Citation: | QIN Guanglin, LI Guangsheng, ZHU Xingfu, JI Qiang, YU Congquan. Technological Mineralogical Analysis and Flotation Test of a Refractory Lead-zinc Ore in Hebei[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 129-134. doi: 10.3969/j.issn.1000-6532.2024.03.020 |
This is an article in the field of mineral processing engineering. The main valuable elements in a lead-zinc mine in Hebei are lead and zinc, with grades of 1.07% and 2.08%, respectively. Lead in the ore mainly occurs in sulfide galena, and lead-containing minerals such as galena, lead sulfate and lead jarosite. Zinc mainly occurs in sulfide sphalerite, accounting for 66.96% of the total zinc, followed by zinc oxide minerals, with high zinc oxidation rate. In the experimental study, the process of preferential flotation of lead and then zinc at the condition of grinding fineness of -200 mesh content of 65% was determined. The yield of lead concentrate is 1.74%, the grades of lead, zinc and copper in lead concentrate are 51.73%, 10.86% and 3.81%, respectively, and the recoveries are 83.93%, 8.98% and 68.20%, respectively. The yield of zinc concentrate is 2.26%, the grades of lead, zinc and copper in zinc concentrate are 1.25%, 51.64% and 0.73%, respectively, and the recoveries are 2.63%, 55.42% and 16.97%, respectively.
[1] | 程倩, 王明, 万宏民, 等. 某低品位铅锌矿选矿工艺研究[J]. 矿产综合利用, 2021(1):65-71.CHENG Q, WANG M, WAN H M, et al. Study on mineral processing technology for a low-grade lead-zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2021(1):65-71. doi: 10.3969/j.issn.1000-6532.2021.01.010 CHENG Q, WANG M, WAN H M, et al. Study on mineral processing technology for a low-grade lead-zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2021(1):65-71. doi: 10.3969/j.issn.1000-6532.2021.01.010 |
[2] | 廖诗进, 何玉良, 岳国利, 等. 某铅锌矿综合回收工艺技术[J]. 矿产综合利用, 2021(3):9-16.LIAO S J, HE Y L, YUE G L, et al. Comprehensive recovery technology of a lead-zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2021(3):9-16. LIAO S J, HE Y L, YUE G L, et al. Comprehensive recovery technology of a lead-zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2021(3):9-16. |
[3] | 魏党生, 叶从新, 罗新民, 等. 湖南平江铜铅锌萤石多金属矿浮选工艺研究[J]. 湖南有色金属, 2008, 24(1):9-13.WEI D S, YE C X, LUO X M, et al. Research on flotation process of copper-lead-zinc fluorite polymetallic ore in Pingjiang, Hunan[J]. Hunan Nonferrous Metals, 2008, 24(1):9-13. doi: 10.3969/j.issn.1003-5540.2008.01.003 WEI D S, YE C X, LUO X M, et al. Research on flotation process of copper-lead-zinc fluorite polymetallic ore in Pingjiang, Hunan[J]. Hunan Nonferrous Metals, 2008, 24(1):9-13. doi: 10.3969/j.issn.1003-5540.2008.01.003 |
[4] | 李希掌, 曾娜, 向平, 等. 湖南某铅锌矿无碱浮选试验研究[J]. 矿冶工程, 2021, 41(3):75-78.LI X Z, ZENG N, XIANG P, et al. Experimental study on alkali-free flotation of a lead-zinc ore in Hunan province[J]. Mining and Metallurgical Engineering, 2021, 41(3):75-78. LI X Z, ZENG N, XIANG P, et al. Experimental study on alkali-free flotation of a lead-zinc ore in Hunan province[J]. Mining and Metallurgical Engineering, 2021, 41(3):75-78. |
[5] | 尚衍波, 陈经华, 何发钰. 中国铅锌选矿技术新进展[J]. 中国铅锌, 2016(5):35-47.SHANG Y B, CHEN J H, HE F Y. New progress of lead-zinc beneficiation technology in China[J]. China Lead and Zinc, 2016(5):35-47. SHANG Y B, CHEN J H, HE F Y. New progress of lead-zinc beneficiation technology in China[J]. China Lead and Zinc, 2016(5):35-47. |
[6] | 陈旭波, 朴永超, 周高云, 等. 某铅锌多金属硫化矿选矿试验研究[J]. 中国矿业, 2018(S1):059-063.CHEN X B, PU Y C, ZHOU G Y, et al. Experimental study on ore dressing of a lead-zinc polymetallic sulfide ore[J]. China Mining Industry, 2018(S1):059-063. CHEN X B, PU Y C, ZHOU G Y, et al. Experimental study on ore dressing of a lead-zinc polymetallic sulfide ore[J]. China Mining Industry, 2018(S1):059-063. |
[7] | 耿伟利, 罗天明, 郭文军. 我国细粒铅锌矿浮选技术现状及发展[J]. 金属矿山, 2015, 44(3):116-119.GENG W L, LUO T M, GUO W J. Current situation and development of flotation technology for fine-grained lead-zinc ore in China[J]. Metal Mining, 2015, 44(3):116-119. GENG W L, LUO T M, GUO W J. Current situation and development of flotation technology for fine-grained lead-zinc ore in China[J]. Metal Mining, 2015, 44(3):116-119. |
[8] | 敖顺福, 王春光, 胡红喜, 等. 某含银低品位铅锌矿石选矿试验研究[J]. 有色金属(选矿部分), 2019(4):32-39.AO S F, WANG C G, HU H X, et al. Experimental study on beneficiation of a silver-bearing low-grade lead-zinc ore[J]. Nonferrous Metals (Mineral Processing Section), 2019(4):32-39. AO S F, WANG C G, HU H X, et al. Experimental study on beneficiation of a silver-bearing low-grade lead-zinc ore[J]. Nonferrous Metals (Mineral Processing Section), 2019(4):32-39. |
[9] | 邱廷省, 何元卿, 余文, 等. 硫化铅锌矿浮选分离研究现状及进展[J]. 金属矿山, 2016(3):1-6.QIU T S, HE Y Q, YU W, et al. Current status and progress of flotation separation research of lead-zinc sulfide ores[J]. Metal Mining, 2016(3):1-6. QIU T S, HE Y Q, YU W, et al. Current status and progress of flotation separation research of lead-zinc sulfide ores[J]. Metal Mining, 2016(3):1-6. |
[10] | 达娃卓玛, 刘潘, 李国栋, 等. 西藏某混合铅锌矿优先浮选实验研究[J]. 矿产综合利用, 2021(3): 82-87.DAWA Z M , LIU P, LI G D, et al. Preferential flotation research on a mixed Pb-Zn ore in Tibet [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 82-87. DAWA Z M , LIU P, LI G D, et al. Preferential flotation research on a mixed Pb-Zn ore in Tibet [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 82-87. |
[11] | 傅勇, 廖幸锦. 贵港市不同脉型含银铅锌矿可浮性差异研究[J]. 矿产综合利用, 2021(6):127-133.FU Y, LIAO X J. Study on the floatability of different ore veins containing silver, lead and zinc in Guigang[J]. Multipurpose Utilization of Mineral Resources, 2021(6):127-133. doi: 10.3969/j.issn.1000-6532.2021.06.021 FU Y, LIAO X J. Study on the floatability of different ore veins containing silver, lead and zinc in Guigang[J]. Multipurpose Utilization of Mineral Resources, 2021(6):127-133. doi: 10.3969/j.issn.1000-6532.2021.06.021 |
Process flow of the grinding fineness test
Process flow of the reagent system condition test for lead roughing
Test results of collector dosage
Inhibitor dosage test results
Test results of collector dosage
Test results of activator dosage
Closed-circuit test flow