Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 4
Article Contents

LIU Xue, ZHENG Junwei, LIU Wenhao, WANG Liwei. Development Status and Research Progress of Unconventional Brine-type Lithium Resources[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 21-26, 56. doi: 10.3969/j.issn.1000-6532.2024.04.003
Citation: LIU Xue, ZHENG Junwei, LIU Wenhao, WANG Liwei. Development Status and Research Progress of Unconventional Brine-type Lithium Resources[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 21-26, 56. doi: 10.3969/j.issn.1000-6532.2024.04.003

Development Status and Research Progress of Unconventional Brine-type Lithium Resources

  • This is an article in the field of mining engineering. As an important battery raw material in the field of new energy, the global demand for lithium is accelerating. For a long time, China has needed to import a large amount of lithium raw materials, and there is still expected to be a significant demand gap in the future. Unconventional brine sources such as geothermal brine, oil and gas field brine, and desalination wastewater in seawater containing contain considerable lithium resources and may become an effective supplement to conventional lithium resources. As a green and sustainable method for extracting lithium resources, the development of unconventional brine-type lithium resources faces significant opportunities. The discovery of abundant unconventional brine-type lithium resources in Sichuan, Xizang, Yunnan and other places in China will be of great help to solve the shortage of lithium raw material supply in China. By summarizing the current status and progress of unconventional brine-type lithium resource development and its key technologies both domestically and internationally, this article provides a reference for the development of unconventional brine-type lithium resources in China.

  • 加载中
  • [1] 毛景文, 杨宗喜, 谢桂青, 等. 关键矿产——国际动向与思考[J]. 矿床地质, 2019, 38(4):689-698.MAO J W, YANG Z X, XIE G Q, et al. Critical minerals: international trends and thinking[J]. Mineral Deposits, 2019, 38(4):689-698.

    Google Scholar

    MAO J W, YANG Z X, XIE G Q, et al. Critical minerals: international trends and thinking[J]. Mineral Deposits, 2019, 38(4):689-698.

    Google Scholar

    [2] 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2):106-111.ZHAI M G, WU F Y, HU R Z, et al. Critical metal mineral resources: Current research status andscientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2):106-111.

    Google Scholar

    ZHAI M G, WU F Y, HU R Z, et al. Critical metal mineral resources: Current research status andscientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2):106-111.

    Google Scholar

    [3] 刘文浩, 刘学, 郑军卫. 基于文献计量的国际关键矿产资源研究态势评估[J]. 矿产综合利用, 2021(5):59-66.LIU W H, LIU X, ZHENG J W. Bibliometric evaluation of international critical mineral resources research trend[J]. Multipurpose Utilization of Mineral Resources, 2021(5):59-66. doi: 10.3969/j.issn.1000-6532.2021.05.009

    CrossRef Google Scholar

    LIU W H, LIU X, ZHENG J W. Bibliometric evaluation of international critical mineral resources research trend[J]. Multipurpose Utilization of Mineral Resources, 2021(5):59-66. doi: 10.3969/j.issn.1000-6532.2021.05.009

    CrossRef Google Scholar

    [4] GOURCEROL B, GLOAGUEN E, MELLETON J, et al. Re-assessing the European lithium resource potential—A review of hard-rock resources and metallogeny[J]. Ore Geology Reviews, 2019, 109:494-519. doi: 10.1016/j.oregeorev.2019.04.015

    CrossRef Google Scholar

    [5] 陈其慎, 张艳飞, 邢佳韵, 等. 国内外战略性矿产厘定理论与方法[J]. 地球学报, 2021, 42(2):137-144.CHEN Q S, ZHANG Y F, XING J Y, et al. Methods of strategic mineral resources determination in China and abroad[J]. Acta Geoscientica Sinica, 2021, 42(2):137-144. doi: 10.3975/cagsb.2020.102604

    CrossRef Google Scholar

    CHEN Q S, ZHANG Y F, XING J Y, et al. Methods of strategic mineral resources determination in China and abroad[J]. Acta Geoscientica Sinica, 2021, 42(2):137-144. doi: 10.3975/cagsb.2020.102604

    CrossRef Google Scholar

    [6] 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6):1189-1209.WANG D H. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6):1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    CrossRef Google Scholar

    WANG D H. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6):1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    CrossRef Google Scholar

    [7] 吴西顺, 王登红, 杨添天, 等. 碳中和目标下的锂矿产业创新及颠覆性技术[J]. 矿产综合利用, 2022(2):1-8.WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001

    CrossRef Google Scholar

    WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001

    CrossRef Google Scholar

    [8] 徐正震, 梁精龙, 李慧, 等. 含锂资源中锂的提取研究现状及展望[J]. 矿产综合利用, 2021(5):32-37.XU Z Z, LIANG J H, LI H, et al. Research status and prospects of lithium extraction from lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5):32-37. doi: 10.3969/j.issn.1000-6532.2021.05.005

    CrossRef Google Scholar

    XU Z Z, LIANG J H, LI H, et al. Research status and prospects of lithium extraction from lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5):32-37. doi: 10.3969/j.issn.1000-6532.2021.05.005

    CrossRef Google Scholar

    [9] Bradley, D. C. , Stillings, L. L. , Jaskula, B. W. , et al. Lithium, chapter k of critical mineral resources of the United States—economic and environmental geology and prospects for future supply[R]. U. S. Geological Survey Professional Paper 1802. 2017. https://pubs.usgs.gov/pp/1802/k/pp1802k.pdf

    Google Scholar

    [10] Baspineiro, C. F. , Franco, J. , Flexer, V. Potential water recovery during lithium mining from high salinity brines[J]. Science of The Total Environment, 2020, 720 (137523).

    Google Scholar

    [11] Flexer, V. , Baspineiro, C. F. , Galli, C. I. Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing[J]. Science of The Total Environment, 2018, 639, 1188–1204.

    Google Scholar

    [12] Schomberg, A. C. , Bringezu, S. , Flörke, M. Extended life cycle assessment reveals the spatially-explicit water scarcity footprint of a lithium-ion battery storage[J]. Communications Earth & Environment. 2021, 2, 1-10.

    Google Scholar

    [13] Marazuela, M. A. , Ayora, C. , Vázquez-Suñé, et al. Hydrogeological constraints for the genesis of the extreme lithium enrichment in the Salar de Atacama (NE Chile): a thermohaline flow modelling approach[J]. Science of The Total Environment. 2020, 739 (139959).

    Google Scholar

    [14] Liu W J, AgusdinataD B. , MyintS W. Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile[J]. International Journal of Applied Earth Observation and Geoinformation. 2019, 80, 145-156.

    Google Scholar

    [15] Yan G B, Wang M Z, Grant T. Hill, et al. Defining the challenges of Li extraction with olivine host: The roles of competitor and spectator ions[J]. Proceedings of the National Academy of Sciences, 2022, 119. DOI: 10.1073/pnas.2200751119

    Google Scholar

    [16] Stringfellow, W. T. ; Dobson, P. F. Technology for the recovery of lithium from geothermal brines[J]. Energies 2021, 14, 6805. https://doi.org/10.3390/en14206805

    Google Scholar

    [17] Amit K, Hiroki F, Alan HT, et al. Lithium recovery from oil and gas produced water: a need for a growing energy industry[J]. ACS Energy Lett. 2019, 4, 6, 1471–1474

    Google Scholar

    [18] 蔡艳龙, 李建武. 全球锂资源开发利用形势分析及启示[J]. 地球学报, 2017, 38(1):25-29CAI Y L, LI J W. The analysis and enlightenment of exploitation situation of global lithium resources[J]. Acta Geoscientica Sinica, 2017, 38(1):25-29 doi: 10.3975/cagsb.2017.01.05

    CrossRef Google Scholar

    CAI Y L, LI J W. The analysis and enlightenment of exploitation situation of global lithium resources[J]. Acta Geoscientica Sinica, 2017, 38(1):25-29 doi: 10.3975/cagsb.2017.01.05

    CrossRef Google Scholar

    [19] 隰弯弯, 赵宇浩, 倪培, 等. 锂矿主要类型、特征、时空分布及找矿潜力分[J]. 沉积与特提斯地质. 2022. DOI:10.19826/j.cnki.1009-3850.2022.04002.XI W W, ZHAO Y H, NI P, et al. Main types, characteristics, distributions, and prospecting potential of lithium deposits[J]. Sedimentary Geology and Tethyan Geology, 2022. DOI:10.19826/j.cnki.1009-3850.2022.04002.

    Google Scholar

    XI W W, ZHAO Y H, NI P, et al. Main types, characteristics, distributions, and prospecting potential of lithium deposits[J]. Sedimentary Geology and Tethyan Geology, 2022. DOI:10.19826/j.cnki.1009-3850.2022.04002.

    Google Scholar

    [20] 吴西顺, 孙艳, 王登红, 等. 国际锂矿开发的技术现状、革新及展望[J]. 矿产综合利用, 2020(6):110-120.WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019

    CrossRef Google Scholar

    WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019

    CrossRef Google Scholar

    [21] 高娟琴, 王登红, 王伟, 等. 国内外主要油(气)田水中锂提取现状及展望[J]. 地质学报, 2019, 93(6): 1489-1500.GAO J Q, WANG D H, WANG W, et al. Current status and prospects of lithium extraction in major domestic and foreign oil (gas) field waters[J]. Acta Geologica Sinica, 93(6): 1489-1500

    Google Scholar

    GAO J Q, WANG D H, WANG W, et al. Current status and prospects of lithium extraction in major domestic and foreign oil (gas) field waters[J]. Acta Geologica Sinica, 93(6): 1489-1500

    Google Scholar

    [22] Chung K S, Lee J C, Kim E J, et al. Recovery of lithium from seawater using nano-manganese oxide adsorbents prepared by gel process[J]. Designing, Processing and Properties of Advanced Engineering Materials, Pts 1 And 2, 2004, 449(4):277-280.

    Google Scholar

    [23] Liu C, Li Y B, Lin D C, et al. Lithium extraction from seawater through pulsed electrochemical intercalation[J]. Joule (2020), https://doi.org/10.1016/j.joule.2020.05.017

    Google Scholar

    [24] Li Z, Li C Y, Liu X W, et al. Continuous electrical pumping membrane process for seawater lithium mining[J]. Energy and Environmental Science, 2021, 14:3152-3159. doi: 10.1039/D1EE00354B

    CrossRef Google Scholar

    [25] Liu L, Zhang H, Zhang Y, et al. Lithium extraction from seawater by manganese oxide ion sieve MnO2×0.5H2O[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015, 468: 280-284

    Google Scholar

    [26] Harvianto G, Kim SH, Ju CS. Solvent extraction and stripping of lithium ion from aqueous solution and its application to seawater[J]. Rare Metals. 2015, 35: 948-953

    Google Scholar

    [27] Hoshino T. Development of technology for recovering lithium from seawater by electrodialysis using ionic liquid membrane[J]. Fusion Engineering and Design, 2013, 88(11):2956-2959. doi: 10.1016/j.fusengdes.2013.06.009

    CrossRef Google Scholar

    [28] 王登红, 代鸿章, 刘善宝, 等. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 2022, 28(5):743-764.WANG D H, DAI H Z, LIU S B, et al. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 2022, 28(5):743-764. doi: 10.12090/j.issn.1006-6616.20222811

    CrossRef Google Scholar

    WANG D H, DAI H Z, LIU S B, et al. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 2022, 28(5):743-764. doi: 10.12090/j.issn.1006-6616.20222811

    CrossRef Google Scholar

    [29] 王晨光, 郑绵平, 张雪飞, 等. 青藏高原南部地热型锂资源[J]. 科技导报, 2020, 38(15):24-36.WANG C G, ZHENG M P, ZHANG X F, et al. Geothermal-type lithium resources in Southern Tibetan Plateau[J]. Science & Technology Review, 2020, 38(15):24-36.

    Google Scholar

    WANG C G, ZHENG M P, ZHANG X F, et al. Geothermal-type lithium resources in Southern Tibetan Plateau[J]. Science & Technology Review, 2020, 38(15):24-36.

    Google Scholar

    [30] Sun S, Yu X P, Li M L, et al. Green recovery of lithium from geothermal water based on a novel lithium iron phosphate electrochemical technique[J]. Journal of Cleaner Production, 2020, 247:119178. doi: 10.1016/j.jclepro.2019.119178

    CrossRef Google Scholar

    [31] 蔡美峰, 多吉, 陈湘生, 等. 深部矿产和地热资源共采战略研究[J]. 中国工程科学, 2021, 23(6):43-51CAI M F, DUO J, CHEN X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources[J]. Strategic Study of CAE, 2021, 23(6):43-51 doi: 10.15302/J-SSCAE-2021.06.006

    CrossRef Google Scholar

    CAI M F, DUO J, CHEN X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources[J]. Strategic Study of CAE, 2021, 23(6):43-51 doi: 10.15302/J-SSCAE-2021.06.006

    CrossRef Google Scholar

    [32] 高娟琴, 于扬, 仲佳爱, 等. 川东北黄金口背斜ZK001钻孔流体地球化学及含锂特征[J]. 地球科学与环境学报, 2019, 41(2):197-208.GAO J Q, YU Y, ZHONG J A, et al. Geochemical and li-bearing characteristics of fluids from borehole zk001 in Huangjinkou anticline of the Northeastern Sichuan, China[J]. Journal of Earth Sciences and Environment, 2019, 41(2):197-208. doi: 10.3969/j.issn.1672-6561.2019.02.006

    CrossRef Google Scholar

    GAO J Q, YU Y, ZHONG J A, et al. Geochemical and li-bearing characteristics of fluids from borehole zk001 in Huangjinkou anticline of the Northeastern Sichuan, China[J]. Journal of Earth Sciences and Environment, 2019, 41(2):197-208. doi: 10.3969/j.issn.1672-6561.2019.02.006

    CrossRef Google Scholar

    [33] 林耀庭, 陈绍兰. 四川盆地地下卤水勘探开发前景展望[J]. 盐湖研究, 2008(1):1-7.LIN Y T, CHEN S L. Exploration and development prospect of underground brine in Sichuan Basin[J]. Journal of Salt Lake Research, 2008(1):1-7.

    Google Scholar

    LIN Y T, CHEN S L. Exploration and development prospect of underground brine in Sichuan Basin[J]. Journal of Salt Lake Research, 2008(1):1-7.

    Google Scholar

    [34] 余小灿, 刘成林, 王春连, 等. 江汉盆地大型富锂卤水矿床成因与资源勘查进展: 综述[J]. 地学前缘, 2022, 29(1): 107-123YU X C, LIU C L, WANG C L, et al. Genesis of lithium brine deposits in the Jianghan Basin and progress in resource exploration: A review[J]. Earth Science Frontiers, 2022, 29(1): 107-123

    Google Scholar

    YU X C, LIU C L, WANG C L, et al. Genesis of lithium brine deposits in the Jianghan Basin and progress in resource exploration: A review[J]. Earth Science Frontiers, 2022, 29(1): 107-123

    Google Scholar

    [35] 陈新军, 李倩文. 江汉盆地卤水锂资源特征及开发利用前景[J]. 国土资源情报, 2021, 11:44-49CHEN X J, LI Q W. The Characteristics and exploitation prospect of brine lithium in Jianghan Basin[J]. Land and Resources Information, 2021, 11:44-49

    Google Scholar

    CHEN X J, LI Q W. The Characteristics and exploitation prospect of brine lithium in Jianghan Basin[J]. Land and Resources Information, 2021, 11:44-49

    Google Scholar

    [36] 陈立, 杨立, 刘韬, 等. 西南油气田含锂气田水资源调查分析[J]. 石油与天然气化工. 2023. https://kns.cnki.net/kcms/detail//51.1210.TE.20230214.1045.002.htmlCHEN L, YANG L, LIU T, et al. Investigation and analysis of lithium-containing gas field water resource in Southwest Oil and Gas Field[J]. Chemical Engineering of Oil & Gas, 2023. https://kns.cnki.net/kcms/detail//51.1210.TE.20230214.1045.002.html

    Google Scholar

    CHEN L, YANG L, LIU T, et al. Investigation and analysis of lithium-containing gas field water resource in Southwest Oil and Gas Field[J]. Chemical Engineering of Oil & Gas, 2023. https://kns.cnki.net/kcms/detail//51.1210.TE.20230214.1045.002.html

    Google Scholar

    [37] Zhang H Q, Ren Y X, Wu X, et al. An interface-modified solid-state electrochemical device for lithium extraction from seawater[J]. Journal of Power Sources, 2021, 482:228938 doi: 10.1016/j.jpowsour.2020.228938

    CrossRef Google Scholar

    [38] Yang S X, Zhang F, Ding H P, et al. Lithium Metal Extraction from Seawater[J]. Joule, 2018, 2:1648-1651 doi: 10.1016/j.joule.2018.07.006

    CrossRef Google Scholar

    [39] Wall A. Competitiveness of direct mineral extraction from geothermal brines[J]. Trans. -Geotherm. Resour. Counc. 2019, 43, 6.

    Google Scholar

    [40] Zhao Z W, Liu G, Jia H, et al. Sandwiched liquid-membrane electrodialysis: Lithium selective recovery from salt lake brines with high Mg/Li ratio[J]. Journal of Membrane Science, 2020, 596:117685 doi: 10.1016/j.memsci.2019.117685

    CrossRef Google Scholar

    [41] 徐文华, 刘冬福, 何利华, 等. 电化学脱嵌法盐湖提锂电极反应动力学研究[J]. 化工学报, 2021, 72(6):3105-3115XU W H, LIU D F, HE L H, et al. Kinetic study on electrochemical intercalation/deintercalation method for lithium extraction from brine[J]. CIESC Journal, 2021, 72(6):3105-3115

    Google Scholar

    XU W H, LIU D F, HE L H, et al. Kinetic study on electrochemical intercalation/deintercalation method for lithium extraction from brine[J]. CIESC Journal, 2021, 72(6):3105-3115

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(3)

Article Metrics

Article views(1535) PDF downloads(922) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint