 2018.

    Google Scholar

    [37] 罗柳, 王毓华, 朱广丽, 等. 混合捕收剂浮选锂辉石的应用及作用机理[J]. 中国有色金属学报, 2020, 30(3):675-683.LUO L, WANG Y H, ZHU G L, et al. Application and interaction mechanism of mixed collector in flotation of spodumene[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3):675-683. doi: 10.11817/j.ysxb.1004.0609.2020-37550

    CrossRef Google Scholar

    LUO L, WANG Y H, ZHU G L, et al. Application and interaction mechanism of mixed collector in flotation of spodumene[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3):675-683. doi: 10.11817/j.ysxb.1004.0609.2020-37550

    CrossRef Google Scholar

    [38] 田佳. 伟晶岩型锂辉石矿强化浮选分离的基础研究[D]. 绵阳: 西南科技大学, 2018.TIAN J. Basic research on enhanced flotation separation of pegmatite-type spodumene ore[D]. Mianyang: Southwest University of Science and Technology, 2018.

    Google Scholar

    TIAN J. Basic research on enhanced flotation separation of pegmatite-type spodumene ore[D]. Mianyang: Southwest University of Science and Technology, 2018.

    Google Scholar

    [39] Tian J , Xu L , Deng W, et al. Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system[J]. Chemical Engineering Science, 2017, 164(Complete): 99-107.

    Google Scholar

    [40] 舒开倩. 阴阳离子组合捕收剂对锂辉石矿的强化浮选分离及作用机理研究[D]. 绵阳: 西南科技大学, 2021.SHU K Q. Intensive flotation separation and mechanism of spodumene ore by anionic and cation combined collector[D]. Mianyang: Southwest University of Science and Technology, 2021.

    Google Scholar

    SHU K Q. Intensive flotation separation and mechanism of spodumene ore by anionic and cation combined collector[D]. Mianyang: Southwest University of Science and Technology, 2021.

    Google Scholar

    [41] 李云. 某锂辉石矿浮选中组合捕收剂的试验研究及机理探讨[D]. 武汉: 武汉科技大学, 2019.LI Y. Experimental study and mechanism discussion of combined collector in flotation of a spodumene mine[D]. Wuhan: Wuhan University of Science and Technology, 2019.

    Google Scholar

    LI Y. Experimental study and mechanism discussion of combined collector in flotation of a spodumene mine[D]. Wuhan: Wuhan University of Science and Technology, 2019.

    Google Scholar

    [42] 刘若华, 孙伟, 冯木, 等. 组合捕收剂浮选锂辉石的作用机理[J]. 中国有色金属学报, 2018, 28(3):612-617.LIU R H, SUN W, FENG M, et al. Mechanism on flotation of spodumene with combined collector[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(3):612-617.

    Google Scholar

    LIU R H, SUN W, FENG M, et al. Mechanism on flotation of spodumene with combined collector[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(3):612-617.

    Google Scholar

    [43] 冯木. 新型捕收剂在锂辉石浮选中的作用机理及表面化学分析[D]. 长沙: 中南大学, 2014.FENG M. Mechanism of action and surface chemical analysis of novel collector in spodumene flotation[D]. Changsha: Central South University, 2014.

    Google Scholar

    FENG M. Mechanism of action and surface chemical analysis of novel collector in spodumene flotation[D]. Changsha: Central South University, 2014.

    Google Scholar

    [44] 谢瑞琦, 朱一民, 韩旭倩, 等. 新型锂辉石捕收剂DRQ-3的浮选性能及作用机理研究[J]. 金属矿山, 2019(512):97-101.XIE R Q, ZHU Y M, HAN X Q, et al. Flotation behaviors and mechanisms of a amphoteric chelated type collector DRQ-3 for spodumene flotation[J]. Metal Mine, 2019(512):97-101.

    Google Scholar

    XIE R Q, ZHU Y M, HAN X Q, et al. Flotation behaviors and mechanisms of a amphoteric chelated type collector DRQ-3 for spodumene flotation[J]. Metal Mine, 2019(512):97-101.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1732) PDF downloads(795) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint