HE Qixiang. A DISCUSSION ON SEDIMENT DYNAMICS[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 1-10. doi: 10.3724/SP.J.1140.2010.04001
Citation: HE Qixiang. A DISCUSSION ON SEDIMENT DYNAMICS[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 1-10. doi: 10.3724/SP.J.1140.2010.04001

A DISCUSSION ON SEDIMENT DYNAMICS

  • In the past decades, sedimentologists have made great efforts to investigate the relation of the grain size and structures or bedforms of a sediment with its hydrodynamic environment through experiments, in-situ monitoring and the study of ancient sedimentary records. This paper recalled the history of sediment dynamics, and discussed the dynamic implication of grain size and structures of sediments. Grain size and structures are useful tools for environmental reconstruction. But they are both multi-variable functions, which are influenced by various dynamic factors including the source of sediments and the dynamic field of a sink. It is impossible to get a single solution through either grain size or structures. The author suggests learning from history the experiences in reconstruction of dynamic environments upon depositional features. Integrated study of sedimentary sequences is required to approach a rationale conclusion. The achievements of the study of grain size and structures, however, have certainly paved the way for the hydrodynamic reconstruction of an environment, and further study of these features should not be ignored.
  • [1] Bagnold R A. Libyan Sands:Travel in a Dead World[M]. London, Hodder and Stoughton, 1935.

    Google Scholar

    [2] Bagnold R A. The Physics of Blown Sand and Desert Dunes[M]. New York, William Morrow & Co., 1941.

    Google Scholar

    [3] Studer B. Remarques geognostiques sur quelques parties de la chaine des alpes[J]. Ann. Sci. Nat. Paris, 1827, 11:1-47.

    Google Scholar

    [4] Mutti E, Bernoulli D, Ricci Luchi F, et al. Turbidites and turbidity current from Alpine flysch to the exploration of continental margins[J]. Sedimentology, 2009, 56:267-318.

    Google Scholar

    [5] Bailey E B. New light on sedimentation and tectonics[J]. Geol. Mag., 1930, 67:77-92.

    Google Scholar

    [6] Daly R A. Origin of submarine canyons[J]. Am. J. Sci., 1936,31:401-420.

    Google Scholar

    [7] Kuenen Ph H. Experiments in connection with Daly's hypothesis on the formation of submarine canyons[J]. Leidsche Geol. Meded., 1937, 8:327-351.

    Google Scholar

    [8] Johnson D. The Origin of Submarine Canyons[M]. New York, Columbia University Press, 1939.

    Google Scholar

    [9] Tercier J. Le Flysch dans la sedimentation alpaine[J]. Ecologae Geol. Helv., 1947, 40:164-198.

    Google Scholar

    [10] Vassoevich N B. Le flysch et les methodes de son etude[M]. Gostoptekhizat, Leningrad, 1948.

    Google Scholar

    [11] Kuenen Ph H. Migliorini C I. Turbidity currents as a cause of graded bedding[J]. J. Geol. 1950, 58:91-127.

    Google Scholar

    [12] Bouma A H. Sedimentology of some Flysch Deposits:A Graphic Approach to Facies Interpretation[M]. Elsvier, Amsterdam, 1962.

    Google Scholar

    [13] Heezen B C. and Ewing, M., Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake[J]. Am. J. Sci., 1952, 250:840-873.

    Google Scholar

    [14] Normark W R. Growth patterns of deep-sea fans[J]. AAPG Bull., 1970, 54:2170-2195.

    Google Scholar

    [15] Hsu K J. Studies of Ventura field, California, I:Facies geometry and genesis of lower Pliocene turbidites[J]. AAPG Bull., 1977, 61:137-168.

    Google Scholar

    [16] Mulder T. Syvitski J P M. Turbidity currents generated at river mouth during exceptional discharge to the worlds ocean[J]. Jour. Geol. 1995, 103:285-299.

    Google Scholar

    [17] Mulder T. Syvitski J P M. Modeling erosion and deposition by turbidity currents generated at river mouths[J].Jour. Sed. Research, 1998, A68:124-137.

    Google Scholar

    [18] Johnson K. et al. A decal record of underflows from a coastal river into the deep sea, Geology[J]. 2001, 29:1019-1022.

    Google Scholar

    [19] Wright L D, Wiseman W J, Bornhold B D, et al. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows[J]. Nature, 1988, 332:629-632.

    Google Scholar

    [20] Wright L D, Wiseman W J, Yang Z S, et al. Processes of marine dispersal and deposition of suspended silts off the modern mouth of the Huanghe (Yellow River)[J]. Continental Shelf Research, 1990, 10(1):1-40.

    Google Scholar

    [21] 李绍全.黄河三角洲的沉积动力学和泥沙运动,成国栋主编,黄河三角洲现代沉积作用及模式[M].北京:地质出版社,1991.110.[LI Shaoquan. Sediment dynamics and motion of sediments,in Sedimentation of the Yellow River and Its Models[M]. Beijing, Geological Publishing House 1991.110.]

    Google Scholar

    [22] 汪品先.深海沉积与地球系统[J].海洋地质与第四纪地质,2009,29(4):1-12

    Google Scholar

    [WANG Pinxian. Deep sea sediments and earth system[J]. Marine Geology and Quaternary Geology, 2009, 29(4):1-12.]

    Google Scholar

    [23] Posamentier H W. Depositional elements associated with a basin floor channel-levee system:case study from the Gulf of Mexico[C]//Turbidites:Models and Problems,Mar. Petr. Geol.2003,20:677-690.

    Google Scholar

    [24] Trask P D. Mechanical analysis of sediments by centrifuge[J]. Econ. Geol. 1930, 25:581-599.

    Google Scholar

    [25] Krumbein W C. Size frequency distribution of sediments[J]. J. Sed. Petr., 1934, 4:195-196.

    Google Scholar

    [26] Krumbein W C and Pettijohn F J. Manual of Sedimentary Petrography[M]. New York, D. Appleton-Century Co., Inc., 1938.

    Google Scholar

    [27] Otto G H. A modified logarithmic probability graph for the interpretation of mechanical analyses of sediments[J]. J. Sed. Petro. 1939, 9:62-76.

    Google Scholar

    [28] Inman D L. Measures for describing the size distribution of sediments[J]. J. Sed. Petro. 1962, 22:125-145.

    Google Scholar

    [29] Folk R L and Ward W C. Brazos River bar, a study in the significance of grain size parameters[J]. J. Sed. Petro. 1957,27:3-27.

    Google Scholar

    [30] McCammon R B. Efficiencies of percentile measures for describing the mean size and sorting of sedimentary particles[J]. J. Geol., 1962, 70:453-365.

    Google Scholar

    [31] Visher G S. Exploration Stratigraphy[M]. Tulsa, Penn Well Publishing Company, 1984.

    Google Scholar

    [32] Hjulstrom F. Transportation of detritus by moving water, In Recent Marine Sediments[C]. A Symposium Spec. Pub. Econ. Paleont. Miner, 1939, 4,Tulsa, 5-31.

    Google Scholar

    [33] Passega R. Texture as characteristic of clastic deposition[J]. Am. Assoc. Petroleum Geol. Bull., 1957,44:1952-1984.

    Google Scholar

    [34] Passega R. Grain size representation by CM pattern as a geological tool[J]. Jour. Sed. Petrol., 1964, 34:830-847.

    Google Scholar

    [35] Sahu B K. Depositional mechanisms from the size analysis of clastic sediments[J]. J. Sed. Petro. 1964,34:73-83.

    Google Scholar

    [36] Friedman G M. Distinction between dune, beach and river sands from their textural characteristics[J]. J. Sed. Petro. 1967, 28:151-163.

    Google Scholar

    [37] Gilbert G K. The Transportation of debris by running water[M]. USGS Professional Paper, 1914:1-86.

    Google Scholar

    [38] Simons D B, Richardson E V, et al. Forms of bed roughness in alluvial channels[J].Am. Soc. Civil. Eng. Proc, 1961, 81, no.HY3:87-105.

    Google Scholar

    [39] Guy, et al. Summary of alluvial channel data from flume experiments, 1956-1961[M]. USGS Professional Paper, 462-I, 1966.

    Google Scholar

    [40] Williams G. Flume experiments on the transport of a coarse sand[C]. USGS Prof. Paper 652-B,1967,1-31.

    Google Scholar

    [41] Allen J R L. Current Ripples:Their Relation to Patterns of Water and Sediment Motion[J]. Amsterdam, North-Holland, 1968.

    Google Scholar

    [42] Southard J B. Representation of bed configurations in depth-velocity-size diagram[J]. J. Sed. Petr., 1971, 41:903-915.

    Google Scholar

    [43] Harms J C, Southard J B, Spearing D R, et al. Depositional Environments as Interpreted from Primary Sedimentary Structures and Stratification Sequences[M]. Lecture Notes, Sed. Econ. Paleont. Miner. Short Course 2, Dallas, 1975.

    Google Scholar

    [44] Vannoni V. Factors determining bed forms in alluvial channels[J]. Am. Soc. Engineers Proc., 1974, 100, no. Hyz, 363-377.

    Google Scholar

    [45] Reineck H E and Singh I B. Depositonal Sedimentary Environments[M]. New York, Springer-Verlag, 1973.

    Google Scholar

    [46] 何起祥.水槽底形序列及其与水流变量的关系[J].长春地质学院学报,1981,3:59-68.[HE Qixiang. Bedforms sequence and its relation with hydrodynamic variables[J]. Journal of Changchun Geological Institute, 1981

    Google Scholar

    , 3:59-68.]

    Google Scholar

    [47] Kennedy J F. The mechanics of dunes and antidunes in erodible-bed Channels[J]. J. Fluid Mech. 1963, 16:521-544.

    Google Scholar

    [48] 何起祥.中国海洋沉积地质学[M].北京;海洋出版社, 2006.[HE Qixiang, Marine Sedimentary Geology of China[M]. Beijing;China Ocean Press, 2006.]

    Google Scholar

    [49] Belderson R H, Johnson M A, et al. Bedforms, In Offshore Tidal Sands:Process and Deposits[C]. New York, Chapman and Hall, 1982:27-57.

    Google Scholar

    [50] 成冶.某地区白垩系中的沉积相[J].地质科学,1976(4):37-45.[CHENG Ye, A Cretaceous case of sedimentary facies[J]. Earth Sciences, 1976

    Google Scholar

    (4):37-45.]

    Google Scholar

    [51] 刘宝珺.沉积岩石学[M].北京:地质出版社, 1980,[LIU Baojun. Sedimentary Petrology[M]. Beijing:Geological Publishing House, 1980.]

    Google Scholar

    [52] 刘宝珺.沉积成岩作用的若干问题[J].沉积学报, 2009, 27(5):787-791.

    Google Scholar

    [LIU Baojun. Some problems on the study of sedimentary diagenesis[J]. Acta Sedimentologica Sinica, 2009, 27(5), 787-791.]

    Google Scholar

  • Related articles

    [1] HE Qixiang. A DISCUSSION ON SEDIMENT DYNAMICS. Marine Geology & Quaternary Geology, 2010, 30(4): 1-1. doi: 10.3724/SP.J.1140.2010.04001
    [2] LI Yanzhen,  XU Hehua. DYNAMIC SIMULATION FOR SPREADING MECHANISM OF SOUTH CHINA SEA. Marine Geology & Quaternary Geology, 2016, 36(2): 75-75. doi: 10.16562/j.cnki.0256-1492.2016.02.009
    [3] LI Sanzhong,  SUO Yanhui,  LIU Xin,  DAI Liming,  YU Shan,  ZHAO Shujuan,  MA Yun,  WANG Xiaofei,  CHENG Shixiu,  AN Huiting,  XUE Youchen,  XIONG Lijuan,  CAO Xianzhi,  XU Liqing. BASIN DYNAMICS AND BASIN GROUPS OF THE SOUTH CHINA SEA. Marine Geology & Quaternary Geology, 2012, 32(6): 55-55. doi: 10.3724/SP.J.1140.2012.06055
    [4] NIU Shuyin,  SUN Aiqun,  WANG Mengke,  ZUO Liming,  ZHANG Xunhua,  ZHANG Fuxiang,  HOU Jianglong,  XU Meng,  ZHANG Jianzhen,  CHEN Chao. THE FORMATION OF BOHAI SEA AND ITS DEEP DYNAMICS. Marine Geology & Quaternary Geology, 2014, 34(6): 63-63. doi: 10.3724/SP.J.1140.2014.06063
    [5] XIE Dong-feng,  FAN Dai-du,  GAO Shu. FLAT OF CHONGMING ISLAND AND ITS IMPACTS ON THE SEDIMENT DISTRIBUTION. Marine Geology & Quaternary Geology, 2006, 26(2): 9-9.
    [6] CHEN Ping,  ZHENG Yanpeng,  LIU Baohua. GEOPHYSICAL FEATURES OF THE NANKAI TROUGH SUBDUCTION ZONE AND THEIR DYNAMIC SIGNIFICANCE. Marine Geology & Quaternary Geology, 2014, 34(6): 153-153. doi: 10.3724/SP.J.1140.2014.06153
    [7] DONG Hao, DAI Liming, LI Sanzhong, HU Zeming. Dynamic connection between Archean magma vents and Dome-and-Keel Structures. Marine Geology & Quaternary Geology, 2020, 40(4): 116-116. doi: 10.16562/j.cnki.0256-1492.2020050301
    [8] HU Mengying, LI Sanzhong, DAI Liming, SUO Yanhui, GUO Lingli, LIU Ze, MA Fangfang, TAO Jianli. NUMERICAL DYNAMIC MODELING OF TECTONIC INVERSION IN THE NORTHEASTERN XIHU SAG. MARINE GEOLOGY AND QUATERNARY GEOLOGY, 2017, 37(4): 151-151. doi: 10.16562/j.cnki.0256-1492.2017.04.010
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1742) PDF downloads(5) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint