Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 No. 6
Article Contents

Wang Shiwei, Shi Kaiyi, Li Yuan, Tao Xiuxiang. Advance in Gas-Liquid Interface Characterization in Flotation Process[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 77-82. doi: 10.3969/j.issn.1000-6532.2023.06.012
Citation: Wang Shiwei, Shi Kaiyi, Li Yuan, Tao Xiuxiang. Advance in Gas-Liquid Interface Characterization in Flotation Process[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 77-82. doi: 10.3969/j.issn.1000-6532.2023.06.012

Advance in Gas-Liquid Interface Characterization in Flotation Process

  • This is an essay in the field of mining engineering. Recently, the application research of surfactants such as frother agents has become significantly important in mineral flotation, because it provides huge information on the characteristics of the gas-liquid interface before the bubble-particle collision or attachment. Moreover, it proposes important theories for the optimization of the flotation process. This article focuses on the potential measurement, tension test, and adsorption characteristics of the gas-liquid interface. The profile analysis tensiometry (PAT) test method for the adsorption characteristics of the gas-liquid interface is also introduced. Meanwhile, the research work on the characteristics of the gas-liquid interface has prospected.

  • 加载中
  • [1] 王市委, 陶秀祥, 陈松降, 等. 低阶煤的油泡浮选研究进展[J]. 矿产综合利用, 2020(4):48-58. WANG S W, TAO X X, CHEN S J, et al. Development of oily bubble flotation research for low-rank coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4):48-58. doi: 10.3969/j.issn.1000-6532.2020.04.008

    CrossRef Google Scholar

    WANG S W, TAO X X, CHEN S J, et al. Development of oily bubble flotation research for low-rank coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 48-58. doi: 10.3969/j.issn.1000-6532.2020.04.008

    CrossRef Google Scholar

    [2] 朱一民. 2020年浮选药剂的进展[J]. 矿产综合利用, 2021(2):102-118. ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2):102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019

    CrossRef Google Scholar

    ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2): 102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019

    CrossRef Google Scholar

    [3] 朱一民. 2019年浮选药剂的进展[J]. 矿产综合利用, 2020(5):1-17. ZHU Y M. Development of flotation reagent in 2019[J]. Multipurpose Utilization of Mineral Resources, 2020(5):1-17. doi: 10.3969/j.issn.1000-6532.2020.05.001

    CrossRef Google Scholar

    ZHU Y M. Development of flotation reagent in 2019[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 1-17. doi: 10.3969/j.issn.1000-6532.2020.05.001

    CrossRef Google Scholar

    [4] 朱一民, 周菁. 2018年浮选药剂的进展[J]. 矿产综合利用, 2019(4):1-10. ZHU Y M, ZHOU J. The development of flotation reagent in 2018[J]. Multipurpose Utilization of Mineral Resources, 2019(4):1-10. doi: 10.3969/j.issn.1000-6532.2019.04.001

    CrossRef Google Scholar

    ZHU Y M, ZHOU J. The development of flotation reagent in 2018[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 1-10. doi: 10.3969/j.issn.1000-6532.2019.04.001

    CrossRef Google Scholar

    [5] KRASOWSKA M, ZAWALA J, BRADSHAW-HAJEK B H, et al. Interfacial characterisation for flotation: 1. Solid-liquid interface[J]. Current Opinion in Colloid & Interface Science, 2018, 37:61-73.

    Google Scholar

    [6] LASKOWSKI J S. Frothers and Flotation Froth[J]. Mineral Processing and Extractive Metallurgy Review, 1993, 12(1):61-89. doi: 10.1080/08827509308935253

    CrossRef Google Scholar

    [7] FINCH J A, NESSET J E, ACUÑA C. Role of frother on bubble production and behaviour in flotation[J]. Minerals Engineering, 2008, 21(12):949-957.

    Google Scholar

    [8] 胡盘金, 郑永兴, 宁继来, 等. 含砷硫化铜矿浮选除砷研究进展[J]. 矿产综合利用, 2020(5):45-51. HU P J, ZHENG Y X, NING J L, et al. Research progress of arsenic removal from arsenic bearing copper sulphide ore by flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(5):45-51. doi: 10.3969/j.issn.1000-6532.2020.05.005

    CrossRef Google Scholar

    HU P J, ZHENG Y X, NING J L, et al. Research progress of arsenic removal from arsenic bearing copper sulphide ore by flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 45-51. doi: 10.3969/j.issn.1000-6532.2020.05.005

    CrossRef Google Scholar

    [9] XING Y, XU M, GUI X, et al. The role of surface forces in mineral flotation[J]. Current Opinion in Colloid & Interface Science, 2019, 44:143-152.

    Google Scholar

    [10] CORONA-ARROYO M A, LÓPEZ-VALDIVIESO A, LASKOWSKI J S, et al. Effect of frothers and dodecylamine on bubble size and gas holdup in a downflow column[J]. Minerals Engineering, 2015, 81:109-115. doi: 10.1016/j.mineng.2015.07.023

    CrossRef Google Scholar

    [11] 邱鸿鑫, 陈浙锐, 王光辉. 水分子在伊利石表面的吸附作用机理分析[J]. 矿产综合利用, 2020(3):197-202. QIU H X, CHEN Z R, WANG G H. Analysis of adsorption mechanism of water molecules on illite surface[J]. Multipurpose Utilization of Mineral Resources, 2020(3):197-202. doi: 10.3969/j.issn.1000-6532.2020.03.034

    CrossRef Google Scholar

    QIU H X, CHEN Z R, WANG G H. Analysis of adsorption mechanism of water molecules on illite surface[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 197-202. doi: 10.3969/j.issn.1000-6532.2020.03.034

    CrossRef Google Scholar

    [12] GRACIAA A, MOREL G, SAULNER P, et al. The ζ-potential of gas bubbles[J]. Journal of Colloid and Interface Science, 1995, 172(1):131-136. doi: 10.1006/jcis.1995.1234

    CrossRef Google Scholar

    [13] YANG C, DABROS T, LI D, et al. Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method[J]. Journal of Colloid and Interface Science, 2001, 243(1):128-135. doi: 10.1006/jcis.2001.7842

    CrossRef Google Scholar

    [14] LIU J, MAK T, ZHOU Z, et al. Fundamental study of reactive oily-bubble flotation[J]. Minerals Engineering, 2002, 15(9):667-676. doi: 10.1016/S0892-6875(02)00158-9

    CrossRef Google Scholar

    [15] SAULNIER P, BOURIAT P, MOREL G, et al. Zeta potential of air bubbles in solutions of binary mixtures of surfactants (monodistributed nonionic/anionic surfactant mixtures)[J]. Journal of Colloid and Interface Science, 1998, 200(1):81-85. doi: 10.1006/jcis.1997.5361

    CrossRef Google Scholar

    [16] ELMAHDY A M, MIRNEZAMI M, FINCH J A. Zeta potential of air bubbles in presence of frothers[J]. International Journal of Mineral Processing, 2008, 89(1):40-43.

    Google Scholar

    [17] BUENO-TOKUNAGA A, PÉREZ-GARIBAY R, MARTÍNEZ-CARRILLO D. Zeta potential of air bubbles conditioned with typical froth flotation reagents[J]. International Journal of Mineral Processing, 2015, 140:50-57. doi: 10.1016/j.minpro.2015.04.028

    CrossRef Google Scholar

    [18] CHO S, KIM J, CHUN J, et al. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269(1):28-34.

    Google Scholar

    [19] USHIKUBO F Y, ENARI M, FURUKAWA T, et al. Zeta-potential of micro-and/or nano-bubbles in water produced by some kinds of gases[J]. IFAC Proceedings Volumes, 2010, 43(26):283-288. doi: 10.3182/20101206-3-JP-3009.00050

    CrossRef Google Scholar

    [20] WU C, WANG L, HARBOTTLE D, et al. Studying bubble–particle interactions by zeta potential distribution analysis[J]. Journal of Colloid and Interface Science, 2015, 449:399-408. doi: 10.1016/j.jcis.2015.01.040

    CrossRef Google Scholar

    [21] KUSUMA A M, LIU Q, ZENG H. Understanding interaction mechanisms between pentlandite and gangue minerals by zeta potential and surface force measurements[J]. Minerals Engineering, 2014, 69:15-23. doi: 10.1016/j.mineng.2014.07.005

    CrossRef Google Scholar

    [22] DUAN J, WANG J, GUO T, et al. Zeta potentials and sizes of aluminum salt precipitates–effect of anions and organics and implications for coagulation mechanisms[J]. Journal of Water Process Engineering, 2014, 4:224-232. doi: 10.1016/j.jwpe.2014.10.008

    CrossRef Google Scholar

    [23] NGUYEN C V, NGUYEN T V, PHAN C M. Dynamic adsorption of a gemini surfactant at the air/water interface[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 482:365-370.

    Google Scholar

    [24] ZHILONG W, HONGYU G, TONGMING L. Measuring dynamic surface tension of surfactant solutions by using growing bubble method[Z]. 2010: 50, 463-468.

    Google Scholar

    [25] PAN L, JUNG S, YOON R. Effect of hydrophobicity on the stability of the wetting films of water formed on gold surfaces[J]. Journal of Colloid and Interface Science, 2011, 361(1):321-330. doi: 10.1016/j.jcis.2011.05.057

    CrossRef Google Scholar

    [26] NGUYEN A V, PHAN C M, EVANS G M. Effect of the bubble size on the dynamic adsorption of frothers and collectors in flotation[J]. International Journal of Mineral Processing, 2006, 79(1):18-26. doi: 10.1016/j.minpro.2005.11.007

    CrossRef Google Scholar

    [27] BASAŘOVÁ P, SUCHANOVÁ H, SOUŠKOVÁ K, et al. Bubble adhesion on hydrophobic surfaces in solutions of pure and technical grade ionic surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 522:485-493. doi: 10.1016/j.colsurfa.2017.03.024

    CrossRef Google Scholar

    [28] BASAŘOVÁ P, VÁCHOVÁ T, MOORE G, et al. Bubble adhesion onto the hydrophobic surface in solutions of non-ionic surface-active agents[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505:64-71.

    Google Scholar

    [29] LIU W, PAWLIK M, HOLUSZKO M. The role of colloidal precipitates in the interfacial behavior of alkyl amines at gas–liquid and gas–liquid–solid interfaces[J]. Minerals Engineering, 2015, 72:47-56. doi: 10.1016/j.mineng.2014.12.001

    CrossRef Google Scholar

    [30] LE T N, PHAN C M, NGUYEN A V, et al. An unusual synergistic adsorption of MIBC and CTAB mixtures at the air–water interface[J]. Minerals Engineering, 2012, 39:255-261. doi: 10.1016/j.mineng.2012.06.003

    CrossRef Google Scholar

    [31] SALAMAH A, PHAN C M, PHAM H G. Dynamic adsorption of cetyl trimethyl ammonium bromide at decane/water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484:313-317. doi: 10.1016/j.colsurfa.2015.08.010

    CrossRef Google Scholar

    [32] GEORGE J E, CHIDANGIL S, GEORGE S D. A study on air bubble wetting: Role of surface wettability, surface tension, and ionic surfactants[J]. Applied Surface Science, 2017, 410:117-125. doi: 10.1016/j.apsusc.2017.03.071

    CrossRef Google Scholar

    [33] NGUYEN T B, PHAN C M. Surface flow of surfactant layer on air/water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530:72-75.

    Google Scholar

    [34] DUNÉR G, GAROFF S, PRZYBYCIEN T M, et al. Transient marangoni transport of colloidal particles at the liquid/liquid interface caused by surfactant convective-diffusion under radial flow[J]. Journal of Colloid and Interface Science, 2016, 462:75-87. doi: 10.1016/j.jcis.2015.09.042

    CrossRef Google Scholar

    [35] SHARMA A, RUCKENSTEIN E. Effects of surfactants on wave-induced drainage of foam and emulsion films[J]. Colloid & Polymer Science, 1988, 266(1):60-69.

    Google Scholar

    [36] KRASOWSKA M, ZAWALA J, MALYSA K. Air at hydrophobic surfaces and kinetics of three phase contact formation[J]. Advances in Colloid and Interface Science, 2009, 147:155-169.

    Google Scholar

    [37] WARSZYŃSKI P, JACHIMSKA B, MAŁYSA K. Experimental evidence of the existence of non-equilibrium coverages over the surface of the floating bubble[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1996, 108(2-3):321-325.

    Google Scholar

    [38] JACHIMSKA B, WARSZYÑSKI P, MAŁYSA K. Effect of motion on lifetime of bubbles at n-butanol solution surface[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1998, 143(2-3):429-440. doi: 10.1016/S0927-7757(98)00382-3

    CrossRef Google Scholar

    [39] KRZAN M, MALYSA K. Influence of electrolyte presence on bubble motion in solutions of sodium n-alkylsulfates (C8, C10, C12)[J]. Physicochemical Problems of Mineral Processing, 2012, 48(1):49-62.

    Google Scholar

    [40] KOWALCZUK P B, ZAWALA J, KOSIOR D, et al. Three-phase contact formation and flotation of highly hydrophobic polytetrafluoroethylene in the presence of increased dose of frothers[J]. Industrial & Engineering Chemistry Research, 2016, 55(3):839-843.

    Google Scholar

    [41] ZAWALA J, DORBOLO S, VANDEWALLE N, et al. Bubble bouncing at a clean water surface[J]. Physical Chemistry Chemical Physics, 2013, 15(40):17324-17332. doi: 10.1039/c3cp52746h

    CrossRef Google Scholar

    [42] KOSIOR D, ZAWALA J, KRASOWSKA M, et al. Influence of n-octanol and α-terpineol on thin film stability and bubble attachment to hydrophobic surface.[J]. Physical Chemistry Chemical Physics Pccp, 2013, 15(7):2586-2595. doi: 10.1039/c2cp43545d

    CrossRef Google Scholar

    [43] KOWALCZUK P B, ZAWALA J, DRZYMALA J, et al. Influence of hexylamine on kinetics of flotation and bubble attachment to the quartz surface[J]. Separation Science and Technology, 2016, 51(15-16):2681-2690. doi: 10.1080/01496395.2016.1172640

    CrossRef Google Scholar

    [44] DEY S, PANI S, SINGH R. Study of interactions of frother blends and its effect on coal flotation[J]. Powder Technology, 2014, 260:78-83. doi: 10.1016/j.powtec.2014.03.068

    CrossRef Google Scholar

    [45] ZHOLOB S A, MAKIEVSKI A V, MILLER R, et al. Optimisation of calculation methods for determination of surface tensions by drop profile analysis tensiometry[J]. Advances in Colloid and Interface Science, 2007, 134-135:322-329. doi: 10.1016/j.cis.2007.04.011

    CrossRef Google Scholar

    [46] BERRY J D, NEESON M J, DAGASTINE R R, et al. Measurement of surface and interfacial tension using pendant drop tensiometry[J]. Journal of Colloid and Interface Science, 2015, 454:226-237. doi: 10.1016/j.jcis.2015.05.012

    CrossRef Google Scholar

    [47] HARVEY P A, NGUYEN A V, JAMESON G J, et al. Influence of sodium dodecyl sulphate and Dowfroth frothers on froth stability[J]. Minerals Engineering, 2005, 18(3):311-315. doi: 10.1016/j.mineng.2004.06.011

    CrossRef Google Scholar

    [48] SCHREITHOFER N, WIESE J, MCFADZEAN B, et al. Frother-depressant interactions in two and three phase systems[J]. International Journal of Mineral Processing, 2011, 100(1):33-40.

    Google Scholar

    [49] PHAN C M, NGUYEN A V, EVANS G M. Dynamic adsorption of sodium dodecylbenzene sulphonate and dowfroth 250 onto the air–water interface[J]. Minerals Engineering, 2005, 18(6):599-603. doi: 10.1016/j.mineng.2004.10.004

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(837) PDF downloads(552) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint