2025 Vol. 8, No. 1
Article Contents

Dian-he Liu, Cheng-lin Liu, Chun-lian Wang, Xiao-can Yu, 2025. Distribution, characteristics, metallogenic processes and prospecting potential of terrestrial brine-type lithium deposits in the world and lithium demand situation, China Geology, 8, 1-25. doi: 10.31035/cg20230128
Citation: Dian-he Liu, Cheng-lin Liu, Chun-lian Wang, Xiao-can Yu, 2025. Distribution, characteristics, metallogenic processes and prospecting potential of terrestrial brine-type lithium deposits in the world and lithium demand situation, China Geology, 8, 1-25. doi: 10.31035/cg20230128

Distribution, characteristics, metallogenic processes and prospecting potential of terrestrial brine-type lithium deposits in the world and lithium demand situation

More Information
  • In response to the rise of the energy storage industries such as new energy vehicles and the wide application of lithium in various fields worldwide, the global demand for lithium resources has been in explosive growth. In order to further comprehensively understand the global supply and demand pattern, development and utilization status, genesis of ore deposits and other characteristics of lithium resources, based on the achievements of many researchers at home and abroad, this paper systematically summarized the lithium supply and demand situation, resource endowment, deposit classification and distribution, typical geological characteristics, metallogenic factors and metallogenic regularity of terrestrial brine-type lithium deposits which are the main types of development and utilization all over the world. The review shows that brine-type lithium resource and (or) reserves in the plateau salt lakes are huge and play an important role. In addition, the mineralization potential of the underground brine-type lithium deposit is broad worldwide. The potential resources of underground brines are enormous, and the geothermal spring water type is also worthy of attention. Brine lithium deposits are mainly controlled by the subduction and collision of regional plate tectonics, arid climate and provenance conditions. Strengthening of the scientific research on underground brines in the future is expected to provide another significant support for the global demand for lithium resources.

  • 加载中
  • Alekseeva LP, Alekseev SV. 2018. Geochemistry of ground ice, saline groundwater, and brines in the cryoartesian basins of the northeastern Siberian Platform. Russian Geology and Geophysics, 59(2), 144–156. doi: 10.1016/j.rgg.2018.01.012.

    CrossRef Google Scholar

    Alexeeva LP, Alekseev SV. 2018. Geochemistry of ground ice, saline groundwater, and brines in the cryoartesian basins of the northeastern Siberian Platform. Russian Geology and Geophysics, 59 (2), 144‒156.

    Google Scholar

    Alexeev SV, Alexeeva LP, Borisov VN, Shouakar-Stash O, Frape SK, Chabaux F, Kononov AM. 2007. Isotopic composition (H, O, Cl, Sr) of ground brines of the Siberian Platform. Russian Geology and Geophysics, 48(3), 225–236. doi: 10.1016/j.rgg.2007.02.007.

    CrossRef Google Scholar

    Alexeev SV, Alexeeva LP, Vakhromeev AG. 2020. Brines of the Siberian platform (Russia): Geochemistry and processing prospects. Applied Geochemistry, 117, 104588. doi: 10.1016/j.apgeochem.2020.104588.

    CrossRef Google Scholar

    Allmendinger RW, Jordan TE, Kay SM, Isacks BL. 1997. The evolution of the altiplano-puna plateau of the central Andes. Annual Review of Earth and Planetary Sciences, 25, 139–174. doi: 10.1146/annurev.earth.25.1.139.

    CrossRef Google Scholar

    Alonso RN, Bookhagen B, Carrapa B, Coutand I, Haschke M, Hilley GE, Schoenbohm L, Sobel ER, Strecker MR, Trauth MH, Villanueva A. 2006. Tectonics, climate, and landscape evolution of the southern central Andes: The Argentine puna plateau and adjacent regions between 22 and 30°S. The Andes. Frontiers in Earth Sciences. Springer Berlin Heidelberg, 265–283. doi: 10.1007/978-3-540-48684-8_12.

    Google Scholar

    Antonio Pio R, Ritz, Vanille R, Shyam N, Raymi C, Dimitrios K, Stefan W. 2022. Modelling injection induced seismicity in the Hengill geothermal field. EGU General Assembly Conference Abstracts, doi:10.5194/egusphere-egu22-10392.

    Google Scholar

    Araoka D, Kawahata H, Takagi T, Watanabe Y, Nishimura K, Nishio Y. 2014. Lithium and strontium isotopic systematics in playas in Nevada, USA: Constraints on the origin of lithium. Mineralium Deposita, 49, 371–379. doi: 10.1007/s00126-013-0495-y.

    CrossRef Google Scholar

    Baby P, Rochat P, Mascle G, Hérail G. 1997. Neogene shortening contribution to crustal thickening in the back arc of the Central Andes. Geology, 25(10), 883. doi: 10.1130/0091-7613(1997)025<0883:nsctct>2.3.CO;2.

    CrossRef Google Scholar

    Bai YM, Wang XL, Yang LC, Wang ZT, Ye CY. 2018. Hydrochemical characteristics of Duoxiu Lake and Yanhu Lake in northeastern hoh xil region, Qinghai. Journal of Salt Lake Research, 26(2), 27–33 (in Chinese with English abstract).

    Google Scholar

    Benson TR, Coble MA, Rytuba JJ, Mahood GA. 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nature Communications, 8(1), 270. doi: 10.1038/s41467-017-00234-y.

    CrossRef Google Scholar

    Birkle P, García BM, Milland Padrón CM. 2009. Origin and evolution of formation water at the jujo–tecominoacán oil reservoir, gulf of Mexico. part 1: Chemical evolution and water–rock interaction. Applied Geochemistry, 24(4), 543–554. doi: 10.1016/j.apgeochem.2008.12.009.

    CrossRef Google Scholar

    Bottomley DJ, Chan LH, Katz A, Starinsky A, Clark ID. 2003. Lithium isotope geochemistry and origin of Canadian shield brines. Ground Water, 41(6), 847–856. doi: 10.1111/j.1745-6584.2003.tb02426.x.

    CrossRef Google Scholar

    Bradley D, Munk L, Jochens H, Hynek S, Labay K. 2013. A preliminary deposit model for lithium brines. USGS professional paper, (1006), 1–6, doi: 10.3133/ofr20131006.

    CrossRef Google Scholar

    Butts D. 1975. Recovery of minerals from the Great Salt Lake. Abstracts with Programs -Geological Society of America, 7, 1016.

    Google Scholar

    Cao WH, Wu C. 2004. Brine Resources and Their Comprehnsive Utilization Technology. Beijing, Geology Press, 1‒316 (in Chinese).

    Google Scholar

    Chan LH, Edmond JM, Thompson G. 1993. A lithium isotope study of hot springs and metabasalts from Mid-Ocean Ridge Hydrothermal Systems. Journal of Geophysical Research: Solid Earth, 98(B6), 9653–9659. doi: 10.1029/92jb00840.

    CrossRef Google Scholar

    Chapman CR, Kwang JA, Wright AE. 1988. Oil and Gas Developments in Arkansas, North Louisiana, and East Texas in 1987, AAPG Bulletin, 72(10B), 41‒45, doi: 10.1306/703C9A37-1707-11D7-8645000102C1865D.

    Google Scholar

    Chen PJ. 2000. Paleoenvironmental changes during the Cretaceous in Eastern China. Developments in Palaeontology and Stratigraphy, 17, 81–90. doi: 10.1016/S0920-5446(00)80025-4.

    CrossRef Google Scholar

    Collins AG. 1976. Lithium abundance in oilfield waters: lithium resources and requirements by the year 2000. U.S. Geology Survey, 1005, 116‒123.

    Google Scholar

    Coffey DM, Munk LA, Ibarra DE, Butler KL, Boutt DF, Jenckes J. 2021. Lithium storage and release from lacustrine sediments: Implications for lithium enrichment and sustainability in continental brines. Geochemistry, Geophysics, Geosystems, 22(12), e2021GC009916. doi: 10.1029/2021GC009916.

    Google Scholar

    Cortecci G, Boschetti T, Mussi M, Lameli CH, Mucchino C, Barbieri M. 2005. New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile. Geochemical Journal, 39(6), 547–571. doi: 10.2343/geochemj.39.547.

    CrossRef Google Scholar

    Dai SZ, Fang ZX. 1994. Petroleum geological characteristics and exploration of salt Lake basin in Jianghan fault depression. Jianghan Petroleum Science and Technology, 4(2), 1–7 (in Chinese).

    Google Scholar

    Davis JR, Friedman I, Gleason JD. 1986. Origin of the lithium-rich brine, Clayton Valley, Nevada: U. S. Geological Survey Bulletin, 1622, 131–138.

    Google Scholar

    Dong T, Tan HB, Zhang WJ, Zhang YF. 2015. Geochemical distribution of lithium in saline lakes in Tibet. Journal of Hohai University (Natural Sciences), 43(3), 230–235 (in Chinese with English abstract). doi: 10.3876/j.issn.1000-1980.2015.03.007.

    CrossRef Google Scholar

    Ejeian M, Grant A, Shon HK, Razmjou A, 2021. Is Lithium brine water? Desalination, 518 (2021) 115169, 1–6. doi:10.1016/j.desal.2021.115169.

    Google Scholar

    Fan QS, Lowenstein TK, Wei HC, Yuan Q, Qin ZJ, Shan FS, Ma HZ. 2018. Sr isotope and major ion compositional evidence for formation of Qarhan Salt Lake, Western China. Chemical Geology, 497, 128–145. doi: 10.1016/j.chemgeo.2018.09.001.

    CrossRef Google Scholar

    Fei GC, Yang Z, Yang JY, Luo W, Deng Y, Lai YT, Tao XX, Zheng L, Tang WC, Li J. 2020. New precise timing constraint for the Dangba granitic pegmatite type rare-metal deposit, Markam, Sichuan Province, evidence from cassiterite LA-MC-ICP-MS U-Pb dating. Acta Geologica Sinica, 94(3), 836–849 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2020137.

    CrossRef Google Scholar

    Fu LL. 2017. Study on The Source of Lithium in The Cretaceous Lithium Rich Brine Deposit in Jitai Basin. Shijiazhuang, Hebei GEO University, Master thesis, 1–63 (in Chinese with English abstract).

    Google Scholar

    Gan YQ, Wang YX, Duan YH, Deng YM, Guo XX, Ding XF. 2014. Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China. Journal of Geochemical Exploration, 138, 81–93. doi: 10.1016/j.gexplo.2013.12.013.

    CrossRef Google Scholar

    García MG, Borda LG, Godfrey LV, López Steinmetz RL, Losada-Calderon A. 2020. Characterization of lithium cycling in the Salar De Olaroz, Central Andes, using a geochemical and isotopic approach. Chemical Geology, 531, 119340. doi: 10.1016/j.chemgeo.2019.119340.

    CrossRef Google Scholar

    Garcia-Valles M, Alfonso P, Arancibia JRH, Martínez S, Parcerisa D. 2016. Mineralogical and thermal characterization of borate minerals from Rio Grande deposit, Uyuni (Bolivia). Journal of Thermal Analysis and Calorimetry, 125(2), 673–679. doi: 10.1007/s10973-015-5161-4.

    CrossRef Google Scholar

    Glanzman RK, McCarthy JH Jr, Rytuba JJ. 1978. Lithium in the McDermitt caldera, Nevada and Oregon. Energy, 3(3), 347–353. doi: 10.1016/0360-5442(78)90031-2.

    CrossRef Google Scholar

    Godfrey LV, Chan LH, Alonso RN, Lowenstein TK, McDonough WF, Houston J, Li J, Bobst A, Jordan TE. 2013. The role of climate in the accumulation of lithium-rich brine in the Central Andes. Applied Geochemistry, 38, 92–102. doi: 10.1016/j.apgeochem.2013.09.002.

    CrossRef Google Scholar

    Godfrey LV, Herrera C, Gamboa C, Mathur R. 2019. Chemical and isotopic evolution of groundwater through the active Andean arc of Northern Chile. Chemical Geology, 518, 32–44. doi: 10.1016/j.chemgeo.2019.04.011.

    CrossRef Google Scholar

    Gruber PW, Medina PA, Keoleian GA, Kesler SE, Everson MP, Wallington TJ. 2011. Global lithium availability. Journal of Industrial Ecology, 15(5), 760–775. doi: 10.1111/j.1530-9290.2011.00359.x.

    CrossRef Google Scholar

    Han FQ. 2001. The geochemistry of lithium in salt lake on Qinghai-Tibetan Plateau. Journal of Salt Lake Research, 9(1), 55–61 (in Chinese with English abstract).

    Google Scholar

    Han JB. 2018. Migration and Enrichment of Highly ConcenTrated Uranium in the Hydrologic System of Gasikule Salt Lake Basin. Wuhan, China University of Geosciences (Wuhan), Ph.D thesis, 1–116 (in Chinese with English abstract).

    Google Scholar

    He L, Han FQ, Han WX, Yan JP, Li BK, Han YZ, Nian XQ, Chen YJ, Han JL. 2015. Hydrochemical characteristics of lexiewudan lake in hoh xil, Qinghai. Journal of Salt Lake Research, 23(2), 28–33 (in Chinese with English abstract).

    Google Scholar

    He MY, Luo CG, Yang HJ, Kong FC, Li YL, Deng L, Zhang XY, Yang KY. 2020. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: Evidence from Li isotopes. Ore Geology Reviews, 117, 103277. doi: 10.1016/j.oregeorev.2019.103277.

    CrossRef Google Scholar

    Hofstra AH, Todorov TI, Mercer CN, Adams DT, Marsh EE. 2013. Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the western United States: Implications for the origin of lithium-rich brines. Economic Geology, 108(7), 1691–1701. doi: 10.2113/econgeo.108.7.1691.

    CrossRef Google Scholar

    Hofstrta AH, Todorov TI, Mercer CN, Adams DT, Marsh EE. 2013. Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the Western United States: Implications for the origin of lithium-rich brines: Economic Geology, 108, 1691‒1701.

    Google Scholar

    Huang H, Zhang SW, Zhang LY. 2015. Mineral characteristics and resources assessment of the deep brine in Qianjiang formation, Jianghan depression. Journal of Salt Lake Research, 23(2), 34–43 (in Chinese with English abstract).

    Google Scholar

    Huang JL, Zhao DP. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research: Solid Earth, 111(B9), B09305. doi: 10.1029/2005jb004066.

    CrossRef Google Scholar

    Huh Y, Chan LH, Zhang L, Edmond JM. 1998. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochimica et Cosmochimica Acta, 62(12), 2039–2051. doi: 10.1016/S0016-7037(98)00126-4.

    CrossRef Google Scholar

    Institute of Mineral Resources, Chinese Academy of Geological Sciences. 2011. Annual report of survey and evaluation of potassium-rich Tertiary brine in Jiangling Salt Basin. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing. (in Chinese).

    Google Scholar

    Institute of Mineral Resources, Chinese Academy of Geological Sciences. 2013. Evaluation report of potassium chloride resources in deep potassium-rich brine in middle and southern Jiangling Depression. Beijing. Institute of Mineral Resources, Chinese Academy of Geological Sciences (in Chinese).

    Google Scholar

    James RH, Palmer MR. 2000. The lithium isotope composition of international rock standards. Chemical Geology, 166(3–4), 319–326. doi: 10.1016/S0009-2541(99)00217-X.

    CrossRef Google Scholar

    Jordan TE, Muñoz N, Hein M, Lowenstein T, Godfrey L, Yu J. 2002. Active faulting and folding without topographic expression in an evaporite basin, Chile. Geological Society of America Bulletin, 114(11), 1406–1421. doi: 10.1130/0016-7606(2002)114<1406:afafwt>2.0.co;2.

    CrossRef Google Scholar

    Kampf SK, Tyler SW, Ortiz CA, Muñoz JF, Adkins PL. 2005. Evaporation and land surface energy budget at the Salar de Atacama, Northern Chile. Journal of Hydrology, 310(1–4), 236–252. doi: 10.1016/j.jhydrol.2005.01.005.

    CrossRef Google Scholar

    Kasemann SA, Meixner A, Erzinger J, Viramonte JG, Alonso RN, Franz G. 2004. Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina). Journal of South American Earth Sciences, 16(8), 685–697. doi: 10.1016/j.jsames.2003.12.004.

    CrossRef Google Scholar

    Kavanagh L, Keohane J, Garcia Cabellos G, Lloyd A, Cleary J. 2018. Global lithium sources–Industrial use and future in the electric vehicle industry: A review. Resources, 7(3), 57. doi: 10.3390/resources7030057.

    CrossRef Google Scholar

    Kay SM, Coira B, Viramonte J. 1994. Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna Plateau, central Andes. Journal of Geophysical Research: Solid Earth, 99(B12), 24323–24339. doi: 10.1029/94jb00896.

    CrossRef Google Scholar

    Kesler SE, Gruber PW, Medina PA, Keoleian GA, Everson MP, Wallington TJ. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews, 48, 55–69. doi: 10.1016/j.oregeorev.2012.05.006.

    CrossRef Google Scholar

    Kunasz IA. 1974. Lithium occurrence in the brines of Clayton Valley Esmeralda County, Nevada. Fourth Symposium on Salt 1, 57‒66.

    Google Scholar

    Li BT, Zhao YY, Ye R, Hao AB, Wang SJ, Jiao PC. 2012. Composition in solid potash deposits of qarhan salt lake, Qinghai Province and its significance. Geoscience, 26(1), 71–84 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2012.01.008.

    CrossRef Google Scholar

    Li HN, Wang CL, Liu CL, Yang SG, Xu HM, Hu HB, Yu XC, Liu JL. 2015. Paleotemperatures of early Eocene in the Jiangling Depression: Evidence from fluid inclusions in thenardite. Acta Geologica Sinica, 89(11), 2019–2027 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2015.11.012.

    CrossRef Google Scholar

    Li QK, Shan FS, Wang JP, Fan QS, Yuan Q, Qin ZJ. 2022. The variation of K contents in salt lakes on the Qinghai-Tibet Plateau and its influencing factors. Journal of Salt Lake Research, 30(2), 79–85 (in Chinese with English abstract). doi: 10.12119/j.yhyj.202202009.

    CrossRef Google Scholar

    Li RQ, Liu CL, Chen X, Chen YZ, Wang CL. 2013. Salting law by cooling deep potassium-bearing brine in Jiangling depression. Journal of Salt Lake Research, 21(1), 1–6 (in Chinese with English abstract).

    Google Scholar

    Li ZY, He MY, Li BK, Wen XQ, Zhou JD, Cheng YY, Zhang N, Deng L. 2024. Multi-isotopic composition (Li and B isotopes) and hydrochemistry characterization of the Lakko Co Li-rich salt lake in Tibet, China: Origin and hydrological processes. Journal of Hydrology, 630, 130714. doi: 10.1016/j.jhydrol.2024.130714.

    CrossRef Google Scholar

    Lian YQ, Guan HZ. 1994. The discovery and significance of boron deposit in Mami Salt Lake, Xizang Province. Geology of Tibet, 2(12), 170–178 (in Chinese with English abstract).

    Google Scholar

    Ling Y, Zheng MP, Sun Q, Dai XQ. 2017. Last deglacial climatic variability in Tibetan Plateau as inferred from n-alkanes in a sediment core from Lake Zabuye. Quaternary International, 454, 15–24. doi: 10.1016/j.quaint.2017.08.030.

    CrossRef Google Scholar

    Liu CL. 2013. Characteristics and formation of potash deposits in continental rift basins: A review. Acta Geoscientica Sinica, 34(5), 515–527 (in Chinese with English abstract). doi: 10.3975/cagsb.2013.05.02.

    CrossRef Google Scholar

    Liu CL, Wang CL, Xu HM, Liu BK, Shen LJ, Wang LC, Zhao YJ. 2013. Research progress of potassium salt minerals in Paleogene evaporite in Jiangling Depression. Mineral Deposits, 32(1), 221–222 (in Chinese). doi: 10.16111/j.0258-7106.2013.01.017.

    CrossRef Google Scholar

    Liu CL, Yu XC, Yuan XY, Li RQ, Yao FJ, Shen LJ, Li Q, Zhao YY. 2021. Characteristics, distribution regularity and formation model of brine-type Li deposits in salt lakes in the world. Acta Geologica Sinica, 95(7), 2009–2029 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021230.

    CrossRef Google Scholar

    Liu CL, Yu XC, Zhao YJ, Wang JY, Wang LC, Xu HM, Li J, Wang CL. 2016. A tentative discussion on regional metallogenic background and mineralization mechanism of subterranean brines rich in potassium and lithium in South China Block. Mineral Deposits, 35(6), 1119–1143 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2016.06.001.

    CrossRef Google Scholar

    Liu LJ, Wang DH, Liu XF, Li JK, Dai HZ, Yan WD. 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine. Geology in China, 44(2), 263–278 (in Chinese with English abstract). doi: 10.12029/gc20170204.

    CrossRef Google Scholar

    Liu Q, Chen YH, Li YC, Lan QC, Yuan HR, Yan DL. 1987. Middle and Cenozoic terrigenous clastic chemical rock type salt deposits in China. Beijing: Science and Technology Press.

    Google Scholar

    Liu XF, Zheng MP, Qi W. 2007. Sources of ore-forming materials of the superlarge B and Li deposit in Zabuye salt lake, Tibet, China. Acta Geologica Sinica, 81(12), 1709–1715 (in Chinese with English abstract).

    Google Scholar

    Liu YH, Deng TL. 2006. Progresses on the Process and Technique of Lithium Recovery from Salt Lake Brines Around the World, World Sci-tech R and D, 28(5), 69‒75 (in Chinese with English abstract), doi:10.1016/S0379-4172(06)60108-X.

    Google Scholar

    López Steinmetz RL, Salvi S. 2021. Brine grades in Andean salars: When basin size matters A review of the lithium triangle. Earth-Science Reviews, 217, 103615. doi: 10.1016/j.earscirev.2021.103615.

    CrossRef Google Scholar

    López Steinmetz RL, Salvi S, García MG, Peralta Arnold Y, Béziat D, Franco G, Constantini O, Córdoba FE, Caffe PJ. 2018. Northern Puna Plateau-scale survey of Li brine-type deposits in the Andes of NW Argentina. Journal of Geochemical Exploration, 190, 26–38. doi: 10.1016/j.gexplo.2018.02.013.

    CrossRef Google Scholar

    López Steinmetz RL, Salvi S, Sarchi C, Santamans C, López Steinmetz LC. 2020. Lithium and brine geochemistry in the salars of the southern puna, Andean Plateau of Argentina. Economic Geology, 115(5), 1079–1096. doi: 10.5382/econgeo.4754.

    CrossRef Google Scholar

    Lowenstein TK, Dolginko LAC, García-Veigas J. 2016. Influence of magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake, California. Geological Society of America Bulletin, 128(9-10), 1555–1568. doi: 10.1130/b31398.1.

    CrossRef Google Scholar

    Lowenstein TK, Jagniecki EA, Carroll AR, Smith ME, Renaut RW, Owen RB. 2017. The green river salt mystery: What was the source of the hyperalkaline lake waters? Earth-Science Reviews, 173, 295–306. doi: 10.1016/j.earscirev.2017.07.014.

    Google Scholar

    Ludington S, Moring BC, Miller RJ, Stone, PA, Bookstrom AA, Bedford DR, Evans JG, Haxel GA, Nutt CJ, Flyn KS, Hopkins MJ. 2007. Preliminary integrated geologic map data-bases for the United States. Western States: California, Nevada, Arizona, Washington, Oregon, Idaho, and Utah. U. S. Geological Survey, http://pubs.usgs.gov/of/2005/1305.

    Google Scholar

    Ma LC, Huang H, Zhang LY, Liu CL, Sun MG, Niu L. 2015. Characteristics of Paleogene deep potassium-rich brines in the Qianjiang depression, Hubei Province. Acta Geologica Sinica, 89(11), 2114–2121 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2015.11.022.

    CrossRef Google Scholar

    McQuarrie N. 2002. The kinematic history of the central Andean fold-thrust belt, Bolivia: Implications for building a high plateau. Geological Society of America Bulletin, 114(8), 950–963. doi: 10.1130/0016-7606(2002)114<0950:tkhotc>2.0.CO;2.

    CrossRef Google Scholar

    Misra S, Froelich PN. 2012. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering. Science, 335(6070), 818–823. doi: 10.1126/science.1214697.

    CrossRef Google Scholar

    Mohr SH, Mudd GM, Giurco D. 2012. Lithium resources and production: Critical assessment and global projections. Minerals, 2(1), 65–84. doi: 10.3390/min2010065.

    CrossRef Google Scholar

    Morgan LA, Shanks WCP, Pierce KL, Iverson N, Schiller CM, Brown SR, Zahajska P, Cartier R, Cash RW, Best JL, Whitlock C, Fritz S, Benzel W, Lowers H, Lovalvo DA, Licciardi JM. 2023. The dynamic floor of Yellowstone Lake, Wyoming, USA: The last 14 k. y. of hydrothermal explosions, venting, doming, and faulting. GSA Bulletin, 135(3–4), 547–574. doi: 10.1130/b36190.1.

    Google Scholar

    Mou BL. 1999. Geochemistry of Element. Beijing, Peking University Press, 149–152 (in Chinese with English abstract).

    Google Scholar

    Munk LA, Chamberlain CP. 2011. Final Technical Report: G10AP00056 - Lithium Brine Resources: A Predictive Exploration Model. U. S. Geological Survey.

    Google Scholar

    Munk LA, Hynek SA, Bradley DC, Boutt D, Labay K, Jochens H. 2016. Lithium brines: A global perspective. Rare Earth and Critical Elements in Ore Deposits: Society of Economic Geologists. doi: 10.5382/rev.18.14.

    Google Scholar

    Nancy EL, Jennifer SH, Avner V. 2016. Brine spills associated with unconventional oil development in North Dakota, Environmental Science & Technology, 50(10), 5389‒5397.

    Google Scholar

    Nie Z, Bu LZ, Zheng MP, Zhang YS. 2010. Phase chemistry study on brine from the zabuye carbonate-type salt lake in Tibet. Acta Geologica Sinica, 84(4), 587–592 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2010.04.015.

    CrossRef Google Scholar

    Pan YD, Liu CL, Xu HM. 2011. Characteristics and formation of potassium-bearing brine in the deeper strata in depression in Hubei Jiangling province. Geology of Chemical Minerals, 33(2), 65–72 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-5296.2011.02.001.

    CrossRef Google Scholar

    Prather BE, Goldstein RH, Kopaska-Merkel DC, Heydari E, Gill K, Minzoni M. 2023. Dolomitization of reservoir rocks in the smackover formation, southeastern gulf coast, U. S. A. Earth-Science Reviews, 244, 104512. doi: 10.1016/j.earscirev.2023.104512.

    CrossRef Google Scholar

    Price JG, Lechler PJ, Lear MB, Giles TF. 2000. Possible volcanic sources of lithium in brines in Clayton Valley, Nevada: Geology and Ore Deposits 2000, 241‒248

    Google Scholar

    Ren JS, Chen TY, Niu BG, Liu ZG, Liu FR. 1990. Tectonic evolution and mineralization of continental lithosphere in eastern China. Beijing, Science Press, 205 (in Chinese with English abstract).

    Google Scholar

    Ren JS, Jiang CF, Zhang ZK, Qin DH. 1980. Geotectonics and evolution in China. Beijing, Science Press, 124 (in Chinese with English abstract).

    Google Scholar

    Risacher F, Fritz B. 1991. Quaternary geochemical evolution of the salars of Uyuni and Coipasa, central altiplano, Bolivia. Chemical Geology, 90(3–4), 211–231. doi: 10.1016/0009-2541(91)90101-V.

    CrossRef Google Scholar

    Ruff SW, Farmer JD. 2016. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nature Communications, 7, 13554. doi: 10.1038/ncomms13554.

    CrossRef Google Scholar

    Schulz KJ, Deyoung JH, Seal RR, Bradley DC. 2017. Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply. U. S. Geological Survey Professional Paper, 1802, K1–K21, doi: 10.3133/pp1802.

    CrossRef Google Scholar

    Seggiaro RE. 2013. Hoja geológica 2366-III: Susques, 1:250,000. Servicio Geológico Minero Argentino, Buenos Aires.

    Google Scholar

    Shen J, Dai BL. 2009. Status quo of salt lake brine lithium resources and prospect of its exploitation and application. Industrial Minerals & Processing, 38(4), 1–4,7 (in Chinese with English abstract). doi: 10.16283/j.cnki.hgkwyjg.2009.04.004.

    CrossRef Google Scholar

    Shen JJ, Chen B, Wang CL, Chang JJ, Zhou XF, Guan XQ, Zhao ZP. 2015. Sedimentary characteristics and control factors of gypsum-salt rocks in the Paleogene Xingouzui Formation in Jiangling Depression, Jianghan Basin. Journal of Palaeogeography (Chinese Edition), 17(2), 265–274 (in Chinese). doi: 10.7605/gdlxb.2015.02.022.

    CrossRef Google Scholar

    Shen LJ, Liu CL, Xu HM, Wang CL, Wang LC, Liu BK, Zhang LB. 2014. Paleocene mineral assemblage characteristics of Jiangling Depression and their significance for potash formation. Mineral Deposits, 33(5), 1020–1030 (in Chinese). doi: 10.3969/j.issn.0258-7106.2014.05.011.

    CrossRef Google Scholar

    Shi LJ, Wang M. 2019. Hydrochemistry and behavior of K, Li and B in summer evaporation of Yiliping salt lake brine in Qaidam Basin. Journal of Lake Sciences, 31(2), 590–608 (in Chinese with English abstract). doi: 10.18307/2019.0226.

    CrossRef Google Scholar

    Shu LS. 2012. An analysis of principal features of tectonic evolution in South China Block. Geological Bulletin of China, 31(7), 1035–1053 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.07.003.

    CrossRef Google Scholar

    Smith GI, Barczak VJ, Moulton GF, Liddicoat JC. 1983. Core KM-3, a surface-to-bedrock record of late Cenozoic sedimentation in Searles Valley, California. Geologocal Survey Professional Paper, 1256.

    Google Scholar

    Song PS, Xiang RJ. 2014. Utilization and exploitation of lithium resources in salt lakes and some suggestions concerning development of Li industries in China. Mineral Deposits, 33(5), 977–992 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2014.05.007.

    CrossRef Google Scholar

    Sun X, Ouyang MG, Hao H. 2022. Surging lithium price will not impede the electric vehicle boom. Joule, 6(8), 1738–1742. doi: 10.1016/j.joule.2022.06.028.

    CrossRef Google Scholar

    Symcox C, Philp RP. 2023. Geochemical characteristics of oils from the sooner trend anadarko basin, Canadian, and kingfisher counties and south-central Oklahoma oil province plays, anadarko basin, Oklahoma. AAPG Bulletin, 107(4), 593–627. doi: 10.1306/10242222016.

    CrossRef Google Scholar

    Tan HB, Lu SC, Ta WQ, Rao WB, Guo HY. 2020. Water resource and mineral source significances of Nalenggele River Catchment in Qaidam Basin, Journal of Hohai University (Natural Sciences), 48(5), 392‒397 (in Chinese with English abstract), doi: 10.3876/j.issn.1000-1980.2020.05.002.

    Google Scholar

    Tan HB, Wen XW, Rao WB, Bradd J, Huang JZ. 2016. Temporal variation of stable isotopes in a precipitation–groundwater system: Implications for determining the mechanism of groundwater recharge in high mountain–hills of the Loess Plateau, China. Hydrological Processes, 30(10), 1491–1505. doi: 10.1002/hyp.10729.

    CrossRef Google Scholar

    Teng FZ, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S. 2004. Lithium isotopic composition and concentration of the upper continental crust. Geochimica et Cosmochimica Acta, 68(20), 4167–4178. doi: 10.1016/j.gca.2004.03.031.

    CrossRef Google Scholar

    Thompson JM, Fournier RO. 1988. Chemistry and geothermometry of brine produced from the Salton Sea scientific drill hole, i[LinkOut]mperial valley, California. Journal of Geophysical Research: Solid Earth, 93(B11), 13165–13173. doi: 10.1029/jb093ib11p13165.

    CrossRef Google Scholar

    Tomascak PB. 2004. Developments in the understanding and application of lithium isotopes in the Earth and planetary sciences. Reviews in Mineralogy and Geochemistry, 55(1), 153–195. doi: 10.2138/gsrmg.55.1.153.

    CrossRef Google Scholar

    Tomascak PB, Magna T, Dohmen R. 2016. Advances in Lithium Isotope Geochemistry. Springer International Publishing. doi: 10.1007/978-3-319-01430-2.

    Google Scholar

    Tong GB, Jia XM, Zheng MP, Yuan HR, Liu JY, Wang WM. 2002. Palynological evidence of middle-late Eocene climatic cycles in Jianghan Basin. Acta Geosicientia Sinica, 23(2), 159–164 (in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2002.02.011.

    CrossRef Google Scholar

    U. S. Geological Survey. 2019, Mineral commodity summaries 2019: U. S. Geological Survey, doi: 10.3133/70202434.

    Google Scholar

    U. S. Geological Survey. 2022. Mineral Commodity Summaries 2022: U. S. Geological Survey, doi:10.3133/mcs2022.

    Google Scholar

    U. S. Geological Survey, 2023, Mineral commodity summaries 2023: U. S. Geological Survey, 210 p, doi:10.3133/mcs2023.

    Google Scholar

    Vakhromeev АG. 2014. Deposits of industrial multi-component brines of deep horizons of hydromineral province of the Siberian platform. Vestnik ISTU, 9(92), 73–78.

    Google Scholar

    Vinante D, Alonso RN. 2006. Evapofacies del Salar Hombre Muerto, Puna Argentina: Distribucion y Genesis: Revista de la Asociación Geológica Argentina, 61(2), 286‒297.

    Google Scholar

    Vine JD. 1976. Lithium abundance in oilfield waters: lithium resources and requirements by the year 2000. U. S. Geological Survey, doi: 10.3133/pp1005.

    Google Scholar

    Wang A, Zhao YY, Xu H, Li XS. 2016. The characteristics of salt lake resources in Qinghai-Tibet Plateau. Journal of Salt Lake Research, 24(3), 24–29 (in Chinese with English abstract).

    Google Scholar

    Wang BJ, Lin CS, Chen Y, Lu MG, Liu JY. 2006. Episodic tectonic movement and evolutional characteristics of the Jianghan Basin. Oil Geophysical Prospecting, 41, 226–230 (in Chinese with English abstract), doi:10.3321/j.issn:1000-7210.2006.02.022.

    Google Scholar

    Wang CL, Huang H, Wang JY, Xu HM, Yu XC, Gao C, Meng LY, Cai PR, Yan K, Fang JL. 2018. Geological features and metallogenic model of K-and Li-rich brine ore field in the Jiangling depression. Acta Geologica Sinica, 92(8), 1630–1646 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.08.006.

    CrossRef Google Scholar

    Wang CL, Liu CL, Hu HB, Mao JS, Shen LJ, Zhao HT. 2012. Sedimentary characteristics and its environmental significance of salt-bearing strata of the Member 4 of Paleocene Shashi Formation in southern margin of Jiangling Depression, Jianghan Basin. Journal of Palaeogeography (Chinese Edition), 14(2), 165–175 (in Chinese).

    Google Scholar

    Wang CL, Liu CL, Liu BK, Shen LJ, Cai XL, Yu XC, Xie TX, Wang LC, Zhao YJ, Xuan ZQ. 2015. The discovery of carnallite in Paleocene Jiangling depression and its potash searching significance. Acta Geologica Sinica, 89(1), 129–136 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2015.01.010.

    CrossRef Google Scholar

    Wang CL, Liu CL, Xu HM, Wang LC, Zhang LB. 2013a. Carbon and oxygen isotopes characteristics of palaeocene saline lake facies carbonates in Jiangling depression and their environmental significance. Acta Geoscientica Sinica, 34(5), 567–576 (in Chinese with English abstract). doi: 10.3975/cagsb.2013.05.07.

    CrossRef Google Scholar

    Wang CL, Liu CL, Wang LC, Zhang LB. 2013b. Reviews on potash deposit metallogenic conditions. Advances in Earth Science, 28(9), 976–987 (in Chinese with English abstract). doi: 10.11867/j.issn.1001-8166.2013.09.0976.

    CrossRef Google Scholar

    Wang CL, Liu LH, Li Q, Meng LY, Liu CL, Zhang YY, Wang JY, Yu XC, Yan K. 2020. Petrogeochemical characteristics and genetic analysis of the source area of brine type lithium-potassium ore sources area in Jitai basin of Jiangxi Province. Acta Petrologica et Mineralogica, 39(1), 65–84 (in Chinese with English abstract).

    Google Scholar

    Wang CL, Meng LY, Liu CL, Yu XC, Yan K, Liu SH, You C, Li KK, Teng XH. 2021a. A study of the genesis of Paleocene underground brine boron deposits in Jiangling Depression. Acta Petrologica et Mineralogica, 40(1), 1–13 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2021.01.001.

    CrossRef Google Scholar

    Wang CL, Yu XC, Li RQ, Liu LH, Yan K, You C. 2021b. Origin of lithium–potassium-rich brines in the Jianghan Basin, South China: Constraints by water–rock reactions of Mesozoic–Cenozoic igneous rocks. Minerals, 11(12), 1330. doi: 10.3390/min11121330.

    CrossRef Google Scholar

    Wang GS. 2001. The influence on global lithium mining industry by the technology development on extracting lithium from salt lake-the consideration caused by the reformation of lithium mining industry of the world. Resources & Industries, 3(5), 37–38 (in Chinese). doi: 10.3969/j.issn.1673-2464.2001.05.012.

    CrossRef Google Scholar

    Wang LC, Liu CL, Wang CL, Xu HM, Zhang YM. 2017. Lithium isotope evidence for the source of potassium-rich brine solutes in the Jiangling depression of Central China. Acta Geologica Sinica - English Edition, 91(1), 363–364. doi: 10.1111/1755-6724.13092.

    CrossRef Google Scholar

    Wang JY, Liu CL, Wang CL, Yu XC, Yan K, Gao C. 2021. Tectono-paleoclimatic coupling process for mineralization of Late Cretaceous-Paleogene evaporites in South China. Acta Geologica Sinica, 95(7), 2041–2051 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021229.

    CrossRef Google Scholar

    Weynell M, Wiechert U, Schuessler JA. 2021. Lithium isotope signatures of weathering in the hyper-arid climate of the western Tibetan Plateau. Geochimica et Cosmochimica Acta, 293, 205–223. doi: 10.1016/j.gca.2020.10.021.

    CrossRef Google Scholar

    Williams AK, Bacosa HP, Quigg A. 2017. The impact of dissolved inorganic nitrogen and phosphorous on responses of microbial plankton to the Texas City “Y” oil spill in Galveston Bay, Texas (USA). Marine Pollution Bulletin, 121(1–2), 32–44. doi: 10.1016/j.marpolbul.2017.05.033.

    CrossRef Google Scholar

    Xu ZQ, Zheng BH, Wang Q. 2021. From accretion to collision: Situation and outlook. Acta Geologica Sinica, 95(1), 75–97 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021050.

    CrossRef Google Scholar

    Yaksic A, Tilton JE. 2009. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resources Policy, 34(4), 185–194. doi: 10.1016/j.resourpol.2009.05.002.

    CrossRef Google Scholar

    Yan K, Wang CL, Liu CL, Mischke S, Wang JY, Yu XC. 2022. Reconstruction of early Paleogene landscapes and climate in the Jianghan Basin, Central China: Evidence from evaporites and palynology. Palaeogeography, Palaeoclimatology, Palaeoecology, 601, 111095. doi: 10.1016/j.palaeo.2022.111095.

    Google Scholar

    Yao QC, Lou JS. 2008. An analysis of hydrocarbon pooling conditions in Yuanjiang sag, the Dongting basin. Natural Gas Industry, 28(9), 37–40. (in Chinese). doi: 10.3787/j.issn.1000-0976.2008.09.010.

    CrossRef Google Scholar

    Yu JJ, Zheng MP, Wu Q. 2013. Research progress of lithium extraction process in lithium-containing salt lake. Chemical Industry and Engineering Progress, 32(1), 13–21 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6613.2013.01.002.

    CrossRef Google Scholar

    Yu JQ, Hong RC, Gao CL, Cheng AY, Zhang LS. 2018. Lithium brinedeposits in Qaidam Basin: Constraints on formation processes anddistribution pattern. Journal of Salt Lake Research, 26(1), 7–14 (in Chinese with English abstract).

    Google Scholar

    Yu SY, Liu M, Zhao YY, Zheng MP. 2022. Hydrochemical characteristics of large-scale lithium-boronmine basin in the Mami Co Saline Lake, Tibet. Acta Geologica Sinica, 96(6), 2195–2205 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2022001.

    CrossRef Google Scholar

    Yu XC, Liu CL, Wang CL, Zhao JX, Wang JY. 2021. Origin of geothermal waters from the Upper Cretaceous to lower Eocene strata of the Jiangling Basin, South China: Constraints by multi-isotopic tracers and water-rock interactions. Applied Geochemistry, 124, 104810. doi: 10.1016/j.apgeochem.2020.104810.

    CrossRef Google Scholar

    Yu XC, Wang CL, Huang H, Wang JY. 2022. Origin and evolution of deep-seated K-rich brine in Paleogene of Qianjiang depression, Hubei Province. Earth Science, 47(1), 122–135 (in Chinese with English abstract).

    Google Scholar

    Yu XQ, Shu LS, Deng GH, Wang B, Zu FP. 2005. Geochemical characteristics and tectonic significance of alkaline basalt in Jitai basin, Jiangxi Province. Geoscience, 19(1), 133–140 (in Chinese).

    Google Scholar

    Zhao YJ, Jiao PC, Wang MQ, Zhang DY, Zhu ZG, Hu YF. 2021. Characteristics of lithium-rich brine, reservoir physical properties and analysis on water-rich areas in the Yiliping salt lake, Qaidam basin. Acta Geologica Sinica, 95(7), 2062–2072 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021160.

    CrossRef Google Scholar

    Zhao YY. 2003. Saline lake lithium resources of China and its exploitation. Mineral Deposits, 22(1), 99–106 (in Chinese with English abstract).

    Google Scholar

    Zhao YY, Zheng MP, Bu LZ, Nie Z, Liu XF. 2005. Study on salt pan technology of lithium salt extracting from carbonate-type saline lakes, Tibet. Sea-Lake Salt and Chemical Industry, 34(2), 1–6,9 (in Chinese with English abstract). doi: 10.16570/j.cnki.issn1673-6850.2005.02.001.

    CrossRef Google Scholar

    Zheng MP. 1989. Salt lakes in Tibetan Plateau. Beijing, Science and Technology Press, 1–470.

    Google Scholar

    Zheng MP, Wang XD, Peng QM, Chen ZY, Zhao YY, Dai ZX, Zeng WQ. 2001. Exploitation trend of saline lake lithium resources in China. The Chinese Journal of Nonferrous Metals, 11(1), 17–20 (in Chinese with English abstract).

    Google Scholar

    Zheng XY, Zhang MG, Xu C, Li BX. 2002. Annals of salt lakes in China. Beijing, Scientifical Press, 1–415 (in Chinese with English abstract).

    Google Scholar

    Zherebtsova IK, Volkova NN. 1966. Experimental study of trace elements behavior under natural sunny evaporation of Black Sea water and brines of Lake Sasyk-Sivash. Geochemistry, N7, 832–845.

    Google Scholar

    Zhou XM, Li WX. 2000. Origin of late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4), 269–287. doi: 10.1016/S0040-1951(00)00120-7.

    CrossRef Google Scholar

    Zhu RZ, Li WS, Wu BH, Liu CL. 1989. New geological understanding of Yiliping and East and West Tai Kinaire Lakes in Qaidam Basin, Qinghai Province. Geological Review, 35(6), 558–565 (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(18)

Article Metrics

Article views(47) PDF downloads(2) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint