Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 1
Article Contents

HU Qian, LIU Ran, ZHAO Jun, LYU Qing. Study on Desulfurization Performance of FeCl3 Modified Activated Carbon[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 167-173. doi: 10.3969/j.issn.1000-6532.2024.01.022
Citation: HU Qian, LIU Ran, ZHAO Jun, LYU Qing. Study on Desulfurization Performance of FeCl3 Modified Activated Carbon[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 167-173. doi: 10.3969/j.issn.1000-6532.2024.01.022

Study on Desulfurization Performance of FeCl3 Modified Activated Carbon

More Information
  • This is an essay in the field of environmental engineering. The experiment adopts the impregnation method, and uses FeCl3 as the modifier to modify the activated carbon to study its desulfurization ability. The effects of modifier concentration, roasting temperature, and reaction temperature on the desulfurization performance of modified activated carbon were experimentally studied. Studies have shown that as the concentration of the modified solution increases, the Fe2O3 attached to the surface of the activated carbon increases, the specific surface area and total pore volume of the modified activated carbon decrease, and the average pore size increases; as the roasting temperature increases, the amount of Fe2O3 attached to the surface of the activated carbon continues. When the roasting temperature exceeds 300 ℃, the pore structure of the activated carbon surface will be sintered, which will reduce the desulfurization performance of the modified activated carbon; as the reaction temperature increases, the adsorption performance of FeCl3/AC-0.15 first increases and then decreases. When the concentration of FeCl3 modified solution is 0.15 mol/L, the calcination temperature is 300 ℃, and the reaction temperature is 60 ℃, the desulfurization efficiency of modified activated carbon is the highest.

  • 加载中
  • [1] 杨光, 张淑会, 杨艳双. 烧结烟气中气态污染物的减排技术现状及展望[J]. 矿产综合利用, 2021(1):45-56. YANG G, ZHANG S H, YANG Y S. Current status and prospects of emission reduction technology for gaseous pollutants in sintering flue gas[J]. Multipurpose Utilization of Mineral Resources, 2021(1):45-56.

    Google Scholar

    YANG G, ZHANG S H, YANG Y S. Current status and prospects of emission reduction technology for gaseous pollutants in sintering flue gas[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 45-56.

    Google Scholar

    [2] 汤铃, 薛晓达, 伯鑫, 等. 中国钢铁行业大气环境影响[J]. 环境科学, 2020, 41(7):2981-2994. TANG L, XUE X D, BO X, et al. The atmospheric environmental impact of China's iron and steel industry[J]. Environmental Science, 2020, 41(7):2981-2994.

    Google Scholar

    TANG L, XUE X D, BO X, et al. The atmospheric environmental impact of China's iron and steel industry[J]. Environmental Science, 2020, 41(7): 2981-2994.

    Google Scholar

    [3] 王伟, 宋静, 刘璐琦, 等. 烧结烟气脱硫脱硝技术探讨[J]. 节能与环保, 2020(8):58-60. WANG W, SONG J, LIU L Q, et al. Discussion on sintering flue gas desulfurization and denitration technology[J]. Energy Conservation and Environmental Protection, 2020(8):58-60.

    Google Scholar

    WANG W, SONG J, LIU L Q, et al. Discussion on sintering flue gas desulfurization and denitration technology [J]. Energy Conservation and Environmental Protection, 2020(8): 58-60.

    Google Scholar

    [4] 刘征建, 张建良, 杨天钧. 烧结烟气脱硫技术的研究与发展[J]. 中国冶金, 2009, 19(2):1-5+9. LIU Z J, ZHANG J L, YANG T J. Research and development of sintering flue gas desulfurization technology[J]. China Metallurgy, 2009, 19(2):1-5+9.

    Google Scholar

    LIU Z J, ZHANG J L, YANG T J. Research and development of sintering flue gas desulfurization technology[J]. China Metallurgy, 2009, 19(2): 1-5+9.

    Google Scholar

    [5] 左海滨, 张涛, 张建良, 等. 活性炭脱硫技术在烧结烟气脱硫中的应用[J]. 冶金能源, 2012, 31(3):56-59. ZUO H B, ZHANG T, ZHANG J L, et al. Application of activated carbon desulfurization technology in sintering flue gas desulfurization[J]. Energy for Metallurgical Industry, 2012, 31(3):56-59.

    Google Scholar

    ZUO H B, ZHANG T, ZHANG J L, et al. Application of activated carbon desulfurization technology in sintering flue gas desulfurization[J]. Energy for Metallurgical Industry, 2012, 31(3): 56-59.

    Google Scholar

    [6] 鲁健. 烧结烟气特点及处理技术的发展趋势[J]. 内蒙古科技大学学报, 2012, 31(3):227-230. LU J. The characteristics of sintering flue gas and the development trend of treatment technology[J]. Journal of Inner Mongolia University of Science and Technology, 2012, 31(3):227-230.

    Google Scholar

    LU J. The characteristics of sintering flue gas and the development trend of treatment technology[J]. Journal of Inner Mongolia University of Science and Technology, 2012, 31(3): 227-230.

    Google Scholar

    [7] 高洪亮, 周劲松, 骆仲泱, 等. 改性活性炭对模拟燃煤烟气中汞吸附的实验研究[J]. 中国电机工程学报, 2007(8):26-30. GAO H L, ZHOU J S, LUO Z Y, et al. Experimental study on the adsorption of mercury in simulated coal-fired flue gas by modified activated carbon[J]. Proceedings of the Chinese Society of Electrical Engineering, 2007(8):26-30.

    Google Scholar

    GAO H L, ZHOU J S, LUO Z Y, et al. Experimental study on the adsorption of mercury in simulated coal-fired flue gas by modified activated carbon[J]. Proceedings of the Chinese Society of Electrical Engineering, 2007(8): 26-30.

    Google Scholar

    [8] 段东平. 活性炭的再生及改性进展研究[J]. 环境与发展, 2019, 31(6):78-79. DUAN D P. Research on the regeneration and modification of activated carbon[J]. Environment and Development, 2019, 31(6):78-79.

    Google Scholar

    DUAN D P. Research on the regeneration and modification of activated carbon[J]. Environment and Development, 2019, 31(6): 78-79.

    Google Scholar

    [9] 韩严和, 全燮, 薛大明, 等. 活性炭改性研究进展[J]. 环境污染治理技术与设备, 2003(1):33-37. HAN Y H, QUAN X, XUE D M, et al. Research progress of activated carbon modification[J]. Environmental Pollution Control Technology and Equipment, 2003(1):33-37.

    Google Scholar

    HAN Y H, QUAN X, XUE D M, et al. Research progress of activated carbon modification [J]. Environmental pollution control technology and equipment, 2003 (1): 33-37.

    Google Scholar

    [10] 董宇. 活性炭的吸附性能及表征方法[J]. 中国资源综合利用, 2020, 38(7):64-66. DONG Y. The adsorption performance and characterization method of activated carbon[J]. Comprehensive Utilization of Resources in China, 2020, 38(7):64-66.

    Google Scholar

    DONG Y. The adsorption performance and characterization method of activated carbon[J]. Comprehensive Utilization of Resources in China, 2020, 38(7): 64-66.

    Google Scholar

    [11] 龙小燕. 活性炭负载Fe/Ti改性及去除水体砷的效果和机理研究[D]. 武汉: 华中农业大学, 2012.

    Google Scholar

    LONG X Y. Study on the effect and mechanism of Fe/Ti modification by activated carbon loading and arsenic removal from water[D]. Wuhan: Huazhong Agricultural University, 2012.

    Google Scholar

    [12] Lu F, Jie C, Jia X G, et al. Influence of manganese, iron and pyrolusite blending on the physiochemical properties and desulfurization activities of activated carbons from walnut shell[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104:353-360. doi: 10.1016/j.jaap.2013.06.014

    CrossRef Google Scholar

    [13] 尹寿来, 朱宝忠, 孙运兰, 等. Fe2O3/AC催化剂的低温选择性催化还原脱硝性能[J]. 过程工程学报, 2018, 18(2):330-336. YIN S L, ZHU B Z, SUN Y L, et al. Low-temperature selective catalytic reduction denitrification performance of Fe2O3/AC catalyst[J]. The Chinese Journal of Process Engineering, 2018, 18(2):330-336. doi: 10.12034/j.issn.1009-606X.217251

    CrossRef Google Scholar

    YIN S L, ZHU B Z, SUN Y L, et al. Low-temperature selective catalytic reduction denitrification performance of Fe2O3/AC catalyst[J]. The Chinese Journal of Process Engineering, 2018, 18(2): 330-336. doi: 10.12034/j.issn.1009-606X.217251

    CrossRef Google Scholar

    [14] 方惠斌, 赵建涛, 王胜, 等. Fe-K/AC催化氧化脱硫剂制备及反应机理研究[J]. 燃料化学学报, 2012, 40(1):105-110. FANG H B, ZHAO J T, WANG S, et al. Preparation and reaction mechanism of Fe-K/AC catalytic oxidation desulfurizer[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1):105-110.

    Google Scholar

    FANG H B, ZHAO J T, WANG S, et al. Preparation and reaction mechanism of Fe-K/AC catalytic oxidation desulfurizer[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 105-110.

    Google Scholar

    [15] 宋华, 王璐, 张娇静, 等. 氧化铁改性活性炭的制备及其吸附脱硫性能[J]. 化工进展, 2013, 32(3):639-644+651. SONG H, WANG L, ZHANG J J, et al. Preparation of iron oxide modified activated carbon and its adsorption and desulfurization performance[J]. Chemical Industry Progress, 2013, 32(3):639-644+651.

    Google Scholar

    SONG H, WANG L, ZHANG J J, et al. Preparation of iron oxide modified activated carbon and its adsorption and desulfurization performance [J]. Chemical Industry Progress, 2013, 32(3): 639-644+651.

    Google Scholar

    [16] 李广柱, 曾尚景, 孙述海, 等. 生物炭负载铁氧化物复合材料的制备及在水处理中的应用[J]. 化工进展, 2021, 40(2):917-931. LI G Z, ZENG S J, SUN S H, et al. Preparation of biochar-supported iron oxide composite material and its application in water treatment[J]. Chemical Industry Progress, 2021, 40(2):917-931.

    Google Scholar

    LI G Z, ZENG S J, SUN S H, et al. Preparation of biochar-supported iron oxide composite material and its application in water treatment[J]. Chemical Industry Progress, 2021, 40(2): 917-931.

    Google Scholar

    [17] 张耀辉, 涂勇, 唐敏, 等. Fe2O3-TiO2-MnO2/Al2O3催化臭氧化催化剂的制备及表征[J]. 中国环境科学, 2016, 36(10):3003-3009. ZHANG Y H, TU Y, TANG M, et al. Preparation and characterization of Fe2O3-TiO2-MnO2/Al2O3 catalyst for ozonation[J]. China Environmental Science, 2016, 36(10):3003-3009.

    Google Scholar

    ZHANG Y H, TU Y, TANG M, et al. Preparation and characterization of Fe2O3-TiO2-MnO2/Al2O3 catalyst for ozonation[J]. China Environmental Science, 2016, 36(10): 3003-3009.

    Google Scholar

    [18] 雷利荣, 党中煦, 李友明. 活性炭负载Fe2O3催化臭氧降解丁香酚[J]. 华南理工大学学报(自然科学版), 2018, 46(10):132-140. LEI L R, DANG Z X, LI Y M. Activated carbon supported Fe2O3 catalytic ozone degradation of eugenol[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(10):132-140.

    Google Scholar

    LEI L R, DANG Z X, LI Y M. Activated carbon supported Fe2O3 catalytic ozone degradation of eugenol[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(10): 132-140.

    Google Scholar

    [19] 张武英, 黄碧纯, 周广英, 等. 低温等离子体改性对Fe2O3/ACF低温选择性催化还原NO的影响[J]. 环境科学学报, 2009, 29(10):2025-2032. ZHANG W Y, HUANG B C, ZHOU G Y, et al. Effect of low-temperature plasma modification on Fe2O3/ACF low-temperature selective catalytic reduction of NO[J]. Acta Scientiae Circumstantiae, 2009, 29(10):2025-2032.

    Google Scholar

    ZHANG W Y, HUANG B C, ZHOU G Y, et al. Effect of low-temperature plasma modification on Fe2O3/ACF low-temperature selective catalytic reduction of NO[J]. Acta Scientiae Circumstantiae, 2009, 29(10): 2025-2032.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(923) PDF downloads(344) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint