Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 No. 6
Article Contents

Wang Lei, Zhang Lei, Lin Huijie, Ji Chengqing, Xiong Wenliang, Huang Kun. Development and Application of the Current Situation and Development Trend of Platinum-Rhenium Reforming Catalyst[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 91-98. doi: 10.3969/j.issn.1000-6532.2023.06.014
Citation: Wang Lei, Zhang Lei, Lin Huijie, Ji Chengqing, Xiong Wenliang, Huang Kun. Development and Application of the Current Situation and Development Trend of Platinum-Rhenium Reforming Catalyst[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 91-98. doi: 10.3969/j.issn.1000-6532.2023.06.014

Development and Application of the Current Situation and Development Trend of Platinum-Rhenium Reforming Catalyst

More Information
  • This is an essay in the field of ceramics and composites.With the increasing demand for crude oil processing technology, China′s platinum rhenium catalyst industry is also developing. Catalyst is the core material of petroleum smelting, and impregnation method is the most important preparation method of reforming catalyst. Catalytic reforming catalysts generally refer to trace rhenium catalysts. The main research direction in the future is to increase the rhenium content of the catalyst and reduce the amount of platinum in the catalyst. The characteristics of platinum-rhenium catalysts are good stability, slightly poor selectivity, long-term stable operation, and regeneration cycle that can reach 3~5 years, which have been widely used in large-scale production of semi-regenerative reforming processes. Since the late 20th century, China′s refining catalyst market has formed a′Sinopec and PetroChina′s catalyst companies, supplemented by private catalyst companies′ market structure, catalyst demand is stable at more than 10 tons per year.

  • 加载中
  • [1] 徐红喜. 我国连续重整催化剂技术的进步[J]. 炼油技术与工程, 2004, 34(7):3. XU H X. China's continuous reforming catalyst technology progress[J]. Refinery Technology and Engineering, 2004, 34(7):3.

    Google Scholar

    XU H X. China's continuous reforming catalyst technology progress [J]. Refinery Technology and Engineering, 2004, 34(7): 3.

    Google Scholar

    [2] 张大庆. 高苛刻度下铂铼重整催化剂反应性能的评价[J]. 石化技术与应用, 2003, 21(2):3. ZHANG D Q. Evaluation of the reaction performance of platinum-rhenium reforming catalyst under high causticity[J]. Petrochemical Technology andApplication, 2003, 21(2):3.

    Google Scholar

    ZHANG D Q. Evaluation of the reaction performance of platinum-rhenium reforming catalyst under high causticity[J]. Petrochemical Technology andApplication, 2003, 21 (2): 3.

    Google Scholar

    [3] 王玲玲, 李琰, 曹凤霞, 等. UOP公司催化重整催化剂专利技术分析[J]. 工业催化, 2014, 22(1): 25-28.

    Google Scholar

    WANG L L, LI Y, CAO F X, et al. UOP company catalytic reforming catalyst patent technology analysis [ J ]. Industrial Catalysis, 2014, 22(1): 25-28.

    Google Scholar

    [4] 林见阳. 重整催化剂氧化铝载体微结构与性能调控[D]. 上海: 华东理工大学, 2021.

    Google Scholar

    LIN J Y. Microstructure and performance regulation of alumina support for reforming catalyst [D]. Shanghai: East China University of Technology, 2021. .

    Google Scholar

    [5] 张春兰, 陈淑芬, 张远欣. 催化重整催化剂的研究现状及进展[J]. 广州化工, 2013, 41(10):23-24. ZHANG C L, CHEN S F, ZHANG Y X. Research status and progress of catalytic reforming catalysts[J]. Guangzhou Chemical Industry, 2013, 41(10):23-24. doi: 10.3969/j.issn.1001-9677.2013.10.010

    CrossRef Google Scholar

    ZHANG C L, CHEN S F, ZHANG Y X. Research status and progress of catalytic reforming catalysts [J]. Guangzhou Chemical Industry, 2013, 41(10): 23-24. doi: 10.3969/j.issn.1001-9677.2013.10.010

    CrossRef Google Scholar

    [6] 田婷婷, 田昌旻. 连续重整装置催化剂再生工艺改进[J]. 石化技术与应用, 2021, 39(5):348-352. TIAN T T, TIAN C M. Improvement of catalyst regeneration process in continuous reforming unit[J]. Petrochemical Technology and Application, 2021, 39(5):348-352. doi: 10.19909/j.cnki.ISSN1009-0045.2021.05.0348

    CrossRef Google Scholar

    TIAN T T, TIAN C M. Improvement of catalyst regeneration process in continuous reforming unit [J]. Petrochemical Technology and Application, 2021, 39(5): 348-352. DOI:10.19909/j.cnki.ISSN1009-0045.2021.05.0348.

    CrossRef Google Scholar

    [7] 周彤, 肖生科. 催化重整催化剂的研究进展[J]. 中国高新技术企业, 2009(23):172-173. ZHOU T, XIAO S K. Research progress of catalytic reforming catalysts[J]. China High-tech Enterprises, 2009(23):172-173. doi: 10.3969/j.issn.1009-2374.2009.23.093

    CrossRef Google Scholar

    ZHOU T, XIAO S K. Research progress of catalytic reforming catalysts[J]. China High-tech Enterprises, 2009 (23): 172-173. doi: 10.3969/j.issn.1009-2374.2009.23.093

    CrossRef Google Scholar

    [8] CB-6重整催化剂加工进口油获得良好的结果[J]. 石油炼制与化工, 1990(2): 67.

    Google Scholar

    CB-6 reforming catalyst obtained good results in processing imported oil [J]. Petroleum Refining and Chemical Industry, 1990 (2): 67.

    Google Scholar

    [9] 冯敢, 赵仁殿. 国产新一代铂铼重整催化剂(CB-7)的性能[J]. 石油炼制与化工, 1991(6):1-5. FENG G, ZHAO R D. Performance of a new generation of domestic platinum rhenium reforming catalyst (CB-7)[J]. Petroleum Refining and Chemical Industry, 1991(6):1-5.

    Google Scholar

    FENG G, ZHAO R D. Performance of a new generation of domestic platinum rhenium reforming catalyst (CB-7) [J]. Petroleum Refining and Chemical Industry, 1991 (6) : 1-5.

    Google Scholar

    [10] 马爱增. 中国催化重整技术进展[J]. 中国科学:化学, 2014, 44(1):25-39. MA A Z. Advances in catalytic reforming technology in China[J]. Chinese Science:Chemistry, 2014, 44(1):25-39.

    Google Scholar

    MA A Z. Advances in catalytic reforming technology in China [J]. Chinese Science: Chemistry, 2014, 44(1) : 25-39.

    Google Scholar

    [11] 张大庆, 张玉红, 臧高山, 等. 半再生重整技术的现状及发展[J]. 石油炼制与化工, 2007(12):11-15. ZHANG D Q, ZHANG Y H, ZANG G S, et al. Present situation and development of semi - regeneration reforming technology[J]. Petroleum Refining and Chemical Industry, 2007(12):11-15. doi: 10.3969/j.issn.1005-2399.2007.12.003

    CrossRef Google Scholar

    ZHANG D Q, ZHANG Y H, ZANG G S, et al. Present situation and development of semi - regeneration reforming technology [J]. Petroleum Refining and Chemical Industry, 2007 (12): 11-15. doi: 10.3969/j.issn.1005-2399.2007.12.003

    CrossRef Google Scholar

    [12] 苗毅, 关冠军, 戴承远. 高铼超低铂CB-8重整催化剂的工业应用[J]. 石油炼制与化工, 1993(8):1-8. MIAO Y, GUAN G J, DAI C Y. Industrial application of high rhenium ultra-low platinum CB-8 reforming catalyst[J]. Petroleum Refining and Chemical Industry, 1993(8):1-8.

    Google Scholar

    MIAO Y, GUAN G J, DAI C Y. Industrial application of high rhenium ultra-low platinum CB-8 reforming catalyst [J]. Petroleum Refining and Chemical Industry, 1993 (8): 1–8.

    Google Scholar

    [13] 孙敬方, 张雷, 葛成艳, 等. 固相浸渍法和湿浸渍法制备CuO/CeO_2催化剂及其CO氧化性能的对比研究[J]. 催化学报, 2014, 35(8):1347-1358. SUN J F, ZHANG L, GE C Y, et al. A comparative study of CuO/CeO_2 catalysts prepared by solid phase impregnation method and wet impregnation method and their CO oxidation performance[J]. Journal of Catalysis, 2014, 35(8):1347-1358. doi: 10.1016/S1872-2067(14)60138-8

    CrossRef Google Scholar

    SUN J F, ZHANG L, GE C Y, et al. A comparative study of CuO/CeO_2 catalysts prepared by solid phase impregnation method and wet impregnation method and their CO oxidation performance [J]. Journal of Catalysis, 2014, 35(8): 1347-1358. doi: 10.1016/S1872-2067(14)60138-8

    CrossRef Google Scholar

    [14] 孙敬方, 葛成艳, 姚小江, 等. 固相浸渍法制备NiO/CeO2催化剂及其在CO氧化反应中的应用[J]. 物理化学学报, 2013, 29(11):2451-2458. SUN J F, GE C Y, YAO X J, et al. Preparation of NiO/CeO2 catalyst by solid-phase impregnation method and its application in CO oxidation reaction[J]. Journal of Physical Chemistry, 2013, 29(11):2451-2458. doi: 10.3866/PKU.WHXB201309041

    CrossRef Google Scholar

    SUN J F, GE C Y, YAO X J, et al. Preparation of NiO/CeO_2 catalyst by solid-phase impregnation method and its application in CO oxidation reaction [J]. Journal of Physical Chemistry, 2013, 29 (11) : 2451-2458. doi: 10.3866/PKU.WHXB201309041

    CrossRef Google Scholar

    [15] 葛佳琪, 谢方明, 刘思危, 等. 浸渍方法对Ni-W/Y-ASA催化剂加氢裂化性能的影响[J]. 化工进展, 2021, 40(6):3191-3196. GE J Q, XIE F M, LIU S W, et al. Effect of impregnation method on hydrocracking performance of Ni-W/Y-ASA catalyst[J]. Chemical Progress, 2021, 40(6):3191-3196. doi: 10.16085/j.issn.1000-6613.2020-1495

    CrossRef Google Scholar

    GE J Q, XIE F M, LIU S W, et al. Effect of impregnation method on hydrocracking performance of Ni-W/Y-ASA catalyst [J]. Chemical Progress, 2021, 40 (6): 3191-3196. DOI : 10.16085/j.issn.1000-6613.2020-1495.

    CrossRef Google Scholar

    [16] 杨黎博, 康永. 浸渍法活性氧化铝负载双金属催化剂的制备研究[J]. 佛山陶瓷, 2017, 27(9):8-15. YANG L B, KANG Y. Preparation of activated alumina supported bimetallic catalysts by impregnation[J]. Foshan Ceramics, 2017, 27(9):8-15. doi: 10.3969/j.issn.1006-8236.2017.09.003

    CrossRef Google Scholar

    YANG L B, KANG Y. Preparation of activated alumina supported bimetallic catalysts by impregnation [J]. Foshan Ceramics, 2017, 27(9): 8-15. doi: 10.3969/j.issn.1006-8236.2017.09.003

    CrossRef Google Scholar

    [17] 李永存. Chevron公司加氢裂化剂ICR207的开发与工业使用结果[J]. 石油炼制与化工, 1990(10): 9.

    Google Scholar

    LI Y C. Chevron company hydrocracking agent ICR207 development and industrial use results [ J ]. Petroleum Refining and Chemical Industry, 1990 (10): 9.

    Google Scholar

    [18] 郭淑芝, 王甫村, 朱金玲, 等. 国外馏分油加氢裂化工艺和催化剂的最新进展[J]. 炼油与化工, 2007(4):7-10+56. GUO S Z, WANG F C, ZHU J L, et al. Recent Advances in hydrocracking processes and catalysts of fraction oils abroad[J]. Refinery and Chemical Industry, 2007(4):7-10+56.

    Google Scholar

    GUO S Z, WANG F C, ZHU J L, et al. Recent Advances in hydrocracking processes and catalysts of fraction oils abroad [J]. Refinery and Chemical Industry, 2007(4): 7-10+56.

    Google Scholar

    [19] 新一代加氢裂化处理用催化剂[J]. 化工进展, 2008(6): 921.

    Google Scholar

    New generation catalyst for hydrocracking treatment [J]. Chemical Progress, 2008 (6): 921.

    Google Scholar

    [20] 许建耘. UOP公司从Chevron公司购买离子液体烷基化技术[J]. 石油炼制与化工, 2017, 48(1):77. XU J Y. UOP purchased ionic liquid alkylation technology from Chevron[J]. Petroleum Refining and Chemical Industry, 2017, 48(1):77.

    Google Scholar

    XU J Y. UOP purchased ionic liquid alkylation technology from Chevron [J]. Petroleum Refining and Chemical Industry, 2017, 48(1): 77.

    Google Scholar

    [21] 张阳. 催化重整研究进展[J]. 当代化工, 2016, 45(4):863-864. ZHANG Y. Research progress of catalytic reforming[J]. Contemporary Chemical Industry, 2016, 45(4):863-864. doi: 10.13840/j.cnki.cn21-1457/tq.2016.04.065

    CrossRef Google Scholar

    ZHANG Y. Research progress of catalytic reforming [J]. Contemporary Chemical Industry, 2016, 45(4): 863-864. DOI:10.13840/j.cnki.cn21-1457 / tq.2016.04.065.

    CrossRef Google Scholar

    [22] 汤杰国, 冯金松, 邢卫东. 国产连续重整技术在装置改造中的应用探讨[J]. 河南化工, 2005(10):36-38. TANG J G, FENG J S, XING W D. Discussion on the application of domestic continuous reforming technology in unit transformation[J]. Henan Chemical Industry, 2005(10):36-38. doi: 10.14173/j.cnki.hnhg.2005.10.015

    CrossRef Google Scholar

    TANG J G, FENG J S, XING W D. Discussion on the application of domestic continuous reforming technology in unit transformation [J]. Henan Chemical Industry, 2005(10): 36-38. DOI : 10.14173 / j.cnki.hnhg.2005.10.015.

    CrossRef Google Scholar

    [23] 董伟平, 兰洪森, 符忠林. 先进控制在半再生式催化重整装置上的应用[J]. 炼油设计, 2000(5):38-42. DONG W P, LAN H S, FU Z L. Application of advanced control in semi-regenerative catalytic reforming unit[J]. Refinery Design, 2000(5):38-42.

    Google Scholar

    DONG W P, LAN H S, FU Z L. Application of advanced control in semi-regenerative catalytic reforming unit [J]. Refinery Design, 2000 (5): 38-42.

    Google Scholar

    [24] 张兰新, 唐激扬, 孟宪评, 等. CB-6/CB-7催化剂两段重整工艺的研究[J]. 石油炼制与化工, 1993(1):1-9. ZHANG L X, TANG J Y, MENG X P, et al. Study on two-stage reforming process of CB-6 / CB-7 catalyst[J]. Petroleum Refining and Chemical Industry, 1993(1):1-9.

    Google Scholar

    ZHANG L X, TANG J Y, MENG X P, et al. Study on two-stage reforming process of CB-6 / CB-7 catalyst [J]. Petroleum Refining and Chemical Industry, 1993 (1): 1-9.

    Google Scholar

    [25] AHTGRACE, Chevron to build catalyst unit[J]. Chemical & Engineering News, 2015, 93(21): 19-19.

    Google Scholar

    [26] 姚国欣. 世界上最大的汽车尾气处理催化剂生产商美国恩格哈德公司(Engelhard Corporation)[J]. 现代化工, 2000(10):55-58. YAO G X. Engelhard Corporation, the largest producer of automobile exhaust treatment catalysts in the world[J]. Modern Chemical Industry, 2000(10):55-58. doi: 10.16606/j.cnki.issn0253-4320.2000.10.016

    CrossRef Google Scholar

    YAO G X. Engelhard Corporation, the largest producer of automobile exhaust treatment catalysts in the world [J]. Modern Chemical Industry, 2000 (10): 55–58. DOI:10.16606/j.cnki. issn0253 – 4320.2000.10.016.

    CrossRef Google Scholar

    [27] 李琰, 王玲玲. 环球油品公司炼油专利技术分析[J]. 石油化工技术与经济, 2018, 34(5):1-4. LI Y, WANG L L. Analysis of refining patent technology of global oil company[J]. Petrochemical Technology and Economy, 2018, 34(5):1-4. doi: 10.3969/j.issn.1674-1099.2018.05.001

    CrossRef Google Scholar

    LI Y, WANG L L. Analysis of refining patent technology of global oil company [J]. Petrochemical Technology and Economy, 2018, 34 (5): 1-4. doi: 10.3969/j.issn.1674-1099.2018.05.001

    CrossRef Google Scholar

    [28] 卢雪梅, 杨国丰, 李明岩. 法国石油研究院科研成果转化路径研究[J]. 石油科技论坛, 2015, 34(1):58-62. LU X M, YANG G F, LI M Y. Research on the transformation path of scientific research achievements of the french petroleum institute[J]. Forum on Petroleum Science and Technology, 2015, 34(1):58-62.

    Google Scholar

    LU X M, YANG G F, LI M Y. Research on the transformation path of scientific research achievements of the french petroleum institute [J]. Forum on Petroleum Science and Technology, 2015, 34(1): 58-62.

    Google Scholar

    [29] CB-7重整催化剂再生性能良好[J]. 石油炼制与化工, 1993(9): 67.

    Google Scholar

    CB-7 reforming catalyst has good regeneration performance [J]. Petroleum Refining and Chemical Industry, 1993(9): 67.

    Google Scholar

    [30] 齐铁忠. CB-11/CB-8重整催化剂二段装填在工业装置上的应用[J]. 工业催化, 2000(1):43-47. QI T Z. Application of the second-stage loading of CB-11/CB-8 reforming catalyst in industrial units[J]. Industrial Catalysis, 2000(1):43-47. doi: 10.3969/j.issn.1008-1143.2000.01.009

    CrossRef Google Scholar

    QI T Z. Application of the second-stage loading of CB-11/CB-8 reforming catalyst in industrial units [J]. Industrial Catalysis, 2000 (1): 43 – 47. doi: 10.3969/j.issn.1008-1143.2000.01.009

    CrossRef Google Scholar

    [31] 何烨, 祁兴维, 任靖, 等. 一种铂铼重整催化剂的制备方法和铂铼重整催化剂: CN105413714B[P]. 2017-09-22.

    Google Scholar

    HE Y, QI X W, REN J, et al. A preparation method of platinum rhenium reforming catalyst and platinum rhenium reforming catalyst: CN105413714B[P]. 2017-09-22.

    Google Scholar

    [32] 宋丽芝, 乔凯, 王海波, 等. 一种硫化型铂铼重整催化剂的制备方法: CN105709784B[P]. 2018-02-09.

    Google Scholar

    SONG L Z, QIAO K, WANG H B, et al. A preparation method of sulfurized platinum rhenium reforming catalyst : CN105709784[P]. 2018-02-09.

    Google Scholar

    [33] 任坚强, 张大庆, 王嘉欣, 等. 一种铂铼重整催化剂的初始反应方法: CN102140366B[P]. 2014-10-01.

    Google Scholar

    REN J Q, ZHANG D Q, WANG J X, et al. A platinum-rhenium reforming catalyst of the initial reaction: CN102140366B [P]. 2014-10-01.

    Google Scholar

    [34] 臧高山, 孙作霖, 张大庆, 等. 一种铂-铼重整催化剂及制备方法: CN1191121C[P]. 2005-03-02.

    Google Scholar

    ZANG G S, SUN Z L, ZHANG D Q, et al. A Pt-rhenium reforming catalyst and preparation method: CN1388218[P]. 2005-03-02.

    Google Scholar

    [35] 贝耀明, 柳伟, 秦波, 等. 一种还原态铂铼重整催化剂: CN109954505A[P]. 2019.

    Google Scholar

    BEI Y M, LIU W, QIN B, et al. A reduced platinum rhenium reforming catalyst: CN109954505A[P]. 2019.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(3)

Article Metrics

Article views(1362) PDF downloads(295) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint