Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 No. 6
Article Contents

Xun Xiaowei, Xiao Yaxiong, Zhang Baifa, Li Guohui, Yao Siwen. Recent Progress on Reaction Mechanism, Properties, and Application of Alkali-Activated Geopolymer[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 83-90. doi: 10.3969/j.issn.1000-6532.2023.06.013
Citation: Xun Xiaowei, Xiao Yaxiong, Zhang Baifa, Li Guohui, Yao Siwen. Recent Progress on Reaction Mechanism, Properties, and Application of Alkali-Activated Geopolymer[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 83-90. doi: 10.3969/j.issn.1000-6532.2023.06.013

Recent Progress on Reaction Mechanism, Properties, and Application of Alkali-Activated Geopolymer

More Information
  • This is an essay in the field of ceramics and composites. Alkali-activated geopolymer is a new kind of inorganic cementitious material, which is formed by cross-linking of silicon-oxygen tetrahedrons and aluminum-oxygen tetrahedrons through the bridging oxygen atoms. The negative charges of aluminum-oxygen tetrahedrons are balanced by alkali metal cations. Due to its three-dimensional network structure, geopolymers have excellent properties such as high mechanical properties, good durability, and excellent heat resistance. They have been widely used in the high-performance construction materials preparation, wastewater treatment, and solid waste recycling. This article reviews the research progress of the reaction mechanism, microstructure, and mechanical properties of alkali-activated geopolymers. In addition, the development of its application research in the fields of building materials, environmental pollution control, and solid waste resource utilization is also introduced in this article in order to comprehensively understand the research status of alkali-activated geopolymers.

  • 加载中
  • [1] 李涛, 罗仙平, 钱有军. 加水一体化合成钨尾矿基地聚合物[J]. 矿产综合利用, 2019(1):83-87. LI T, LUO X P, QIAN Y J. Investigation on synthesis of tungsten tailings base geopolymer by water integration[J]. Multipurpose Utilization of Mineral Resources, 2019(1):83-87. doi: 10.3969/j.issn.1000-6532.2019.01.018

    CrossRef Google Scholar

    LI T, LUO X P, QIAN Y J. Investigation on synthesis of tungsten tailings base geopolymer by water integration[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 83-87. doi: 10.3969/j.issn.1000-6532.2019.01.018

    CrossRef Google Scholar

    [2] 汪应玲, 罗绍华, 姜茂发, 等. 铁尾矿制备地质聚合物工艺条件研究[J]. 矿产综合利用, 2019(5):121-126. WANG Y L, LUO S H, JIANG M F, et al. Study on process conditions for geopolymer from iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2019(5):121-126. doi: 10.3969/j.issn.1000-6532.2019.05.026

    CrossRef Google Scholar

    WANG Y L, LUO S H, JIANG M F, et al. Study on process conditions for geopolymer from iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2019(5): 121-126. doi: 10.3969/j.issn.1000-6532.2019.05.026

    CrossRef Google Scholar

    [3] M Chougan, S Hamidreza Ghaffar, M Jahanzat, et al. The influence of nano-additives in strengthening mechanical performance of 3D printed multi-binder geopolymer composites[J]. Constrcution and Building Materials, 2020, 250:118928. doi: 10.1016/j.conbuildmat.2020.118928

    CrossRef Google Scholar

    [4] C Kuenzel, J F Cisneros, T P Neville, et al. Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin[J]. Journal of Nuclear Materials, 2015, 466:94-99. doi: 10.1016/j.jnucmat.2015.07.034

    CrossRef Google Scholar

    [5] T Lan, P Li, F U Rehman, et al. Efficient adsorption of Cd2+ from aqueous solution using metakaolin geopolymers[J]. Environ Sci Pollut Res, 2019, 26:33555-33567. doi: 10.1007/s11356-019-06362-w

    CrossRef Google Scholar

    [6] R Bendoni, F Miccio, V Medri, et al. Geopolymer composites for the catalytic cleaning of tar in biomass-derived gas[J]. Renewable Energy, 2019, 131:1107-1116. doi: 10.1016/j.renene.2018.08.067

    CrossRef Google Scholar

    [7] 邵宁宁. 碱激发粉煤灰过程机理及其发泡胶凝材料的高性能化[D] . 北京: 中国矿业大学(北京), 2017.

    Google Scholar

    SHAO N N. Mechanism of alkali-excited fly ash process and its high performance of foamed cementitious materials [D]. Beijing: China University of Mining and Technology (Beijing), 2017.

    Google Scholar

    [8] M Sandanayake, C Gunasekara, D Law, et al. Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction[J]. J Clean Prod, 2018, 204:399-408. doi: 10.1016/j.jclepro.2018.08.311

    CrossRef Google Scholar

    [9] P Kinnunen, A Ismailov, S Solismaa, et al. Recycling mine tailings in chemically bonded ceramics - A review[J]. J Clean Prod, 2018, 174:634-649. doi: 10.1016/j.jclepro.2017.10.280

    CrossRef Google Scholar

    [10] B Zhang, P Yuan, H Guo, et al. Effect of curing conditions on the microstructure and mechanical performance of geopolymers derived from nanosized tubular halloysite[J]. Constrcution and Building Materials, 2202, 1,68:121186.

    Google Scholar

    [11] J Davidovits. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35:429-441. doi: 10.1007/BF01904446

    CrossRef Google Scholar

    [12] D Khale, R Chaudhary. Mechanism of geopolymerization and factors influencing its development: a review[J]. Journal of Materials Science, 2007, 42:729-746. doi: 10.1007/s10853-006-0401-4

    CrossRef Google Scholar

    [13] X Yao, Z Zhang, H Zhu, et al. Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry[J]. Thermochimica Acta, 2009, 493:49-54. doi: 10.1016/j.tca.2009.04.002

    CrossRef Google Scholar

    [14] 吴静. 新型地聚合物基建筑材料的研究[D]. 武汉: 武汉理工大学, 2007.

    Google Scholar

    WU J. Research on new geopolymer-based building materials [D]. Wuhan: Wuhan University of Technology, 2007.

    Google Scholar

    [15] M Bing-hui, Z He, C Xue-min, et al. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers[J]. Applied Clay Science, 2014, 99:144-148. doi: 10.1016/j.clay.2014.06.024

    CrossRef Google Scholar

    [16] 张云升, 孙伟, 林玮, 等. 用环境扫描电镜原位定量研究K-PS型地聚合物水泥的水化过程[J]. 东南大学学报(自然科学版), 2003, 33(3):351-354. ZHANG Y S, SUN W, LIN W, et al. In situ quantitative study of the hydration process of K-PS geopolymer cement by environmental scanning electron microscopy[J]. Journal of Southeast University (Natural Science Edition), 2003, 33(3):351-354. doi: 10.3321/j.issn:1001-0505.2003.03.026

    CrossRef Google Scholar

    ZHANG Y S, SUN W, LIN W, et al. In situ quantitative study of the hydration process of K-PS geopolymer cement by environmental scanning electron microscopy[J]. Journal of Southeast University (Natural Science Edition), 2003, 33(3): 351-354. doi: 10.3321/j.issn:1001-0505.2003.03.026

    CrossRef Google Scholar

    [17] A Fernández-Jiménez, A Palomo, M Criado. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement & Concrete Research, 35(2005) 1204-1209.

    Google Scholar

    [18] 闫姝. 氧化石墨烯增强铝硅酸盐聚合物的聚合与陶瓷化机制[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Google Scholar

    YAN S. Polymerisation and ceramisation mechanism of graphene oxide reinforced aluminosilicate polymers [D]. Harbin: Harbin Institute of Technology, 2016.

    Google Scholar

    [19] 贾德昌, 何培刚, 苑景坤, 等. 铝硅酸盐聚合物及其复合材料研究进展[J]. 硅酸盐学报, 2017, 45(12):17-37. JIA D C, HE P G, YUAN J K, et al. Research progress on aluminosilicate polymers and their composites[J]. Journal of Silicates, 2017, 45(12):17-37. doi: 10.14062/j.issn.0454-5648.2017.12.02

    CrossRef Google Scholar

    JIA D C, HE P G, YUAN J K, et al. Research progress on aluminosilicate polymers and their composites[J]. Journal of Silicates, 2017, 45(12): 17-37. doi: 10.14062/j.issn.0454-5648.2017.12.02

    CrossRef Google Scholar

    [20] 刘意. 开孔地质聚合物与多级孔分子筛的制备及吸附Pb2+、Cu2+的研究[D]. 武汉: 中国地质大学, 2018.

    Google Scholar

    LIU Y. Preparation of open-pore geopolymer with multistage porous molecular sieves and adsorption of Pb2+ and Cu2+ [D]. Wuhan: China University of Geosciences, 2018.

    Google Scholar

    [21] V Barbosa, K Mackenzie, C Thaumaturgo. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica[J]. Sodium Polysialate Polymers, 2(2000) 0-317.

    Google Scholar

    [22] P Duxson, S W Mallicoat, G C Lukey, et al. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(2007) 8-20.

    Google Scholar

    [23] S Das, P Yang, S. S Singh, et al. Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models[J]. Cement and Concrete Research, 78(2015) 252-262.

    Google Scholar

    [24] Jaroslav, Melar, Guillaume, et al. The porous network and its interface inside geopolymers as a function of alkali cation and aging[J]. The Journal of Physical Chemistry C, 119(2015) 17619-17632.

    Google Scholar

    [25] Lolli, Francesca, Manzano, et al. Atomistic simulations of geopolymer models: the impact of disorder on structure and mechanics[J]. ACS Appl Mater Interfaces, (2018).

    Google Scholar

    [26] R Wang, J Wang, T Dong, et al. Structural and mechanical properties of geopolymers made of aluminosilicate powder with different SiO2/Al2O3 ratio: Molecular dynamics simulation and microstructural experimental study[J]. Constrcution and Building Materials, 240(2020) 117935.

    Google Scholar

    [27] Z Ji, Y Pei. Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: a review[J]. Journal of Environmental Management, 231(2019) 256-267.

    Google Scholar

    [28] 简家成, 刘峥, 杨宏斌, 等, 地聚物胶凝材料制备及应用研究现状[J]. 矿产综合利用, 2014: 18-22.

    Google Scholar

    JIAN J C, LIU Z, YANG H B, et al. Research on preparation and application status of geopolymers[J]. Multipurpose Utilization of Mineral Resources, 2014: 18-22.

    Google Scholar

    [29] P Krivenko, R Drochytka, A Gelevera, et al. Mechanism of preventing the alkali–aggregate reaction in alkali activated cement concretes[J]. Cement and Concrete Composites, 45(2014) 157-165.

    Google Scholar

    [30] K Chen, D Wu, L Xia, et al. Geopolymer concrete durability subjected to aggressive environments – a review of influence factors and comparison with ordinary Portland cement[J]. Constrcution and Building Materials, 279(2021) 122496.

    Google Scholar

    [31] 陶文宏, 付兴华, 孙凤金, 等. 地聚物胶凝材料性能与聚合机理的研究[J]. 硅酸盐通报, 2008: 730-735+739.

    Google Scholar

    TAO W H, FU X H, SUN F J, et al. Studies on properties and mechanisms of geopolymer cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2008: 730-735+739.

    Google Scholar

    [32] G. F Huseien, J Mirza, M Ismail, et al. Geopolymer mortars as sustainable repair material: A comprehensive review[J]. Renewable & Sustainable Energy Reviews, 80(2017) 54-74.

    Google Scholar

    [33] 张晓飞. 地质聚合物聚合机理的第一性原理研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    Google Scholar

    ZHANG X F. First-principles study on the polymerisation mechanism of geopolymers[D]. Harbin: Harbin Institute of Technology, 2010.

    Google Scholar

    [34] C Shi, B Qu, J L Provis. Recent progress in low-carbon binders[J]. Cement & Concrete Research, 122(2019) 227-250.

    Google Scholar

    [35] B Zhang, H Guo, P Yuan, et al. Geopolymerization of halloysite via alkali-activation: Dependence of microstructures on precalcination[J]. Applied Clay Science, 2020, 185:105375. doi: 10.1016/j.clay.2019.105375

    CrossRef Google Scholar

    [36] B Walkley, R San Nicolas, M A Sani, et al. Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors[J]. Cement and Concrete Research, 2016, 89:120-135. doi: 10.1016/j.cemconres.2016.08.010

    CrossRef Google Scholar

    [37] J Davidovits, 30 years of successes and failures in geopolymer applications[J]. Market Trends and Potential Breakthroughs, 2002.

    Google Scholar

    [38] Z Zhang, J L Provis, A Reid, et al. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete[J]. Cement & Concrete Composites, 2015, 62:97-105.

    Google Scholar

    [39] P Duan, C Yan, W Luo, et al. A novel surface waterproof geopolymer derived from metakaolin by hydrophobic modification[J]. Materials Letters, 164(2016): 172-175.

    Google Scholar

    [40] A R G Azevedo, C M F Vieira, W M Ferreira, et al. Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles[J]. Journal of Building Engineering, 29(2020) 101156.

    Google Scholar

    [41] Z Zhang, X Yao, H Wang. Potential application of geopolymers as protection coatings for marine concrete III Field experiment[J]. Applied Clay Science, 67-68(2012) 57-60.

    Google Scholar

    [42] 王开拓. 碱基地质聚合物在低温及真空条件下的反应机理与应用探索[D]. 南宁: 广西大学, 2016.

    Google Scholar

    WANG K T. Exploration of reaction mechanism and application of alkali geopolymers under low temperature and vacuum conditions [D]. Nanning: Guangxi University, 2016.

    Google Scholar

    [43] M. Z Naser, Extraterrestrial construction materials[J]. Progress in Materials Science, 2019, 105:100577. doi: 10.1016/j.pmatsci.2019.100577

    CrossRef Google Scholar

    [44] E Hermann, C Kunze, R Gatzweiler, et al. Solidification of various radioactive residues by géopolymère®with special emphasis on long-term-stability[J]. Geopolymere ’99 Proceedings, [2023-09-15]

    Google Scholar

    [45] X Guo, L Zhang, J Huang, et al. Detoxification and solidification of heavy metal of chromium using fly ash-based geopolymer with chemical agents[J]. Constrcution and Building Materials, 2017, 151:394-404. doi: 10.1016/j.conbuildmat.2017.05.199

    CrossRef Google Scholar

    [46] M. R El-Naggar, E. H El-Masry, A. A El-Sadek. Assessment of individual and mixed alkali activated binders for solidification of a nuclear grade organic resin loaded with 134Cs, 60Co and 152+154Eu radionuclides[J]. Journal of Hazardous Materials, 2019, 375:149-160. doi: 10.1016/j.jhazmat.2019.04.063

    CrossRef Google Scholar

    [47] Immobilization behavior of Sr in geopolymer and itsceramic product[J]. Journal of the American Ceramic Society, 2019.

    Google Scholar

    [48] A Al-Mashqbeh, S Abuali, B El-Eswed, et al. Immobilization of toxic inorganic anions(Cr2O72-, MnO4- and Fe(CN)63-) in metakaolin based geopolymers: A preliminary study[J]. Ceramics International, 2018, 44:5613-5620. doi: 10.1016/j.ceramint.2017.12.208

    CrossRef Google Scholar

    [49] T Luukkonen, A Heponiemi, H Runtti, et al. Application of alkali-activated materials for water and wastewater treatment: a review[J]. Reviews in Environmental Science and Bio-Technology, 2019, 18:271-297. doi: 10.1007/s11157-019-09494-0

    CrossRef Google Scholar

    [50] S Andrejkovičová, A Sudagar, J Rocha, et al. The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers[J]. Applied Clay Science, 2016, 126:141-152. doi: 10.1016/j.clay.2016.03.009

    CrossRef Google Scholar

    [51] İ Kara, D Yilmazer, S T Akar, Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc(II) and nickel(II) ions from aqueous solutions[J]. Applied Clay Science, 2017, 139: 54-63.

    Google Scholar

    [52] T Hertel, R M Novais, R M Alarcon, et al. Use of modified bauxite residue-based porous inorganic polymer monoliths as adsorbents of methylene blue[J]. J Clean Prod, 2019, 227:877-889. doi: 10.1016/j.jclepro.2019.04.084

    CrossRef Google Scholar

    [53] S Zhao, F Muhammad, L Yu, et al. Solidification/stabilization of municipal solid waste incineration fly ash using uncalcined coal gangue–based alkali-activated cementitious materials[J]. Environmental Science & Pollution Research, 2019.

    Google Scholar

    [54] M C M Nasvi, P G Ranjith, J Sanjayan. The permeability of geopolymer at down-hole stress conditions: Application for carbon dioxide sequestration wells[J]. Applied Energy, 2013, 102: 1391-1398.

    Google Scholar

    [55] B Panda, S. C Paul, N. A. N Mohamed, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113:108-116. doi: 10.1016/j.measurement.2017.08.051

    CrossRef Google Scholar

    [56] B Cai, H Engqvist, S Bredenberg. Evaluation of the resistance of a geopolymer-based drug delivery system to tampering[J]. International Journal of Pharmaceutics, 2014, 465:169-174. doi: 10.1016/j.ijpharm.2014.02.029

    CrossRef Google Scholar

    [57] G Ascensão, M. P Seabra, J. B Aguiar, et al. Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability[J]. J Clean Prod, 2017, 148:23-30. doi: 10.1016/j.jclepro.2017.01.150

    CrossRef Google Scholar

    [58] Y. J Zhang, P. Y He, Y. X Zhang, et al. A novel electroconductive graphene/fly ash-based geopolymer composite and its photocatalytic performance[J]. Chemical Engineering Journal, 2018, 334:2459-2466. doi: 10.1016/j.cej.2017.11.171

    CrossRef Google Scholar

    [59] J Davidovits, L Huaman, R Davidovits. Ancient geopolymer in south-American monument SEM and petrographic evidence[J]. Materials Letters, 2019, 235: 120-124.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(3545) PDF downloads(354) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint