Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 4
Article Contents

LUO Lu, ZHOU Zongying, ZHU Xia, HE Chunyan, LIU Huiying. Characteristics and Distribution of Geothermal-type Lithium Resources in Southern Xizang[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 35-42. doi: 10.3969/j.issn.1000-6532.2024.04.005
Citation: LUO Lu, ZHOU Zongying, ZHU Xia, HE Chunyan, LIU Huiying. Characteristics and Distribution of Geothermal-type Lithium Resources in Southern Xizang[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 35-42. doi: 10.3969/j.issn.1000-6532.2024.04.005

Characteristics and Distribution of Geothermal-type Lithium Resources in Southern Xizang

  • This is an article in the field of mining engineering. The Southern Xizang is one of the main distribution areas of high temperature geothermal zones in China with rich geothermal resources. The chemical analysis and test results of the geothermal water show that the lithium content in the geothermal water of the high temperature geothermal zone in Southern Xizang can reach 34.51 mg/L, and the relative abundance of geothermal lithium is obviously better than that of the world's typical plateau Salt Lake brines, such as Clayton Valley in the Western Plateau of North America and Uyuni in the Andes Plateau of South America. The lithium magnesium ratio is mostly less than 3, which is conducive to lithium extraction from brine. The areas with high lithium content in the geothermal water of the high temperature geothermal zones in Southern Xizang are all distributed in the the Yarlung Zangbo River suture zone and the areas to the south, consistent with the distribution range of lithium rich rocks. At the same time, the Yarlung Zangbo River suture zone and its south area have more Cl-Na geothermal water than the north, and the south has higher TDS and longer circulation path. Based on the stable isotopic composition of hydrogen and oxygen in geothermal water and the provenance of lithium in the surrounding lithium-rich Salt Lake brine, it is inferred that the main sources of lithium in the geothermal water are leaching of lithium-rich rocks by geothermal water and lithium-rich magmatic hydrothermal solutions formed during magmatic differentiation.

  • 加载中
  • [1] 王芳. 锂矿资源研究[D]. 北京: 中国地质大学(北京), 2001.WANG F. Research on lithium mineral resources[D]. Beijing: China University of Geosciences (Beijing), 2001.

    Google Scholar

    WANG F. Research on lithium mineral resources[D]. Beijing: China University of Geosciences (Beijing), 2001.

    Google Scholar

    [2] 李成秀, 程仁举, 刘星. 我国锂辉石选矿技术研究现状及展望[J]. 矿产综合利用, 2021(5):1-8.LI C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8. doi: 10.3969/j.issn.1000-6532.2021.05.001

    CrossRef Google Scholar

    LI C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8. doi: 10.3969/j.issn.1000-6532.2021.05.001

    CrossRef Google Scholar

    [3] 李晓波, 许浩, 王航, 等. 江西某钽铌尾矿中锂云母的浮选实验研究[J]. 矿产综合利用, 2023(5):36-40.LI X B, XU H, WANG H, et al. Flotation research on recovery of lithionite from Ta-Nb tailing in Jiangxi[J]. Multipurpose Utilization of Mineral Resources, 2023(5):36-40. doi: 10.3969/j.issn.1000-6532.2023.05.007

    CrossRef Google Scholar

    LI X B, XU H, WANG H, et al. Flotation research on recovery of lithionite from Ta-Nb tailing in Jiangxi[J]. Multipurpose Utilization of Mineral Resources, 2023(5):36-40. doi: 10.3969/j.issn.1000-6532.2023.05.007

    CrossRef Google Scholar

    [4] 吴西顺, 王登红, 杨添天, 等. 碳中和目标下的锂矿产业创新及颠覆性技术[J]. 矿产综合利用, 2022(2):1-8.WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001

    CrossRef Google Scholar

    WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001

    CrossRef Google Scholar

    [5] 何飞, 高利坤, 饶兵, 等. 从锂云母中提锂及综合利用的研究进展[J]. 矿产综合利用, 2022(5):82-89.HE F, GAO L K, RAO B, et al. Research progress on lithium extraction and comprehensive utilization from lepidolite[J]. Multipurpose Utilization of Mineral Resources, 2022(5):82-89.

    Google Scholar

    HE F, GAO L K, RAO B, et al. Research progress on lithium extraction and comprehensive utilization from lepidolite[J]. Multipurpose Utilization of Mineral Resources, 2022(5):82-89.

    Google Scholar

    [6] 徐璐, 杨耀辉, 颜世强, 等. 我国黏土型锂矿提锂研究现状及前景展望[J]. 矿产综合利用, 2023(4):12-18.XU L, YANG Y H, YAN S Q, et al. Lithium extraction from clay-type ore in China: status and prospects[J]. Multipurpose Utilization of Mineral Resources, 2023(4):12-18. doi: 10.3969/j.issn.1000-6532.2023.04.002

    CrossRef Google Scholar

    XU L, YANG Y H, YAN S Q, et al. Lithium extraction from clay-type ore in China: status and prospects[J]. Multipurpose Utilization of Mineral Resources, 2023(4):12-18. doi: 10.3969/j.issn.1000-6532.2023.04.002

    CrossRef Google Scholar

    [7] 刘成林, 余小灿, 袁学银, 等. 世界盐湖卤水型锂矿特征、分布规律与成矿动力模型[J]. 地质学报, 2021, 95(7):2009-2029.LIU C L, YU X C, YUAN X Y, et al. Characteristics, distribution regularity and formation model of brine-type Li deposits in salt lakes in the world[J]. Acta Geologica Sinica, 2021, 95(7):2009-2029. doi: 10.3969/j.issn.0001-5717.2021.07.001

    CrossRef Google Scholar

    LIU C L, YU X C, YUAN X Y, et al. Characteristics, distribution regularity and formation model of brine-type Li deposits in salt lakes in the world[J]. Acta Geologica Sinica, 2021, 95(7):2009-2029. doi: 10.3969/j.issn.0001-5717.2021.07.001

    CrossRef Google Scholar

    [8] 韩凤清. 青藏高原盐湖Li地球化学[J]. 盐湖研究, 2001, 9(1):55-61.HAN F Q. The geochemistry of lithium in salt lake on Qinghai-Tibetan Plateau[J]. Journal of salt lake research, 2001, 9(1):55-61.

    Google Scholar

    HAN F Q. The geochemistry of lithium in salt lake on Qinghai-Tibetan Plateau[J]. Journal of salt lake research, 2001, 9(1):55-61.

    Google Scholar

    [9] 王晨光, 郑绵平, 张雪飞, 等. 青藏高原南部地热型锂资源[J]. 科技导报, 2020, 38(15):24-36.WANG C G, ZHENG M P, ZHANG X F, et al. Geothermal-type lithium resources in Southern Tibetan Plateau[J]. Science & Technology Review, 2020, 38(15):24-36.

    Google Scholar

    WANG C G, ZHENG M P, ZHANG X F, et al. Geothermal-type lithium resources in Southern Tibetan Plateau[J]. Science & Technology Review, 2020, 38(15):24-36.

    Google Scholar

    [10] 王贵玲, 等. 中国地热志(西南卷三)[M]. 北京: 科学出版社, 2018: 145-150.WANG G L, et al. Geothermal records of China (southwest Volume III) [M]. Beijing: Science Press, 2018: 145-150.

    Google Scholar

    WANG G L, et al. Geothermal records of China (southwest Volume III) [M]. Beijing: Science Press, 2018: 145-150.

    Google Scholar

    [11] 王鹏, 陈晓宏, 沈立成, 等. 西藏地热异常区热储温度及其地质环境效应[J]. 中国地质, 2016, 43(4):1429-1438WANG P, CHEN X H, SHEN L C, et al. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet[J]. Geology in China, 2016, 43(4):1429-1438. doi: 10.12029/gc20160426

    CrossRef Google Scholar

    WANG P, CHEN X H, SHEN L C, et al. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet[J]. Geology in China, 2016, 43(4):1429-1438. doi: 10.12029/gc20160426

    CrossRef Google Scholar

    [12] 金胜. 青藏高原的壳幔电性结构特征及其动力学意义[D]. 北京: 中国地质大学(北京), 2009.JIN S. The characteristics of crust-mantle electrical structure and dynamics within Tibetan Plateau [D]. Beijing: China University of Geosciences (Beijing), 2009.

    Google Scholar

    JIN S. The characteristics of crust-mantle electrical structure and dynamics within Tibetan Plateau [D]. Beijing: China University of Geosciences (Beijing), 2009.

    Google Scholar

    [13] 李亚林, 王成善, 伊海生, 等. 青藏高原新生代地堑构造研究中几个问题的讨论[J]. 地质论评, 2005, 51(5):493-501.LI Y L, WANG C S, YI H S, et al. Current status and existing problems of lithium extraction technology from salt lake[J]. Geological Review, 2005, 51(5):493-501. doi: 10.3321/j.issn:0371-5736.2005.05.002

    CrossRef Google Scholar

    LI Y L, WANG C S, YI H S, et al. Current status and existing problems of lithium extraction technology from salt lake[J]. Geological Review, 2005, 51(5):493-501. doi: 10.3321/j.issn:0371-5736.2005.05.002

    CrossRef Google Scholar

    [14] 刘昭. 西藏尼木—那曲地热带典型高温地热系统形成机理研究[D]. 北京: 中国地质科学院, 2014.LIU Z. A Study on the formation mechanism of typical high temperature geothermal system in Nymu Naqudi Tropical Zone, Tibet [D]. Beijing: China University of Geosciences (Beijing), 2014.

    Google Scholar

    LIU Z. A Study on the formation mechanism of typical high temperature geothermal system in Nymu Naqudi Tropical Zone, Tibet [D]. Beijing: China University of Geosciences (Beijing), 2014.

    Google Scholar

    [15] 周训, 胡伏生, 何江涛, 等 . 地下水科学概论[M]. 北京: 地质出版社, 2014: 96-114.ZHOU X, HU F S, HE J T, et al. General outline of groundwater science[M]. Beijing: Geological Publishing House, 2014: 96-114.

    Google Scholar

    ZHOU X, HU F S, HE J T, et al. General outline of groundwater science[M]. Beijing: Geological Publishing House, 2014: 96-114.

    Google Scholar

    [16] 郑绵平. 青藏高原盐湖资源研究的新进展[J]. 地球学报, 2001, 22(2):97-102.ZHENG M P. Study advances in Saline Lake resources on the Qinghai Tibet Pleteau[J]. Acta Geoscientica Scinica, 2001, 22(2):97-102. doi: 10.3321/j.issn:1006-3021.2001.02.001

    CrossRef Google Scholar

    ZHENG M P. Study advances in Saline Lake resources on the Qinghai Tibet Pleteau[J]. Acta Geoscientica Scinica, 2001, 22(2):97-102. doi: 10.3321/j.issn:1006-3021.2001.02.001

    CrossRef Google Scholar

    [17] 李增荣, 刘国旺, 唐发满. 青海盐湖锂资源及提锂技术概述[J]. 资源信息与工程, 2017, 32(5):94-97.LI Z R, LIU G W, TANG F M. Overview of lithium resources and lithium extraction technology in Qinghai Salt Lake[J]. Resource information and engineering, 2017, 32(5):94-97. doi: 10.3969/j.issn.2095-5391.2017.05.045

    CrossRef Google Scholar

    LI Z R, LIU G W, TANG F M. Overview of lithium resources and lithium extraction technology in Qinghai Salt Lake[J]. Resource information and engineering, 2017, 32(5):94-97. doi: 10.3969/j.issn.2095-5391.2017.05.045

    CrossRef Google Scholar

    [18] 高峰, 郑绵平, 乜贞, 等. 盐湖卤水锂资源及其开发进展[J]. 地球学报, 2011, 32(4):483-492.GAO F, ZHENG M P, MIE Z, et al. Brine lithium resource in the salt lake and advances in its exploitation[J]. Acta Geoscientica Sinica, 2011, 32(4):483-492. doi: 10.3975/cagsb.2011.04.13

    CrossRef Google Scholar

    GAO F, ZHENG M P, MIE Z, et al. Brine lithium resource in the salt lake and advances in its exploitation[J]. Acta Geoscientica Sinica, 2011, 32(4):483-492. doi: 10.3975/cagsb.2011.04.13

    CrossRef Google Scholar

    [19] 李正山. 青海锂矿资源可持续开发路径研究-以柴达木-里坪项目为例[D]. 北京: 中国地质大学(北京), 2017.LI Z S. Study of Qinghai lithium mineral resources sustainable development path-in Qaidam a ping project as an example[D]. Beijing: China University of Geosciences (Beijing), 2017.

    Google Scholar

    LI Z S. Study of Qinghai lithium mineral resources sustainable development path-in Qaidam a ping project as an example[D]. Beijing: China University of Geosciences (Beijing), 2017.

    Google Scholar

    [20] Piper A M. A graphic procedure in the geochemical interpretation of wateranalyses. Eos Trans. Transactions American Geophysical Union, 1944, 25 (6), 914–928. http://dx. doi.org/10.1029/TR025i006p00914.

    Google Scholar

    [21] 王学求, 刘汉粮, 王玮, 等. 中国锂矿地球化学背景与空间分布: 远景区预测[J]. 地球学报, 2020, 41(6):797-806.WANG X Q, LIU H L, WANG W, et al. Geochemical abundance and spatial distribution of lithium in China: implications for potential prospects[J]. Acta Geoscientica Scinica, 2020, 41(6):797-806. doi: 10.3975/cagsb.2020.081201

    CrossRef Google Scholar

    WANG X Q, LIU H L, WANG W, et al. Geochemical abundance and spatial distribution of lithium in China: implications for potential prospects[J]. Acta Geoscientica Scinica, 2020, 41(6):797-806. doi: 10.3975/cagsb.2020.081201

    CrossRef Google Scholar

    [22] 秦克章, 赵俊兴, 何畅通, 等. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 2021, 37(11):3277-3286.QIN K Z, ZHAO J X, HE C T, et al. Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China[J]. Acta Petrologica Sinica, 2021, 37(11):3277-3286. doi: 10.18654/1000-0569/2021.11.02

    CrossRef Google Scholar

    QIN K Z, ZHAO J X, HE C T, et al. Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China[J]. Acta Petrologica Sinica, 2021, 37(11):3277-3286. doi: 10.18654/1000-0569/2021.11.02

    CrossRef Google Scholar

    [23] 赵俊兴, 何畅通, 秦克章, 等. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征[J]. 岩石学报, 2021, 37(11):3325-3347.ZHAO J X, HE C T, QIN K Z, et al. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qiongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet[J]. Acta Geoscientica Scinica, 2021, 37(11):3325-3347. doi: 10.18654/1000-0569/2021.11.06

    CrossRef Google Scholar

    ZHAO J X, HE C T, QIN K Z, et al. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qiongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet[J]. Acta Geoscientica Scinica, 2021, 37(11):3325-3347. doi: 10.18654/1000-0569/2021.11.06

    CrossRef Google Scholar

    [24] 中国青藏高原综合科学考察队著. 西藏盐湖[M]. 北京: 科学出版社, 1988: 30.Research team of tibetan plateau comprehensive science. 1988. Tibet Salt Lake[M]. Beijing: Science Press, 1988: 30.

    Google Scholar

    Research team of tibetan plateau comprehensive science. 1988. Tibet Salt Lake[M]. Beijing: Science Press, 1988: 30.

    Google Scholar

    [25] 赵振华. 微量元素地球化学原理[M]. 北京: 科学出版社, 1997: 55.ZHAO Z H. 1997. Principles of trace element geochemistry[M]. Beijing: Science Press, 1997: 55.

    Google Scholar

    ZHAO Z H. 1997. Principles of trace element geochemistry[M]. Beijing: Science Press, 1997: 55.

    Google Scholar

    [26] WANG C G, ZHENG M P, ZHANG X F, et al. O, H, and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system, Himalayas, China[J]. Geoscience Frontiers, 2019, 11:1175-1187.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(751) PDF downloads(383) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint