2025 Vol. 8, No. 1
Article Contents

Tao Ding, Zhen Nie, Qian Wu, Jiang-jiang Yu, Ling-zhong Bu, Yun-sheng Wang, En-yuan Xing, Mian-ping Zheng, Yu-bin Li, 2025. Optimization of lithium extraction solar pond in Zabuye Salt Lake: Theoretical calculation combined with field experiments, China Geology, 8, 26-38. doi: 10.31035/cg2024085
Citation: Tao Ding, Zhen Nie, Qian Wu, Jiang-jiang Yu, Ling-zhong Bu, Yun-sheng Wang, En-yuan Xing, Mian-ping Zheng, Yu-bin Li, 2025. Optimization of lithium extraction solar pond in Zabuye Salt Lake: Theoretical calculation combined with field experiments, China Geology, 8, 26-38. doi: 10.31035/cg2024085

Optimization of lithium extraction solar pond in Zabuye Salt Lake: Theoretical calculation combined with field experiments

More Information
  • This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li2CO3. Using the response surface methodology in Design-Expert 10.0.3, the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li2CO3 and their pairwise interactions. Computational Fluid Dynamics (CFD) simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization. The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ (Upper Convective Zone) thickness of 53.63 cm, an LCZ (Lower Convective Zone) direct heating temperature of 57.39°C, a CO32− concentration of 32.21 g/L, and an added soda ash concentration of 6.52 g/L. Following this optimized pathway, the Li2CO3 precipitation increased by 7.34% compared to the initial solar pond process, with a 33.33% improvement in lithium carbonate crystallization rate. This study demonstrates the feasibility of optimizing lithium extraction solar pond structures, offering a new approach for constructing such ponds in salt lakes. It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines.

  • 加载中
  • Abdullah AA, Fallatah HM, Lindsay KA, Oreijah MM. 2017. Measurements of the performance of the experimental salt-gradient solar pond at Makkah one year after commissioning. Solar energy, 150, 212–219. doi: 10.1016/j.solener.2017.04.040.

    CrossRef Google Scholar

    Alcaraz A, Montalà M, Cortina JL, Akbarzadeh A, Aladjem C, Farran A, Valderrama C. 2018. Design construction and operation of the first industrial salinity-gradient solar pond in Europe: An efficiency analysis perspective. Solar energy, 164, 316–326. doi: 10.1016/j.solener.2018.02.053.

    CrossRef Google Scholar

    Alcaraz A, Montala M, Valderrama C, Cortina JL, Akbarzadeh A, Farran A. 2018. Increasing the storage capacity of a solar pond by using solar thermal collectors: Heat extraction and heat supply processes using in-pond heat exchangers. Solar Energy, 171, 112–121. doi: 10.1016/j.solener.2018.06.061.

    CrossRef Google Scholar

    Bisht S, Dhindsa GS, Sehgal SS. 2020. Augmentation of diurnal and nocturnal distillate of solar still having wicks in the basin and integrated with solar pond. Materials Today Proceedings, 33(3), 1615–1619. doi: 10.1016/j.matpr.2020.05.732.

    CrossRef Google Scholar

    Bozkurt I, Deniz S, Karakilcik M, Dincer I. 2015. Performance assessment of a magnesium chloride saturated solar pond. Renewable Energy, 78, 35–41. doi: 10.1016/j.renene.2014.12.060.

    CrossRef Google Scholar

    Ding T, Zheng MP, Nie Z, Ma LC, Ye CY, Wu Q, Zhao YY, Yang DH, Wang K. 2022. Impact of regional climate change on the development of lithium resources in Zabuye Salt Lake, Tibet. Frontiers in Earth Science, 10, 865158. doi: 10.3389/feart.2022.865158.

    CrossRef Google Scholar

    Ding T, Zheng MP, Peng SP, Lin YH, Zhang XF, Li MM. 2023. Lithium extraction from salt lakes with different hydrochemical types in the Tibet Plateau. Geoscience Frontiers, 14(1), 101485. doi: 10.1016/j.gsf.2022.101485.

    CrossRef Google Scholar

    Ding T, Zheng MP, Peng SP, Nie Z, Lin YH, Wu Q. 2022. Recovery of lithium ions from salt lakes using nanofibers containing zeolite carriers. Frontiers in Energy Research, 10, 895681. doi: 10.3389/fenrg.2022.895681.

    CrossRef Google Scholar

    Kaushika ND. 1984. Solar Pond: A review. Energy Conversation and Management. 353–376. doi: 10.1016/0196-8904(84)90016-5.

    Google Scholar

    Li N, Wang Q, Liu JW. 2021 Experimental study on effect of nanoparticles on thermal performance of salt gradient solar pond. Thermal Science and Technology, 2021, 20(2), 122–127. (in Chinese). doi. 10.13738/j.issn.1671-8097.020106

    Google Scholar

    Nie Z, Bu LZ, Zheng MP, Huang WN. 2011. Experimental study of natural brine solar ponds in Tibet. Solar Energy, 85(7), 1537–1542. doi: 10.1016/j.solener.2011.04.011.

    CrossRef Google Scholar

    Nie Z, Wu Q, Ding T, Bu LZ. 2022. Research progress on industrialization technology of lithium extraction from salt lake brine in China. Inorganic Chemicals Industry, 54(10), 1–12.

    Google Scholar

    Rioyo J, Tuset S, Grau R. 2022. Lithium extraction from spodumene by the traditional sulfuric acid process: A review. Mineral Processing and Extractive Metallurgy Review, 43(1), 97–106. doi: 10.1080/08827508.2020.1798234.

    CrossRef Google Scholar

    Sayer AH, Al-Hussaini H, Campbell AN. 2018. New comprehensive investigation on the feasibility of the gel solar pond, and a comparison with the salinity gradient solar pond. Applied Thermal Engineering, 130, 672–683. doi: 10.1016/j.applthermaleng.2017.11.056.

    CrossRef Google Scholar

    Tahat MA, Kodah ZH, Probert SD, Tahaineh AI. 2000. Performance of a portable mini solar-pond. Applied energy, 66(4), 299–310. doi: 10.1016/S0306-2619(00)00021-0.

    CrossRef Google Scholar

    Tang LJ, Zheng MP, Liu JH. 2009. Crystallization experiment of carbonate salt lake brine in simulated solar pool. Acta Geologica Sinica, 30(2), 249–255(in Chinese).

    Google Scholar

    Wang J, Wang L, Xu H, Sheng L, He XM. 2024. Perception of fundamental science to boost lithium metal anodes toward practical application. Green Energy & Environment, 9(3), 454–472. doi: 10.1016/j.gee.2023.02.008.

    CrossRef Google Scholar

    Wu Q, Yu JJ, Bu LZ, Nie Z, Wang Y, Renchen N, He T, Zhang K, Zhang JT, He ZK. 2022. The application of an enhanced salinity-gradient solar pond with nucleation matrix in lithium extraction from Zabuye salt lake in Tibet. Solar Energy, 244, 104–114. doi: 10.1016/j.solener.2022.08.031.

    CrossRef Google Scholar

    Yu JJ, Zheng MP, Tang LJ. 2013. Comparison of lithium extraction from carbonate brine by laboratory simulation and solar pond. Advances in Chemical Industry, 32(6), 1248–1252(in Chinese).

    Google Scholar

    Zheng MP, Xing EY, Zhang XF, Li MM, Che D, Bu LZ, Han JH, Ye CY. 2023. Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits. China Geology, 6(4), 547–566. doi: 10.31035/cg2023061.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Tables(3)

Article Metrics

Article views(36) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint