2017 Vol. 37, No. 4
Article Contents

HU Mengying, LI Sanzhong, DAI Liming, SUO Yanhui, GUO Lingli, LIU Ze, MA Fangfang, TAO Jianli. NUMERICAL DYNAMIC MODELING OF TECTONIC INVERSION IN THE NORTHEASTERN XIHU SAG[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 151-166. doi: 10.16562/j.cnki.0256-1492.2017.04.010
Citation: HU Mengying, LI Sanzhong, DAI Liming, SUO Yanhui, GUO Lingli, LIU Ze, MA Fangfang, TAO Jianli. NUMERICAL DYNAMIC MODELING OF TECTONIC INVERSION IN THE NORTHEASTERN XIHU SAG[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 151-166. doi: 10.16562/j.cnki.0256-1492.2017.04.010

NUMERICAL DYNAMIC MODELING OF TECTONIC INVERSION IN THE NORTHEASTERN XIHU SAG

More Information
  • The East China Sea Continental Shelf Basin is a large basin located in the eastern border of the Eurasian Plate. Under the effects of the India-Eurasia collision and the subduction of the Pacific Plate, this region has experienced three-stages of tectonic inversions since Cenozoic, especially in the Xuhu Sag. This paper presents a numerical simulation results by finite element method to the north-central Xihu Sag in an attempt to investigate the mechanism of tectonic inversion. Based on the comprehensive structural analysis and the structural geometry of the sag established with a large number of seismic profiles, a viscoelastic geologic model of 6 layers and 9 major faults was constructed for the Xihu Sag. Simulation results show that the subsidence caused by the shearing movement characterized by transtension in early stage and transpression in later stage is the major force controling the inversion process and its propagation from west to east. Based on quantitative analysis of vertical displacement field of the Sag, this paper identified a tectonic inversion process with uplifting in the west and subsiding in the east after the first-stage of inversion; and then subsiding in the west and uplifting in the middle and east after the second and third-stages. The simulation results are well consistent with the process of uplifting or subsidence obtained from the denudation thickness and the distribution of low compression stress, displaying certain correlation with the distribution of oil reservoirs. The results indicate the plausibility of similar deformation controls. In conclusion, the formation of the tectonic inversion in the Xihu Sag is controlled by the adjustment of the stress field from dextral transtension to sinistral transpression caused by the change in subduction rates and direction of the Pacific Plate and the Philippine Sea Plate.

  • 加载中
  • [1] Cooper M A, Williams G D. Inversion Tectonics[M]. London: Geological Society by Blackwell Scientific Publications, 1989.

    Google Scholar

    [2] Buchanan P G, Mcclay K R. Sandbox experiments of inverted listric and planar fault systems[J]. Tectonophysics, 1991, 188(1-2): 97-115. doi: 10.1016/0040-1951(91)90317-L

    CrossRef Google Scholar

    [3] 姚超, 焦贵浩, 王同和, 等.中国含油气构造样式[M].北京:石油工业出版社, 2004.

    Google Scholar

    YAO Chao, JIAO Guihao, WANG Tonghe, et al. Structural Styles of Oil-Bearing Basins in China[M]. Beijing: Petroleum Industry Press, 2004.

    Google Scholar

    [4] 陈昭年, 陈发景.反转构造与油气圈闭[J].地学前缘, 1995, 2(3-4): 96-102.

    Google Scholar

    CHEN Zhaonian, CHEN Fajing. Inversion structures and their relationship to traps of oil and gas[J]. Earth Science Frontiers, 1995, 2(3-4): 96-102.

    Google Scholar

    [5] 胡望水, 刘学锋, 吕新华, 等.论正反转构造的分类[J].新疆石油地质, 2000, 21(1): 5-8. doi: 10.3969/j.issn.1001-3873.2000.01.002

    CrossRef Google Scholar

    HU Wangshui, LIU Xuefeng, LV Xinhua, et al. On the classifications of positive reversed structures[J]. Xinjiang Petroleum Geology, 2000, 21(1): 5-8. doi: 10.3969/j.issn.1001-3873.2000.01.002

    CrossRef Google Scholar

    [6] 胡望水, 吕炳全, 毛治国, 等.中国东部中新生代含油气盆地的反转构造[J].同济大学学报, 2004, 32(2): 182-186. doi: 10.3321/j.issn:0253-374X.2004.02.009

    CrossRef Google Scholar

    HU Wangshui, LV Bingquan, MAO Zhiguo, et al. Inversion structure characteristic of petroleum basin in Mesozoic and Cenozoic in middle and East China[J]. Journal of Tongji University, 2004, 32(2): 182-186. doi: 10.3321/j.issn:0253-374X.2004.02.009

    CrossRef Google Scholar

    [7] 李军生, 林春明.反转背斜构造自生自储油藏成藏模式[J].石油学报, 2006, 27(2): 34-37. doi: 10.3321/j.issn:0253-2697.2006.02.007

    CrossRef Google Scholar

    LI Junsheng, LIN Chunming. Forming pattern of self-generating and self-preserving reservoirs in reversal anticline structure[J]. Acta Petrolei Sinica, 2006, 27(2): 34-37. doi: 10.3321/j.issn:0253-2697.2006.02.007

    CrossRef Google Scholar

    [8] 胡望水, 李瑞升, 李涛, 等.正反转构造动力学成因探讨[J].石油天然气学报, 2007, 29(4): 23-27. doi: 10.3969/j.issn.1000-9752.2007.04.004

    CrossRef Google Scholar

    HU Wangshui, LI Ruisheng, LI Tao, et al. Discussion on dynamic genesis of positive inversion structure[J]. Journal of Oil and Gas Technology, 2007, 29(4): 23-27. doi: 10.3969/j.issn.1000-9752.2007.04.004

    CrossRef Google Scholar

    [9] 杨风丽, 王敏雪, 庄建建, 等.西湖凹陷反转构造定量运动学过程及对油气的控制作用[J].石油学报, 2010, 31(4): 596-601. doi: 10.7623/syxb201004013

    CrossRef Google Scholar

    YANG Fengli, WANG Minxue, ZHUANG Jianjian, et al. Kinematical processes of inversion structure and its contribution to hydrocarbon accumulation in Xihu Depression of East China Sea Basin[J]. Acta Petrolei Sinica, 2010, 31(4): 596-601. doi: 10.7623/syxb201004013

    CrossRef Google Scholar

    [10] 徐子英, 孙珍, 张云帆, 等.南海北部陆缘盆地反转构造研究:以莺歌海盆地临高隆起和珠江口盆地琼海凹陷为例[J].地学前缘, 2010, 17(4): 90-98.

    Google Scholar

    XU Ziying, SUN Zhen, ZHANG Yunfan, et al. Inversion structures in the northern continental margin of the South China Sea: taking Lingao Uplift in the Yinggehai Basin and Qionghai Sag in the Pearl River Mouth Basin as examples[J]. Earth Science Frontiers, 2010, 17(4): 90-98.

    Google Scholar

    [11] Sibson R H. A note on fault reactivation[J]. Journal of Structural Geology, 1985, 7(6): 751-754. doi: 10.1016/0191-8141(85)90150-6

    CrossRef Google Scholar

    [12] Sandiford M. Mechanics of basin inversion[J]. Tectonophysics, 1999, 305(1-3): 109-120. doi: 10.1016/S0040-1951(99)00023-2

    CrossRef Google Scholar

    [13] Buiter S J H, Pfiffner O A. Numerical models of the inversion of half-graben basins[J]. Tectonics, 2003, 22(5), doi: 10.1029/2002TC001417.

    CrossRef Google Scholar

    [14] Panien M, Schreurs G, Pfiffner A. Sandbox experiments on basin inversion: testing the influence of basin orientation and basin fill[J]. Journal of Structural Geology, 2005, 27(3): 433-445. doi: 10.1016/j.jsg.2004.11.001

    CrossRef Google Scholar

    [15] Ventisette D C, Montanari D, Sani F, et al. Basin inversion and fault reactivation in laboratory experiments[J]. Journal of Structural Geology, 2006, 28(11): 2067-2083. doi: 10.1016/j.jsg.2006.07.012

    CrossRef Google Scholar

    [16] Marques F O, Nogueira C R. Normal fault inversion by orthogonal compression: Sandbox experiments with weak faults[J]. Journal of Structural Geology, 2008, 30(6): 761-766. doi: 10.1016/j.jsg.2008.02.015

    CrossRef Google Scholar

    [17] Buiter S J H, Pfiffner O A, Beaumont C. Inversion of extensional sedimentary basins: a numerical evaluation of the localisation of shortening[J]. Earth and Planetary Science Letters, 2009, 288(3-4): 492-504. doi: 10.1016/j.epsl.2009.10.011

    CrossRef Google Scholar

    [18] Gomes C J S, Danderfer Filho A, Posada A M A, et al. The role of backstop shape during inversion tectonics physical models[J]. Anais da Academia Brasileira de Ciências, 2010, 82(4): 997-1012. doi: 10.1590/S0001-37652010000400021

    CrossRef Google Scholar

    [19] Dai L M, Li S Z, Lou D, et al. Numerical modeling of Late Miocene tectonic inversion in the Xihu Sag, East China Sea Shelf Basin, China[J]. Journal of Asian Earth Sciences, 2014, 86: 25-37. doi: 10.1016/j.jseaes.2013.09.033

    CrossRef Google Scholar

    [20] Dai L M, Li Q W, Li S Z, et al. Numerical modelling of stress fields and earthquakes jointly controlled by NE- and NW-trending fault zones in the Central North China Block[J]. Journal of Asian Earth Sciences, 2015, 114: 28-40. doi: 10.1016/j.jseaes.2015.05.021

    CrossRef Google Scholar

    [21] 张建培, 张涛, 刘景彦, 等.西湖凹陷反转构造分布与样式[J].海洋石油, 2008, 28(4): 14-20. doi: 10.3969/j.issn.1008-2336.2008.04.003

    CrossRef Google Scholar

    ZHANG Jianpei, ZHANG Tao, LIU Jingyan, et al. Distribution and style of inversed structures in Xihu Depression[J]. Offshore Oil, 2008, 28(4): 14-20. doi: 10.3969/j.issn.1008-2336.2008.04.003

    CrossRef Google Scholar

    [22] Yang F L, Yu H X, Zhang Q L, et al. Correlations between shortening rate, uplift rate, and inversion rate in central inversion zone of Xihu depression, East China Sea Basin[J]. Journal of Earth Science, 2009, 20(4): 699-708. doi: 10.1007/s12583-009-0056-6

    CrossRef Google Scholar

    [23] Zhang G H, Li S Z, Suo Y H, et al. Cenozoic positive inversion tectonics and its migration in the East China Sea Shelf Basin[J]. Geological Journal, 2016, 51(S1): 176-187. doi: 10.1002/gj.2809

    CrossRef Google Scholar

    [24] 张田, 张建培, 张绍亮, 等.有限元数值模拟技术在西湖凹陷中央反转构造带形成机制研究中的应用[J].海洋石油, 2012, 32(4): 11-16. doi: 10.3969/j.issn.1008-2336.2012.04.011

    CrossRef Google Scholar

    ZHANG Tian, ZHANG Jianpei, ZHANG Shaoliang, et al. Application of the finite element numerical simulation method to the study on formation mechanism of the central inverted structure zone, Xihu Depression[J]. Offshore Oil, 2012, 32(4): 11-16. doi: 10.3969/j.issn.1008-2336.2012.04.011

    CrossRef Google Scholar

    [25] 张绍亮, 张建培, 唐贤君, 等.东海西湖凹陷断裂系统几何学特征及其成因机制[J].海洋地质与第四纪地质, 2014, 34(1): 87-94.

    Google Scholar

    ZHANG Shaoliang, ZHANG Jianpei, TANG Xianjun, et al. Geometry characteristic of the fault system in Xihu Sag in East China Sea and its formation mechanism[J]. Marine Geology and Quaternary Geology, 2014, 34(1): 87-94.

    Google Scholar

    [26] 张国华, 张建培.东海陆架盆地构造反转特征及成因机制探讨[J].地学前缘, 2015, 22(1): 260-270. doi: 10.13745/j.esf.2015.01.022

    CrossRef Google Scholar

    ZHANG Guohua, ZHANG Jianpei. A discussion on the tectonic inversion and its genetic mechanism in the East China Sea Shelf Basin[J]. Earth Science Frontiers, 2015, 22(1): 260-270. doi: 10.13745/j.esf.2015.01.022

    CrossRef Google Scholar

    [27] Zhang J P, Li S Z, Suo Y H. Formation, tectonic evolution and dynamics of the East China Sea Shelf Basin[J]. Geological Journal, 2016, 51(S1): 162-175. doi: 10.1002/gj.2808

    CrossRef Google Scholar

    [28] 刘景彦, 林畅松, 姜亮, 等.东海西湖凹陷第三系反转构造及其对油气聚集的影响[J].地球学报, 2000, 21(4): 350-355. doi: 10.3321/j.issn:1006-3021.2000.04.003

    CrossRef Google Scholar

    LIU Jingyan, LIN Changsong, JIANG Liang, et al. Characteristics of tertiary inversion structures and their influence on oil-gas accumulation in Xihu Trough, East China Sea[J]. Acta Geoscientia Sinica, 2000, 21(4): 350-355. doi: 10.3321/j.issn:1006-3021.2000.04.003

    CrossRef Google Scholar

    [29] 陈志勇, 葛和平.西湖凹陷反转构造与油气聚集[J].中国海上油气(地质), 2003, 17(1): 20-24.

    Google Scholar

    CHEN Zhiyong, GE Heping. Inversion structures and hydrocarbon accumulation in Xihu Sag, East China Sea Basin[J]. China Offshore Oil and Gas (Geology), 2003, 17(1): 20-24.

    Google Scholar

    [30] 张敏强, 钟志洪, 夏斌, 等.东海西湖凹陷中南部晚中新世构造反转与油气运聚[J].中国海上油气, 2005, 17(2): 73-79. doi: 10.3969/j.issn.1673-1506.2005.02.001

    CrossRef Google Scholar

    ZHANG Minqiang, ZHONG Zhihong, XIA Bin, et al. Late Miocene tectonic inversion and hydrocarbon migration and accumulation in central and southern Xihu sag, East China Sea[J]. China Offshore Oil and Gas, 2005, 17(2): 73-79. doi: 10.3969/j.issn.1673-1506.2005.02.001

    CrossRef Google Scholar

    [31] Ren J Y, Tamaki K, Li S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics, 2002, 344(3-4): 175-205. doi: 10.1016/S0040-1951(01)00271-2

    CrossRef Google Scholar

    [32] 索艳慧, 李三忠, 戴黎明, 等.东亚及其大陆边缘新生代构造迁移与盆地演化[J].岩石学报, 2012, 28(8): 2602-2618.

    Google Scholar

    SUO Yanhui, LI Sanzhong, DAI Liming, et al. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins[J]. Acta Petrologica Sinica, 2012, 28(8): 2602-2618.

    Google Scholar

    [33] Li S Z, Zhao G C, Dai L M, et al. Cenozoic faulting of the Bohai Bay Basin and its bearing on the destruction of the eastern North China Craton[J]. Journal of Asian Earth Sciences, 2012, 47: 80-93. doi: 10.1016/j.jseaes.2011.06.011

    CrossRef Google Scholar

    [34] Northrup C J, Royden L H, Burchfiel B C. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J]. Geology, 1995, 23(8): 719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2

    CrossRef Google Scholar

    [35] 郑求根, 周祖翼, 蔡立国, 等.东海陆架盆地中新生代构造背景及演化[J].石油与天然气地质, 2005, 26(2): 197-201. doi: 10.3321/j.issn:0253-9985.2005.02.012

    CrossRef Google Scholar

    ZHENG Qiugen, ZHOU Zuyi, CAI Liguo, et al. Meso-Cenozoic tectonic setting and evolution of East China Sea shelf basin[J]. Oil & Gas Geology, 2005, 26(2): 197-201. doi: 10.3321/j.issn:0253-9985.2005.02.012

    CrossRef Google Scholar

    [36] Li C F, Zhou Z Y, Ge H P, et al. Correlations between erosions and relative uplifts from the central inversion zone of the Xihu depression, East China Sea Basin[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2007, 18(4): 757-776. doi: 10.3319/TAO.2007.18.4.757(TT)

    CrossRef Google Scholar

    [37] Li S Z, Zhao G C, Dai L M, et al. Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton[J]. Journal of Asian Earth Sciences, 2012, 47: 64-79. doi: 10.1016/j.jseaes.2011.06.008

    CrossRef Google Scholar

    [38] Suo Y H, Li S Z, Yu S, et al. Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin[J]. Journal of Asian Earth Sciences, 2014, 88: 28-40. doi: 10.1016/j.jseaes.2014.02.019

    CrossRef Google Scholar

    [39] 杨文达, 崔征科, 张异彪.东海地质与矿产[M].北京:海洋出版社, 2010.

    Google Scholar

    YANG Wenda, CUI Zhengke, ZHANG Yibiao, et al. Geology and Mineral Resources in East China Sea[M]. Beijing: Ocean Press, 2010.

    Google Scholar

    [40] 徐发.东海陆架盆地新生界结构特征及迁移规律[J].石油天然气学报, 2012, 34(6): 1-7. doi: 10.3969/j.issn.1000-9752.2012.06.001

    CrossRef Google Scholar

    XU Fa. Characteristics of Caenozoic structure and tectonic migration of the East China Sea Shelf Basin[J]. Journal of Oil and Gas Technology, 2012, 34(6): 1-7. doi: 10.3969/j.issn.1000-9752.2012.06.001

    CrossRef Google Scholar

    [41] 郭令智, 钟志洪, 王良书, 等.莺歌海盆地周边区域构造演化[J].高校地质学报, 2001, 7(1): 1-12. doi: 10.3969/j.issn.1006-7493.2001.01.001

    CrossRef Google Scholar

    GUO Lingzhi, ZHONG Zhihong, WANG Liangshu, et al. Regional tectonic evolution around Yinggehai Basin of South China Sea[J]. Geological Journal of China Universities, 2001, 7(1): 1-12. doi: 10.3969/j.issn.1006-7493.2001.01.001

    CrossRef Google Scholar

    [42] 臧绍先, 宁杰远.菲律宾海板块与欧亚板块的相互作用及其对东亚构造运动的影响[J].地球物理学报, 2002, 45(2): 188-197. doi: 10.3321/j.issn:0001-5733.2002.02.005

    CrossRef Google Scholar

    ZANG Shaoxian, NING Jieyuan. Interaction between Philippine Sea Plate (PH) and Eurasia (EU) Plate and its influence on the Movement Eastern Asia[J]. Chinese Journal of Geophysics, 2002, 45(2): 188-197. doi: 10.3321/j.issn:0001-5733.2002.02.005

    CrossRef Google Scholar

    [43] 赵金海, 唐建, 薄玉玲.关于东海新生代盆地油气勘探的若干见解[J].中国海上油气, 2003, 17(1): 14-19.

    Google Scholar

    ZHAO Jinhai, TANG Jian, BO Yuling. Some opinions on petroleum exploration in Cenozoic East China Sea Basin[J]. China Offshore Oil and Gas, 2003, 17(1): 14-19.

    Google Scholar

    [44] 丁巍伟, 杨树锋, 陈汉林, 等.台湾岛以南海域新近纪的弧-陆碰撞造山作用[J].地质科学, 2006, 41(2): 195-201. doi: 10.3321/j.issn:0563-5020.2006.02.002

    CrossRef Google Scholar

    DING Weiwei, YANG Shufeng, CHEN Hanlin, et al. Arc-continent collision orogeny in offshore Taiwan during Neogene[J]. Chinese Journal of Geology, 2006, 41(2): 195-201. doi: 10.3321/j.issn:0563-5020.2006.02.002

    CrossRef Google Scholar

    [45] 王鹏, 赵志刚, 张功成, 等.东海盆地钓鱼岛隆褶带构造演化分析及对西湖凹陷油气勘探的意义[J].地质科技情报, 2011, 30(4): 65-72. doi: 10.3969/j.issn.1000-7849.2011.04.009

    CrossRef Google Scholar

    WANG Peng, ZHAO Zhigang, ZHANG Gongcheng, et al. Analysis on structural evolution in Diaoyu Islands Folded-Uplift Belt, East China Sea Basin and its impact on the hydrocarbon exploration in Xihu Sag[J]. Geological Science and Technology Information, 2011, 30(4): 65-72. doi: 10.3969/j.issn.1000-7849.2011.04.009

    CrossRef Google Scholar

    [46] 徐杰, 周本刚, 计凤桔, 等.中国东部海域及其邻区现代构造应力场研究[J].地学前缘, 2012, 19(4): 1-7.

    Google Scholar

    XU Jie, ZHOU Bengang, JI Fengju, et al. The recent tectonic stress field of offshore of China mainland and adjacent areas[J]. Earth Science Frontiers, 2012, 19(4): 1-7.

    Google Scholar

    [47] 郭真, 刘池洋, 田建锋.东海陆架盆地龙井运动构造影响及其发育背景[J].西北大学学报:自然科学版, 2015, 45(5): 801-810. doi: 10.16152/j.cnki.xdxbzr.2015-05-022

    CrossRef Google Scholar

    GUO Zhen, LIU Chiyang, TIAN Jianfeng. Longjing Movement structural effect and developmental background in East China Sea Basin[J]. Journal of Northwest University: Natural Science Edition, 2015, 45(5): 801-810. doi: 10.16152/j.cnki.xdxbzr.2015-05-022

    CrossRef Google Scholar

    [48] Zhou Z Y, Jiang J Y, Liao Z T, et al. Basin inversion in Xihu Depression, East China Sea[J]. Gondwana Research, 2001, 4(4): 844-845. doi: 10.1016/S1342-937X(05)70627-4

    CrossRef Google Scholar

    [49] 许浚远, 张凌云.西北太平洋边缘新生代盆地成因(下):后裂谷期构造演化[J].石油与天然气地质, 2000, 21(4): 287-292. doi: 10.3321/j.issn:0253-9985.2000.04.001

    CrossRef Google Scholar

    XU Junyuan, ZHANG Lingyun. Genesis of Cenozoic basins in northwest Pacific Ocean Margin (3): tectonic evolution of post rifting period[J]. Oil & Gas Geology, 2000, 21(4): 287-292. doi: 10.3321/j.issn:0253-9985.2000.04.001

    CrossRef Google Scholar

    [50] 吴根耀, 矢野孝雄.东亚大陆边缘的构造格架及其中-新生代演化[J].地质通报, 2007, 26(7): 787-800. doi: 10.3969/j.issn.1671-2552.2007.07.002

    CrossRef Google Scholar

    WU Genyao, YANO T. Tectonic framework and Meso-Cenozoic evolution of the East Asian continental margin[J]. Geological Bulletin of China, 2007, 26(7): 787-800. doi: 10.3969/j.issn.1671-2552.2007.07.002

    CrossRef Google Scholar

    [51] 李三忠, 余珊, 赵淑娟, 等.东亚大陆边缘的板块重建与构造转换[J].海洋地质与第四纪地质, 2013, 33(3): 65-94.

    Google Scholar

    LI Sanzhong, YU Shan, ZHAO Shujuan, et al. Tectonic transition and plate reconstructions of the East Asian Continental Margin[J]. Marine Geology and Quaternary Geology, 2013, 33(3): 65-94.

    Google Scholar

    [52] 温志新, 童晓光, 张光亚, 等.全球板块构造演化过程中五大成盆期原型盆地的形成、改造及叠加过程[J].地学前缘, 2014, 21(3): 26-37. doi: 10.13745/j.esf.2014.03.004

    CrossRef Google Scholar

    WEN Zhixin, TONG Xiaoguang, ZHANG Guangya, et al. The transformation and stacking process of prototype basin in five global plate tectonic evolution stages[J]. Earth Science Frontiers, 2014, 21(3): 26-37. doi: 10.13745/j.esf.2014.03.004

    CrossRef Google Scholar

    [53] Chester F M, Chester J S. Stress and deformation along wavy frictional faults[J]. Journal of Geophysical Research, 2000, 105(B10): 23421-23430. doi: 10.1029/2000JB900241

    CrossRef Google Scholar

    [54] Li Q S, Liu M. Geometrical impact of the San Andreas Fault on stress and seismicity in California[J]. Geophysical Research Letters, 2006, 33(8): L08302. doi: 10.1029/2005gl025661

    CrossRef Google Scholar

    [55] 朱守彪, 张培震. 2008年汶川M S8.0地震发生过程的动力学机制研究[J].地球物理学报, 2009, 52(2): 418-427.

    Google Scholar

    ZHU Shoubiao, ZHANG Peizhen. A study on the dynamical mechanisms of the Wenchuan M S8.0 earthquake, 2008[J]. Chinese Journal of Geophysics, 2009, 52(2): 418-427.

    Google Scholar

    [56] 戴黎明, 李三忠, 陶春辉, 等.俯冲带耦合作用对苏门答腊地区应变场影响的三维数值模拟[J].地球物理学报, 2010, 53(8): 1837-1851. doi: 10.3969/j.issn.0001-5733.2010.08.009

    CrossRef Google Scholar

    DAI Liming, LI Sanzhong, TAO Chunhui, et al. 3D numerical modeling of strain field in Sumatra area influenced by the coupling effect of subduction zone[J]. Chinese Journal of Geophysics, 2010, 53(8): 1837-1851. doi: 10.3969/j.issn.0001-5733.2010.08.009

    CrossRef Google Scholar

    [57] Marshall S T, Cooke M L, Owen S E. Effects of nonplanar fault topology and mechanical interaction on fault-slip distributions in the Ventura Basin, California[J]. Bulletin of the Seismological Society of America, 2008, 98(3): 1113-1127. doi: 10.1785/0120070159

    CrossRef Google Scholar

    [58] He J K, Chéry J. Slip rates of the Altyn Tagh, Kunlun and Karakorum faults (Tibet) from 3D mechanical modeling[J]. Earth and Planetary Science Letters, 2008, 274(1-2): 50-58. doi: 10.1016/j.epsl.2008.06.049

    CrossRef Google Scholar

    [59] Wang J, Ye Z R, He J K. Three-dimensional mechanical modeling of large-scale crustal deformation in China constrained by the GPS velocity field[J]. Tectonophysics, 2008, 446(1-4): 51-60. doi: 10.1016/j.tecto.2007.11.006

    CrossRef Google Scholar

    [60] 朱守彪, 邢会林, 谢富仁, 等.地震发生过程的有限单元法模拟-以苏门答腊俯冲带上的大地震为例[J].地球物理学报, 2008, 51(2): 460-468. doi: 10.3321/j.issn:0001-5733.2008.02.018

    CrossRef Google Scholar

    ZHU Shoubiao, XING Huilin, XIE Furen, et al. Simulation of earthquake processes by finite element method: the case of megathrust earthquakes on the Sumatra subduction zone[J]. Chinese Journal of Geophysics, 2008, 51(2): 460-468. doi: 10.3321/j.issn:0001-5733.2008.02.018

    CrossRef Google Scholar

    [61] Zhu S B, Zhang P Z. Numeric modeling of the strain accumulation and release of the 2008 Wenchuan, Sichuan, China, Earthquake[J]. Bulletin of the Seismological Society of America, 2010, 100(5B): 2825-2839. doi: 10.1785/0120090351

    CrossRef Google Scholar

    [62] Zhu S B, Zhang P Z. FEM simulation of interseismic and coseismic deformation associated with the 2008 Wenchuan Earthquake[J]. Tectonophysics, 2013, 584: 64-80. doi: 10.1016/j.tecto.2012.06.024

    CrossRef Google Scholar

    [63] 戴黎明, 李三忠, 陶春辉, 等.印度板块挤压驱动龙门山断裂带活动的三维数值模型[J].地球物理学进展, 2011, 26(1): 41-51. doi: 10.3969/j.issn.1004-2903.2011.01.004

    CrossRef Google Scholar

    DAI Liming, LI Sanzhong, TAO Chunhui, et al. Three-dimensional numberical modeling of activity of the Longmenshan fault zone driven by the India Plate[J]. Progress in Geophysics, 2011, 26(1): 41-51. doi: 10.3969/j.issn.1004-2903.2011.01.004

    CrossRef Google Scholar

    [64] 戴黎明, 李三忠, 楼达, 等.渤海湾盆地黄骅坳陷应力场的三维数值模拟分析[J].地球物理学报, 2013, 56(3): 929-942. doi: 10.6038/cjg20130321

    CrossRef Google Scholar

    DAI Liming, LI Sanzhong, LOU Da, et al. Numerical modeling on the stress field in the Huanghua depression, Bohai Bay basin[J]. Chinese Journal of Geophysics, 2013, 56(3): 929-942. doi: 10.6038/cjg20130321

    CrossRef Google Scholar

    [65] Mount V S, Suppe J. State of stress near the San Andreas fault: implications for wrench tectonics[J]. Geology, 1987, 15(12): 1143-1146. doi: 10.1130/0091-7613(1987)15<1143:SOSNTS>2.0.CO;2

    CrossRef Google Scholar

    [66] Kong X, Bird P. Neotectonics of Asia: Thin-shell finite-element models with faults[M]//Yin A, Harrison T M. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 1996: 18-34.

    Google Scholar

    [67] Wang J, Ye Z R. Dynamic modeling for crustal deformation in China: comparisons between the theoretical prediction and the recent GPS data[J]. Physics of the Earth and Planetary Interiors, 2006, 155(3-4): 201-207. doi: 10.1016/j.pepi.2005.11.003

    CrossRef Google Scholar

    [68] 朱守彪, 张培震, 石耀霖.华北盆地强震孕育的动力学机制研究[J].地球物理学报, 2010, 53(6): 1409-1417. doi: 10.3969/j.issn.0001-5733.2010.06.019

    CrossRef Google Scholar

    ZHU Shoubiao, ZHANG Peizhen, SHI Yaolin. A study on the mechanisms of strong earthquake occurrence in the North China Basin[J]. Chinese Journal of Geophysics, 2010, 53(6): 1409-1417. doi: 10.3969/j.issn.0001-5733.2010.06.019

    CrossRef Google Scholar

    [69] 戴黎明, 李三忠, 刘泽, 等.车镇凹陷大1断层对区域油气成藏控制作用的三维数值模拟[J].大地构造与成矿学, 2016, 40(1): 47-57. doi: 10.16539/j.ddgzyckx.2016.01.005

    CrossRef Google Scholar

    DAI Liming, LI Sanzhong, LIU Ze, et al. 3D numerical modeling of oil and gas accumulation process controlled by the Da 1 Fault, Chezhen Depression[J]. Geotectonica et Metallogenia, 2016, 40(1): 47-57. doi: 10.16539/j.ddgzyckx.2016.01.005

    CrossRef Google Scholar

    [70] Karato S I, Wu P. Rheology of the upper mantle: a synthesis[J]. Science, 1993, 260(5109): 771-778. doi: 10.1126/science.260.5109.771

    CrossRef Google Scholar

    [71] Freed A M, Bürgmann R. Evidence of power-law flow in the Mojave desert mantle[J]. Nature, 2004, 430(6999): 548-551. doi: 10.1038/nature02784

    CrossRef Google Scholar

    [72] Franco D, Govers R, Wortel R. Numerical comparison of different convergent plate contacts: subduction channel and subduction fault[J]. Geophysical Journal International, 2007, 171(1): 435-450. doi: 10.1111/j.1365-246X.2006.03498.x

    CrossRef Google Scholar

    [73] 张建培, 张田, 唐贤君.东海陆架盆地类型及其形成的动力学环境[J].地质学报, 2014, 88(11): 2033-2043. doi: 10.3969/j.issn.0001-5717.2014.11.002

    CrossRef Google Scholar

    ZHANG Jianpei, ZHANG Tian, TANG Xianjun. Basin type and dynamic environment in the East China Sea Shelf Basin[J]. Acta Geologica Sinica, 2014, 88(11): 2033-2043. doi: 10.3969/j.issn.0001-5717.2014.11.002

    CrossRef Google Scholar

    [74] Suo Y H, Li S Z, Zhao S J, et al. Continental margin basins in East Asia: tectonic implications of the Meso-Cenozoic East China Sea pull-apart basins[J]. Geological Journal, 2015, 50(2): 139-156. doi: 10.1002/gj.2535

    CrossRef Google Scholar

    [75] Jarosinski M, Beekman F, Matenco L, et al. Mechanics of basin inversion: finite element modelling of the Pannonian Basin System[J]. Tectonophysics, 2011, 502(1-2): 121-145. doi: 10.1016/j.tecto.2009.09.015

    CrossRef Google Scholar

    [76] 于来刚.东营凹陷油气运移数值模拟研究[D].中国石油大学硕士学位论文, 2007.

    Google Scholar

    YU Laigang. The FEM simulating of hydrocarbon migration in Dongying Depression[D]. Master's Thesis of China University of Petroleum, 2007.

    Google Scholar

    [77] 宋小勇, 储呈林, 芮志峰.东海盆地西湖凹陷构造样式及其演化[J].高校地质学报, 2010, 16(1): 86-93. doi: 10.3969/j.issn.1006-7493.2010.01.013

    CrossRef Google Scholar

    SONG Xiaoyong, CHU Chenglin, RUI Zhifeng. Structural framework and evolution of Xihu Sag in East China sea basin[J]. Geological Journal of China Universities, 2010, 16(1): 86-93. doi: 10.3969/j.issn.1006-7493.2010.01.013

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(2138) PDF downloads(68) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint