Citation: | Dian-he Liu, Cheng-lin Liu, Chun-lian Wang, Xiao-can Yu, 2025. Distribution, characteristics, metallogenic processes and prospecting potential of terrestrial brine-type lithium deposits in the world and lithium demand situation, China Geology, 8, 1-25. doi: 10.31035/cg20230128 |
In response to the rise of the energy storage industries such as new energy vehicles and the wide application of lithium in various fields worldwide, the global demand for lithium resources has been in explosive growth. In order to further comprehensively understand the global supply and demand pattern, development and utilization status, genesis of ore deposits and other characteristics of lithium resources, based on the achievements of many researchers at home and abroad, this paper systematically summarized the lithium supply and demand situation, resource endowment, deposit classification and distribution, typical geological characteristics, metallogenic factors and metallogenic regularity of terrestrial brine-type lithium deposits which are the main types of development and utilization all over the world. The review shows that brine-type lithium resource and (or) reserves in the plateau salt lakes are huge and play an important role. In addition, the mineralization potential of the underground brine-type lithium deposit is broad worldwide. The potential resources of underground brines are enormous, and the geothermal spring water type is also worthy of attention. Brine lithium deposits are mainly controlled by the subduction and collision of regional plate tectonics, arid climate and provenance conditions. Strengthening of the scientific research on underground brines in the future is expected to provide another significant support for the global demand for lithium resources.
Alekseeva LP, Alekseev SV. 2018. Geochemistry of ground ice, saline groundwater, and brines in the cryoartesian basins of the northeastern Siberian Platform. Russian Geology and Geophysics, 59(2), 144–156. doi: 10.1016/j.rgg.2018.01.012. |
Alexeeva LP, Alekseev SV. 2018. Geochemistry of ground ice, saline groundwater, and brines in the cryoartesian basins of the northeastern Siberian Platform. Russian Geology and Geophysics, 59 (2), 144‒156. |
Alexeev SV, Alexeeva LP, Borisov VN, Shouakar-Stash O, Frape SK, Chabaux F, Kononov AM. 2007. Isotopic composition (H, O, Cl, Sr) of ground brines of the Siberian Platform. Russian Geology and Geophysics, 48(3), 225–236. doi: 10.1016/j.rgg.2007.02.007. |
Alexeev SV, Alexeeva LP, Vakhromeev AG. 2020. Brines of the Siberian platform (Russia): Geochemistry and processing prospects. Applied Geochemistry, 117, 104588. doi: 10.1016/j.apgeochem.2020.104588. |
Allmendinger RW, Jordan TE, Kay SM, Isacks BL. 1997. The evolution of the altiplano-puna plateau of the central Andes. Annual Review of Earth and Planetary Sciences, 25, 139–174. doi: 10.1146/annurev.earth.25.1.139. |
Alonso RN, Bookhagen B, Carrapa B, Coutand I, Haschke M, Hilley GE, Schoenbohm L, Sobel ER, Strecker MR, Trauth MH, Villanueva A. 2006. Tectonics, climate, and landscape evolution of the southern central Andes: The Argentine puna plateau and adjacent regions between 22 and 30°S. The Andes. Frontiers in Earth Sciences. Springer Berlin Heidelberg, 265–283. doi: 10.1007/978-3-540-48684-8_12. |
Antonio Pio R, Ritz, Vanille R, Shyam N, Raymi C, Dimitrios K, Stefan W. 2022. Modelling injection induced seismicity in the Hengill geothermal field. EGU General Assembly Conference Abstracts, doi:10.5194/egusphere-egu22-10392. |
Araoka D, Kawahata H, Takagi T, Watanabe Y, Nishimura K, Nishio Y. 2014. Lithium and strontium isotopic systematics in playas in Nevada, USA: Constraints on the origin of lithium. Mineralium Deposita, 49, 371–379. doi: 10.1007/s00126-013-0495-y. |
Baby P, Rochat P, Mascle G, Hérail G. 1997. Neogene shortening contribution to crustal thickening in the back arc of the Central Andes. Geology, 25(10), 883. doi: 10.1130/0091-7613(1997)025<0883:nsctct>2.3.CO;2. |
Bai YM, Wang XL, Yang LC, Wang ZT, Ye CY. 2018. Hydrochemical characteristics of Duoxiu Lake and Yanhu Lake in northeastern hoh xil region, Qinghai. Journal of Salt Lake Research, 26(2), 27–33 (in Chinese with English abstract). |
Benson TR, Coble MA, Rytuba JJ, Mahood GA. 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nature Communications, 8(1), 270. doi: 10.1038/s41467-017-00234-y. |
Birkle P, García BM, Milland Padrón CM. 2009. Origin and evolution of formation water at the jujo–tecominoacán oil reservoir, gulf of Mexico. part 1: Chemical evolution and water–rock interaction. Applied Geochemistry, 24(4), 543–554. doi: 10.1016/j.apgeochem.2008.12.009. |
Bottomley DJ, Chan LH, Katz A, Starinsky A, Clark ID. 2003. Lithium isotope geochemistry and origin of Canadian shield brines. Ground Water, 41(6), 847–856. doi: 10.1111/j.1745-6584.2003.tb02426.x. |
Bradley D, Munk L, Jochens H, Hynek S, Labay K. 2013. A preliminary deposit model for lithium brines. USGS professional paper, (1006), 1–6, doi: 10.3133/ofr20131006. |
Butts D. 1975. Recovery of minerals from the Great Salt Lake. Abstracts with Programs -Geological Society of America, 7, 1016. |
Cao WH, Wu C. 2004. Brine Resources and Their Comprehnsive Utilization Technology. Beijing, Geology Press, 1‒316 (in Chinese). |
Chan LH, Edmond JM, Thompson G. 1993. A lithium isotope study of hot springs and metabasalts from Mid-Ocean Ridge Hydrothermal Systems. Journal of Geophysical Research: Solid Earth, 98(B6), 9653–9659. doi: 10.1029/92jb00840. |
Chapman CR, Kwang JA, Wright AE. 1988. Oil and Gas Developments in Arkansas, North Louisiana, and East Texas in 1987, AAPG Bulletin, 72(10B), 41‒45, doi: 10.1306/703C9A37-1707-11D7-8645000102C1865D. |
Chen PJ. 2000. Paleoenvironmental changes during the Cretaceous in Eastern China. Developments in Palaeontology and Stratigraphy, 17, 81–90. doi: 10.1016/S0920-5446(00)80025-4. |
Collins AG. 1976. Lithium abundance in oilfield waters: lithium resources and requirements by the year 2000. U.S. Geology Survey, 1005, 116‒123. |
Coffey DM, Munk LA, Ibarra DE, Butler KL, Boutt DF, Jenckes J. 2021. Lithium storage and release from lacustrine sediments: Implications for lithium enrichment and sustainability in continental brines. Geochemistry, Geophysics, Geosystems, 22(12), e2021GC009916. doi: 10.1029/2021GC009916. |
Cortecci G, Boschetti T, Mussi M, Lameli CH, Mucchino C, Barbieri M. 2005. New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile. Geochemical Journal, 39(6), 547–571. doi: 10.2343/geochemj.39.547. |
Dai SZ, Fang ZX. 1994. Petroleum geological characteristics and exploration of salt Lake basin in Jianghan fault depression. Jianghan Petroleum Science and Technology, 4(2), 1–7 (in Chinese). |
Davis JR, Friedman I, Gleason JD. 1986. Origin of the lithium-rich brine, Clayton Valley, Nevada: U. S. Geological Survey Bulletin, 1622, 131–138. |
Dong T, Tan HB, Zhang WJ, Zhang YF. 2015. Geochemical distribution of lithium in saline lakes in Tibet. Journal of Hohai University (Natural Sciences), 43(3), 230–235 (in Chinese with English abstract). doi: 10.3876/j.issn.1000-1980.2015.03.007. |
Ejeian M, Grant A, Shon HK, Razmjou A, 2021. Is Lithium brine water? Desalination, 518 (2021) 115169, 1–6. doi:10.1016/j.desal.2021.115169. |
Fan QS, Lowenstein TK, Wei HC, Yuan Q, Qin ZJ, Shan FS, Ma HZ. 2018. Sr isotope and major ion compositional evidence for formation of Qarhan Salt Lake, Western China. Chemical Geology, 497, 128–145. doi: 10.1016/j.chemgeo.2018.09.001. |
Fei GC, Yang Z, Yang JY, Luo W, Deng Y, Lai YT, Tao XX, Zheng L, Tang WC, Li J. 2020. New precise timing constraint for the Dangba granitic pegmatite type rare-metal deposit, Markam, Sichuan Province, evidence from cassiterite LA-MC-ICP-MS U-Pb dating. Acta Geologica Sinica, 94(3), 836–849 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2020137. |
Fu LL. 2017. Study on The Source of Lithium in The Cretaceous Lithium Rich Brine Deposit in Jitai Basin. Shijiazhuang, Hebei GEO University, Master thesis, 1–63 (in Chinese with English abstract). |
Gan YQ, Wang YX, Duan YH, Deng YM, Guo XX, Ding XF. 2014. Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China. Journal of Geochemical Exploration, 138, 81–93. doi: 10.1016/j.gexplo.2013.12.013. |
García MG, Borda LG, Godfrey LV, López Steinmetz RL, Losada-Calderon A. 2020. Characterization of lithium cycling in the Salar De Olaroz, Central Andes, using a geochemical and isotopic approach. Chemical Geology, 531, 119340. doi: 10.1016/j.chemgeo.2019.119340. |
Garcia-Valles M, Alfonso P, Arancibia JRH, Martínez S, Parcerisa D. 2016. Mineralogical and thermal characterization of borate minerals from Rio Grande deposit, Uyuni (Bolivia). Journal of Thermal Analysis and Calorimetry, 125(2), 673–679. doi: 10.1007/s10973-015-5161-4. |
Glanzman RK, McCarthy JH Jr, Rytuba JJ. 1978. Lithium in the McDermitt caldera, Nevada and Oregon. Energy, 3(3), 347–353. doi: 10.1016/0360-5442(78)90031-2. |
Godfrey LV, Chan LH, Alonso RN, Lowenstein TK, McDonough WF, Houston J, Li J, Bobst A, Jordan TE. 2013. The role of climate in the accumulation of lithium-rich brine in the Central Andes. Applied Geochemistry, 38, 92–102. doi: 10.1016/j.apgeochem.2013.09.002. |
Godfrey LV, Herrera C, Gamboa C, Mathur R. 2019. Chemical and isotopic evolution of groundwater through the active Andean arc of Northern Chile. Chemical Geology, 518, 32–44. doi: 10.1016/j.chemgeo.2019.04.011. |
Gruber PW, Medina PA, Keoleian GA, Kesler SE, Everson MP, Wallington TJ. 2011. Global lithium availability. Journal of Industrial Ecology, 15(5), 760–775. doi: 10.1111/j.1530-9290.2011.00359.x. |
Han FQ. 2001. The geochemistry of lithium in salt lake on Qinghai-Tibetan Plateau. Journal of Salt Lake Research, 9(1), 55–61 (in Chinese with English abstract). |
Han JB. 2018. Migration and Enrichment of Highly ConcenTrated Uranium in the Hydrologic System of Gasikule Salt Lake Basin. Wuhan, China University of Geosciences (Wuhan), Ph.D thesis, 1–116 (in Chinese with English abstract). |
He L, Han FQ, Han WX, Yan JP, Li BK, Han YZ, Nian XQ, Chen YJ, Han JL. 2015. Hydrochemical characteristics of lexiewudan lake in hoh xil, Qinghai. Journal of Salt Lake Research, 23(2), 28–33 (in Chinese with English abstract). |
He MY, Luo CG, Yang HJ, Kong FC, Li YL, Deng L, Zhang XY, Yang KY. 2020. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: Evidence from Li isotopes. Ore Geology Reviews, 117, 103277. doi: 10.1016/j.oregeorev.2019.103277. |
Hofstra AH, Todorov TI, Mercer CN, Adams DT, Marsh EE. 2013. Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the western United States: Implications for the origin of lithium-rich brines. Economic Geology, 108(7), 1691–1701. doi: 10.2113/econgeo.108.7.1691. |
Hofstrta AH, Todorov TI, Mercer CN, Adams DT, Marsh EE. 2013. Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the Western United States: Implications for the origin of lithium-rich brines: Economic Geology, 108, 1691‒1701. |
Huang H, Zhang SW, Zhang LY. 2015. Mineral characteristics and resources assessment of the deep brine in Qianjiang formation, Jianghan depression. Journal of Salt Lake Research, 23(2), 34–43 (in Chinese with English abstract). |
Huang JL, Zhao DP. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research: Solid Earth, 111(B9), B09305. doi: 10.1029/2005jb004066. |
Huh Y, Chan LH, Zhang L, Edmond JM. 1998. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochimica et Cosmochimica Acta, 62(12), 2039–2051. doi: 10.1016/S0016-7037(98)00126-4. |
Institute of Mineral Resources, Chinese Academy of Geological Sciences. 2011. Annual report of survey and evaluation of potassium-rich Tertiary brine in Jiangling Salt Basin. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing. (in Chinese). |
Institute of Mineral Resources, Chinese Academy of Geological Sciences. 2013. Evaluation report of potassium chloride resources in deep potassium-rich brine in middle and southern Jiangling Depression. Beijing. Institute of Mineral Resources, Chinese Academy of Geological Sciences (in Chinese). |
James RH, Palmer MR. 2000. The lithium isotope composition of international rock standards. Chemical Geology, 166(3–4), 319–326. doi: 10.1016/S0009-2541(99)00217-X. |
Jordan TE, Muñoz N, Hein M, Lowenstein T, Godfrey L, Yu J. 2002. Active faulting and folding without topographic expression in an evaporite basin, Chile. Geological Society of America Bulletin, 114(11), 1406–1421. doi: 10.1130/0016-7606(2002)114<1406:afafwt>2.0.co;2. |
Kampf SK, Tyler SW, Ortiz CA, Muñoz JF, Adkins PL. 2005. Evaporation and land surface energy budget at the Salar de Atacama, Northern Chile. Journal of Hydrology, 310(1–4), 236–252. doi: 10.1016/j.jhydrol.2005.01.005. |
Kasemann SA, Meixner A, Erzinger J, Viramonte JG, Alonso RN, Franz G. 2004. Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina). Journal of South American Earth Sciences, 16(8), 685–697. doi: 10.1016/j.jsames.2003.12.004. |
Kavanagh L, Keohane J, Garcia Cabellos G, Lloyd A, Cleary J. 2018. Global lithium sources–Industrial use and future in the electric vehicle industry: A review. Resources, 7(3), 57. doi: 10.3390/resources7030057. |
Kay SM, Coira B, Viramonte J. 1994. Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna Plateau, central Andes. Journal of Geophysical Research: Solid Earth, 99(B12), 24323–24339. doi: 10.1029/94jb00896. |
Kesler SE, Gruber PW, Medina PA, Keoleian GA, Everson MP, Wallington TJ. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews, 48, 55–69. doi: 10.1016/j.oregeorev.2012.05.006. |
Kunasz IA. 1974. Lithium occurrence in the brines of Clayton Valley Esmeralda County, Nevada. Fourth Symposium on Salt 1, 57‒66. |
Li BT, Zhao YY, Ye R, Hao AB, Wang SJ, Jiao PC. 2012. Composition in solid potash deposits of qarhan salt lake, Qinghai Province and its significance. Geoscience, 26(1), 71–84 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2012.01.008. |
Li HN, Wang CL, Liu CL, Yang SG, Xu HM, Hu HB, Yu XC, Liu JL. 2015. Paleotemperatures of early Eocene in the Jiangling Depression: Evidence from fluid inclusions in thenardite. Acta Geologica Sinica, 89(11), 2019–2027 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2015.11.012. |
Li QK, Shan FS, Wang JP, Fan QS, Yuan Q, Qin ZJ. 2022. The variation of K contents in salt lakes on the Qinghai-Tibet Plateau and its influencing factors. Journal of Salt Lake Research, 30(2), 79–85 (in Chinese with English abstract). doi: 10.12119/j.yhyj.202202009. |
Li RQ, Liu CL, Chen X, Chen YZ, Wang CL. 2013. Salting law by cooling deep potassium-bearing brine in Jiangling depression. Journal of Salt Lake Research, 21(1), 1–6 (in Chinese with English abstract). |
Li ZY, He MY, Li BK, Wen XQ, Zhou JD, Cheng YY, Zhang N, Deng L. 2024. Multi-isotopic composition (Li and B isotopes) and hydrochemistry characterization of the Lakko Co Li-rich salt lake in Tibet, China: Origin and hydrological processes. Journal of Hydrology, 630, 130714. doi: 10.1016/j.jhydrol.2024.130714. |
Lian YQ, Guan HZ. 1994. The discovery and significance of boron deposit in Mami Salt Lake, Xizang Province. Geology of Tibet, 2(12), 170–178 (in Chinese with English abstract). |
Ling Y, Zheng MP, Sun Q, Dai XQ. 2017. Last deglacial climatic variability in Tibetan Plateau as inferred from n-alkanes in a sediment core from Lake Zabuye. Quaternary International, 454, 15–24. doi: 10.1016/j.quaint.2017.08.030. |
Liu CL. 2013. Characteristics and formation of potash deposits in continental rift basins: A review. Acta Geoscientica Sinica, 34(5), 515–527 (in Chinese with English abstract). doi: 10.3975/cagsb.2013.05.02. |
Liu CL, Wang CL, Xu HM, Liu BK, Shen LJ, Wang LC, Zhao YJ. 2013. Research progress of potassium salt minerals in Paleogene evaporite in Jiangling Depression. Mineral Deposits, 32(1), 221–222 (in Chinese). doi: 10.16111/j.0258-7106.2013.01.017. |
Liu CL, Yu XC, Yuan XY, Li RQ, Yao FJ, Shen LJ, Li Q, Zhao YY. 2021. Characteristics, distribution regularity and formation model of brine-type Li deposits in salt lakes in the world. Acta Geologica Sinica, 95(7), 2009–2029 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021230. |
Liu CL, Yu XC, Zhao YJ, Wang JY, Wang LC, Xu HM, Li J, Wang CL. 2016. A tentative discussion on regional metallogenic background and mineralization mechanism of subterranean brines rich in potassium and lithium in South China Block. Mineral Deposits, 35(6), 1119–1143 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2016.06.001. |
Liu LJ, Wang DH, Liu XF, Li JK, Dai HZ, Yan WD. 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine. Geology in China, 44(2), 263–278 (in Chinese with English abstract). doi: 10.12029/gc20170204. |
Liu Q, Chen YH, Li YC, Lan QC, Yuan HR, Yan DL. 1987. Middle and Cenozoic terrigenous clastic chemical rock type salt deposits in China. Beijing: Science and Technology Press. |
Liu XF, Zheng MP, Qi W. 2007. Sources of ore-forming materials of the superlarge B and Li deposit in Zabuye salt lake, Tibet, China. Acta Geologica Sinica, 81(12), 1709–1715 (in Chinese with English abstract). |
Liu YH, Deng TL. 2006. Progresses on the Process and Technique of Lithium Recovery from Salt Lake Brines Around the World, World Sci-tech R and D, 28(5), 69‒75 (in Chinese with English abstract), doi:10.1016/S0379-4172(06)60108-X. |
López Steinmetz RL, Salvi S. 2021. Brine grades in Andean salars: When basin size matters A review of the lithium triangle. Earth-Science Reviews, 217, 103615. doi: 10.1016/j.earscirev.2021.103615. |
López Steinmetz RL, Salvi S, García MG, Peralta Arnold Y, Béziat D, Franco G, Constantini O, Córdoba FE, Caffe PJ. 2018. Northern Puna Plateau-scale survey of Li brine-type deposits in the Andes of NW Argentina. Journal of Geochemical Exploration, 190, 26–38. doi: 10.1016/j.gexplo.2018.02.013. |
López Steinmetz RL, Salvi S, Sarchi C, Santamans C, López Steinmetz LC. 2020. Lithium and brine geochemistry in the salars of the southern puna, Andean Plateau of Argentina. Economic Geology, 115(5), 1079–1096. doi: 10.5382/econgeo.4754. |
Lowenstein TK, Dolginko LAC, García-Veigas J. 2016. Influence of magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake, California. Geological Society of America Bulletin, 128(9-10), 1555–1568. doi: 10.1130/b31398.1. |
Lowenstein TK, Jagniecki EA, Carroll AR, Smith ME, Renaut RW, Owen RB. 2017. The green river salt mystery: What was the source of the hyperalkaline lake waters? Earth-Science Reviews, 173, 295–306. doi: 10.1016/j.earscirev.2017.07.014. |
Ludington S, Moring BC, Miller RJ, Stone, PA, Bookstrom AA, Bedford DR, Evans JG, Haxel GA, Nutt CJ, Flyn KS, Hopkins MJ. 2007. Preliminary integrated geologic map data-bases for the United States. Western States: California, Nevada, Arizona, Washington, Oregon, Idaho, and Utah. U. S. Geological Survey, http://pubs.usgs.gov/of/2005/1305. |
Ma LC, Huang H, Zhang LY, Liu CL, Sun MG, Niu L. 2015. Characteristics of Paleogene deep potassium-rich brines in the Qianjiang depression, Hubei Province. Acta Geologica Sinica, 89(11), 2114–2121 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2015.11.022. |
McQuarrie N. 2002. The kinematic history of the central Andean fold-thrust belt, Bolivia: Implications for building a high plateau. Geological Society of America Bulletin, 114(8), 950–963. doi: 10.1130/0016-7606(2002)114<0950:tkhotc>2.0.CO;2. |
Misra S, Froelich PN. 2012. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering. Science, 335(6070), 818–823. doi: 10.1126/science.1214697. |
Mohr SH, Mudd GM, Giurco D. 2012. Lithium resources and production: Critical assessment and global projections. Minerals, 2(1), 65–84. doi: 10.3390/min2010065. |
Morgan LA, Shanks WCP, Pierce KL, Iverson N, Schiller CM, Brown SR, Zahajska P, Cartier R, Cash RW, Best JL, Whitlock C, Fritz S, Benzel W, Lowers H, Lovalvo DA, Licciardi JM. 2023. The dynamic floor of Yellowstone Lake, Wyoming, USA: The last 14 k. y. of hydrothermal explosions, venting, doming, and faulting. GSA Bulletin, 135(3–4), 547–574. doi: 10.1130/b36190.1. |
Mou BL. 1999. Geochemistry of Element. Beijing, Peking University Press, 149–152 (in Chinese with English abstract). |
Munk LA, Chamberlain CP. 2011. Final Technical Report: G10AP00056 - Lithium Brine Resources: A Predictive Exploration Model. U. S. Geological Survey. |
Munk LA, Hynek SA, Bradley DC, Boutt D, Labay K, Jochens H. 2016. Lithium brines: A global perspective. Rare Earth and Critical Elements in Ore Deposits: Society of Economic Geologists. doi: 10.5382/rev.18.14. |
Nancy EL, Jennifer SH, Avner V. 2016. Brine spills associated with unconventional oil development in North Dakota, Environmental Science & Technology, 50(10), 5389‒5397. |
Nie Z, Bu LZ, Zheng MP, Zhang YS. 2010. Phase chemistry study on brine from the zabuye carbonate-type salt lake in Tibet. Acta Geologica Sinica, 84(4), 587–592 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2010.04.015. |
Pan YD, Liu CL, Xu HM. 2011. Characteristics and formation of potassium-bearing brine in the deeper strata in depression in Hubei Jiangling province. Geology of Chemical Minerals, 33(2), 65–72 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-5296.2011.02.001. |
Prather BE, Goldstein RH, Kopaska-Merkel DC, Heydari E, Gill K, Minzoni M. 2023. Dolomitization of reservoir rocks in the smackover formation, southeastern gulf coast, U. S. A. Earth-Science Reviews, 244, 104512. doi: 10.1016/j.earscirev.2023.104512. |
Price JG, Lechler PJ, Lear MB, Giles TF. 2000. Possible volcanic sources of lithium in brines in Clayton Valley, Nevada: Geology and Ore Deposits 2000, 241‒248 |
Ren JS, Chen TY, Niu BG, Liu ZG, Liu FR. 1990. Tectonic evolution and mineralization of continental lithosphere in eastern China. Beijing, Science Press, 205 (in Chinese with English abstract). |
Ren JS, Jiang CF, Zhang ZK, Qin DH. 1980. Geotectonics and evolution in China. Beijing, Science Press, 124 (in Chinese with English abstract). |
Risacher F, Fritz B. 1991. Quaternary geochemical evolution of the salars of Uyuni and Coipasa, central altiplano, Bolivia. Chemical Geology, 90(3–4), 211–231. doi: 10.1016/0009-2541(91)90101-V. |
Ruff SW, Farmer JD. 2016. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nature Communications, 7, 13554. doi: 10.1038/ncomms13554. |
Schulz KJ, Deyoung JH, Seal RR, Bradley DC. 2017. Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply. U. S. Geological Survey Professional Paper, 1802, K1–K21, doi: 10.3133/pp1802. |
Seggiaro RE. 2013. Hoja geológica 2366-III: Susques, 1:250,000. Servicio Geológico Minero Argentino, Buenos Aires. |
Shen J, Dai BL. 2009. Status quo of salt lake brine lithium resources and prospect of its exploitation and application. Industrial Minerals & Processing, 38(4), 1–4,7 (in Chinese with English abstract). doi: 10.16283/j.cnki.hgkwyjg.2009.04.004. |
Shen JJ, Chen B, Wang CL, Chang JJ, Zhou XF, Guan XQ, Zhao ZP. 2015. Sedimentary characteristics and control factors of gypsum-salt rocks in the Paleogene Xingouzui Formation in Jiangling Depression, Jianghan Basin. Journal of Palaeogeography (Chinese Edition), 17(2), 265–274 (in Chinese). doi: 10.7605/gdlxb.2015.02.022. |
Shen LJ, Liu CL, Xu HM, Wang CL, Wang LC, Liu BK, Zhang LB. 2014. Paleocene mineral assemblage characteristics of Jiangling Depression and their significance for potash formation. Mineral Deposits, 33(5), 1020–1030 (in Chinese). doi: 10.3969/j.issn.0258-7106.2014.05.011. |
Shi LJ, Wang M. 2019. Hydrochemistry and behavior of K, Li and B in summer evaporation of Yiliping salt lake brine in Qaidam Basin. Journal of Lake Sciences, 31(2), 590–608 (in Chinese with English abstract). doi: 10.18307/2019.0226. |
Shu LS. 2012. An analysis of principal features of tectonic evolution in South China Block. Geological Bulletin of China, 31(7), 1035–1053 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.07.003. |
Smith GI, Barczak VJ, Moulton GF, Liddicoat JC. 1983. Core KM-3, a surface-to-bedrock record of late Cenozoic sedimentation in Searles Valley, California. Geologocal Survey Professional Paper, 1256. |
Song PS, Xiang RJ. 2014. Utilization and exploitation of lithium resources in salt lakes and some suggestions concerning development of Li industries in China. Mineral Deposits, 33(5), 977–992 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2014.05.007. |
Sun X, Ouyang MG, Hao H. 2022. Surging lithium price will not impede the electric vehicle boom. Joule, 6(8), 1738–1742. doi: 10.1016/j.joule.2022.06.028. |
Symcox C, Philp RP. 2023. Geochemical characteristics of oils from the sooner trend anadarko basin, Canadian, and kingfisher counties and south-central Oklahoma oil province plays, anadarko basin, Oklahoma. AAPG Bulletin, 107(4), 593–627. doi: 10.1306/10242222016. |
Tan HB, Lu SC, Ta WQ, Rao WB, Guo HY. 2020. Water resource and mineral source significances of Nalenggele River Catchment in Qaidam Basin, Journal of Hohai University (Natural Sciences), 48(5), 392‒397 (in Chinese with English abstract), doi: 10.3876/j.issn.1000-1980.2020.05.002. |
Tan HB, Wen XW, Rao WB, Bradd J, Huang JZ. 2016. Temporal variation of stable isotopes in a precipitation–groundwater system: Implications for determining the mechanism of groundwater recharge in high mountain–hills of the Loess Plateau, China. Hydrological Processes, 30(10), 1491–1505. doi: 10.1002/hyp.10729. |
Teng FZ, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S. 2004. Lithium isotopic composition and concentration of the upper continental crust. Geochimica et Cosmochimica Acta, 68(20), 4167–4178. doi: 10.1016/j.gca.2004.03.031. |
Thompson JM, Fournier RO. 1988. Chemistry and geothermometry of brine produced from the Salton Sea scientific drill hole, i[LinkOut]mperial valley, California. Journal of Geophysical Research: Solid Earth, 93(B11), 13165–13173. doi: 10.1029/jb093ib11p13165. |
Tomascak PB. 2004. Developments in the understanding and application of lithium isotopes in the Earth and planetary sciences. Reviews in Mineralogy and Geochemistry, 55(1), 153–195. doi: 10.2138/gsrmg.55.1.153. |
Tomascak PB, Magna T, Dohmen R. 2016. Advances in Lithium Isotope Geochemistry. Springer International Publishing. doi: 10.1007/978-3-319-01430-2. |
Tong GB, Jia XM, Zheng MP, Yuan HR, Liu JY, Wang WM. 2002. Palynological evidence of middle-late Eocene climatic cycles in Jianghan Basin. Acta Geosicientia Sinica, 23(2), 159–164 (in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2002.02.011. |
U. S. Geological Survey. 2019, Mineral commodity summaries 2019: U. S. Geological Survey, doi: 10.3133/70202434. |
U. S. Geological Survey. 2022. Mineral Commodity Summaries 2022: U. S. Geological Survey, doi:10.3133/mcs2022. |
U. S. Geological Survey, 2023, Mineral commodity summaries 2023: U. S. Geological Survey, 210 p, doi:10.3133/mcs2023. |
Vakhromeev АG. 2014. Deposits of industrial multi-component brines of deep horizons of hydromineral province of the Siberian platform. Vestnik ISTU, 9(92), 73–78. |
Vinante D, Alonso RN. 2006. Evapofacies del Salar Hombre Muerto, Puna Argentina: Distribucion y Genesis: Revista de la Asociación Geológica Argentina, 61(2), 286‒297. |
Vine JD. 1976. Lithium abundance in oilfield waters: lithium resources and requirements by the year 2000. U. S. Geological Survey, doi: 10.3133/pp1005. |
Wang A, Zhao YY, Xu H, Li XS. 2016. The characteristics of salt lake resources in Qinghai-Tibet Plateau. Journal of Salt Lake Research, 24(3), 24–29 (in Chinese with English abstract). |
Wang BJ, Lin CS, Chen Y, Lu MG, Liu JY. 2006. Episodic tectonic movement and evolutional characteristics of the Jianghan Basin. Oil Geophysical Prospecting, 41, 226–230 (in Chinese with English abstract), doi:10.3321/j.issn:1000-7210.2006.02.022. |
Wang CL, Huang H, Wang JY, Xu HM, Yu XC, Gao C, Meng LY, Cai PR, Yan K, Fang JL. 2018. Geological features and metallogenic model of K-and Li-rich brine ore field in the Jiangling depression. Acta Geologica Sinica, 92(8), 1630–1646 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.08.006. |
Wang CL, Liu CL, Hu HB, Mao JS, Shen LJ, Zhao HT. 2012. Sedimentary characteristics and its environmental significance of salt-bearing strata of the Member 4 of Paleocene Shashi Formation in southern margin of Jiangling Depression, Jianghan Basin. Journal of Palaeogeography (Chinese Edition), 14(2), 165–175 (in Chinese). |
Wang CL, Liu CL, Liu BK, Shen LJ, Cai XL, Yu XC, Xie TX, Wang LC, Zhao YJ, Xuan ZQ. 2015. The discovery of carnallite in Paleocene Jiangling depression and its potash searching significance. Acta Geologica Sinica, 89(1), 129–136 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2015.01.010. |
Wang CL, Liu CL, Xu HM, Wang LC, Zhang LB. 2013a. Carbon and oxygen isotopes characteristics of palaeocene saline lake facies carbonates in Jiangling depression and their environmental significance. Acta Geoscientica Sinica, 34(5), 567–576 (in Chinese with English abstract). doi: 10.3975/cagsb.2013.05.07. |
Wang CL, Liu CL, Wang LC, Zhang LB. 2013b. Reviews on potash deposit metallogenic conditions. Advances in Earth Science, 28(9), 976–987 (in Chinese with English abstract). doi: 10.11867/j.issn.1001-8166.2013.09.0976. |
Wang CL, Liu LH, Li Q, Meng LY, Liu CL, Zhang YY, Wang JY, Yu XC, Yan K. 2020. Petrogeochemical characteristics and genetic analysis of the source area of brine type lithium-potassium ore sources area in Jitai basin of Jiangxi Province. Acta Petrologica et Mineralogica, 39(1), 65–84 (in Chinese with English abstract). |
Wang CL, Meng LY, Liu CL, Yu XC, Yan K, Liu SH, You C, Li KK, Teng XH. 2021a. A study of the genesis of Paleocene underground brine boron deposits in Jiangling Depression. Acta Petrologica et Mineralogica, 40(1), 1–13 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2021.01.001. |
Wang CL, Yu XC, Li RQ, Liu LH, Yan K, You C. 2021b. Origin of lithium–potassium-rich brines in the Jianghan Basin, South China: Constraints by water–rock reactions of Mesozoic–Cenozoic igneous rocks. Minerals, 11(12), 1330. doi: 10.3390/min11121330. |
Wang GS. 2001. The influence on global lithium mining industry by the technology development on extracting lithium from salt lake-the consideration caused by the reformation of lithium mining industry of the world. Resources & Industries, 3(5), 37–38 (in Chinese). doi: 10.3969/j.issn.1673-2464.2001.05.012. |
Wang LC, Liu CL, Wang CL, Xu HM, Zhang YM. 2017. Lithium isotope evidence for the source of potassium-rich brine solutes in the Jiangling depression of Central China. Acta Geologica Sinica - English Edition, 91(1), 363–364. doi: 10.1111/1755-6724.13092. |
Wang JY, Liu CL, Wang CL, Yu XC, Yan K, Gao C. 2021. Tectono-paleoclimatic coupling process for mineralization of Late Cretaceous-Paleogene evaporites in South China. Acta Geologica Sinica, 95(7), 2041–2051 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021229. |
Weynell M, Wiechert U, Schuessler JA. 2021. Lithium isotope signatures of weathering in the hyper-arid climate of the western Tibetan Plateau. Geochimica et Cosmochimica Acta, 293, 205–223. doi: 10.1016/j.gca.2020.10.021. |
Williams AK, Bacosa HP, Quigg A. 2017. The impact of dissolved inorganic nitrogen and phosphorous on responses of microbial plankton to the Texas City “Y” oil spill in Galveston Bay, Texas (USA). Marine Pollution Bulletin, 121(1–2), 32–44. doi: 10.1016/j.marpolbul.2017.05.033. |
Xu ZQ, Zheng BH, Wang Q. 2021. From accretion to collision: Situation and outlook. Acta Geologica Sinica, 95(1), 75–97 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021050. |
Yaksic A, Tilton JE. 2009. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resources Policy, 34(4), 185–194. doi: 10.1016/j.resourpol.2009.05.002. |
Yan K, Wang CL, Liu CL, Mischke S, Wang JY, Yu XC. 2022. Reconstruction of early Paleogene landscapes and climate in the Jianghan Basin, Central China: Evidence from evaporites and palynology. Palaeogeography, Palaeoclimatology, Palaeoecology, 601, 111095. doi: 10.1016/j.palaeo.2022.111095. |
Yao QC, Lou JS. 2008. An analysis of hydrocarbon pooling conditions in Yuanjiang sag, the Dongting basin. Natural Gas Industry, 28(9), 37–40. (in Chinese). doi: 10.3787/j.issn.1000-0976.2008.09.010. |
Yu JJ, Zheng MP, Wu Q. 2013. Research progress of lithium extraction process in lithium-containing salt lake. Chemical Industry and Engineering Progress, 32(1), 13–21 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6613.2013.01.002. |
Yu JQ, Hong RC, Gao CL, Cheng AY, Zhang LS. 2018. Lithium brinedeposits in Qaidam Basin: Constraints on formation processes anddistribution pattern. Journal of Salt Lake Research, 26(1), 7–14 (in Chinese with English abstract). |
Yu SY, Liu M, Zhao YY, Zheng MP. 2022. Hydrochemical characteristics of large-scale lithium-boronmine basin in the Mami Co Saline Lake, Tibet. Acta Geologica Sinica, 96(6), 2195–2205 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2022001. |
Yu XC, Liu CL, Wang CL, Zhao JX, Wang JY. 2021. Origin of geothermal waters from the Upper Cretaceous to lower Eocene strata of the Jiangling Basin, South China: Constraints by multi-isotopic tracers and water-rock interactions. Applied Geochemistry, 124, 104810. doi: 10.1016/j.apgeochem.2020.104810. |
Yu XC, Wang CL, Huang H, Wang JY. 2022. Origin and evolution of deep-seated K-rich brine in Paleogene of Qianjiang depression, Hubei Province. Earth Science, 47(1), 122–135 (in Chinese with English abstract). |
Yu XQ, Shu LS, Deng GH, Wang B, Zu FP. 2005. Geochemical characteristics and tectonic significance of alkaline basalt in Jitai basin, Jiangxi Province. Geoscience, 19(1), 133–140 (in Chinese). |
Zhao YJ, Jiao PC, Wang MQ, Zhang DY, Zhu ZG, Hu YF. 2021. Characteristics of lithium-rich brine, reservoir physical properties and analysis on water-rich areas in the Yiliping salt lake, Qaidam basin. Acta Geologica Sinica, 95(7), 2062–2072 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021160. |
Zhao YY. 2003. Saline lake lithium resources of China and its exploitation. Mineral Deposits, 22(1), 99–106 (in Chinese with English abstract). |
Zhao YY, Zheng MP, Bu LZ, Nie Z, Liu XF. 2005. Study on salt pan technology of lithium salt extracting from carbonate-type saline lakes, Tibet. Sea-Lake Salt and Chemical Industry, 34(2), 1–6,9 (in Chinese with English abstract). doi: 10.16570/j.cnki.issn1673-6850.2005.02.001. |
Zheng MP. 1989. Salt lakes in Tibetan Plateau. Beijing, Science and Technology Press, 1–470. |
Zheng MP, Wang XD, Peng QM, Chen ZY, Zhao YY, Dai ZX, Zeng WQ. 2001. Exploitation trend of saline lake lithium resources in China. The Chinese Journal of Nonferrous Metals, 11(1), 17–20 (in Chinese with English abstract). |
Zheng XY, Zhang MG, Xu C, Li BX. 2002. Annals of salt lakes in China. Beijing, Scientifical Press, 1–415 (in Chinese with English abstract). |
Zherebtsova IK, Volkova NN. 1966. Experimental study of trace elements behavior under natural sunny evaporation of Black Sea water and brines of Lake Sasyk-Sivash. Geochemistry, N7, 832–845. |
Zhou XM, Li WX. 2000. Origin of late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4), 269–287. doi: 10.1016/S0040-1951(00)00120-7. |
Zhu RZ, Li WS, Wu BH, Liu CL. 1989. New geological understanding of Yiliping and East and West Tai Kinaire Lakes in Qaidam Basin, Qinghai Province. Geological Review, 35(6), 558–565 (in Chinese with English abstract). |
Past and projected production and consumption of global lithium mines (after Sun X et al., 2022; USGS, 2022)
Main lithium ore resources and reserves distribution and the main lithium mineral products producing countries worldwide (after USGS, 2022)
Distribution map of major lithium-rich brine deposits in the world.
Distribution and geological schematic map of salt lakes in the South American plateau (after Allmendinger R et al.,1997; López Steinmetz RL and Salvi S, 2021)
Distribution map of brine-type lithium deposits in the western plateau of North America
Distribution map of lithium-bearing salt lakes in the Qinghai-Tibet Plateau (after Dong T et al. 2015, He L et al. 2015, Bai YM et al. 2018, Fan QS et al. 2018, Han JB, 2018, Li QK et al. 2022, Yu SY et al. 2022).
Distribution map of evaporite basins in South China since Mesozoic. (1) Jiangling depression; (2) Qianjiang depression; (3) Xiaoban depression; (4) Yunying depression; (5) Nanxiang basin; (6) Yewu depression; (7) Wucheng Basin; (8) Dingyuan depression; (9) Huaian depression; (10) Jintan Basin; (11) Qingjiang Basin; (12) Hengyang Basin; (13) Jitai Basin; (14) Huichang Basin; (15) Sanshui Basin (modified from Wang JY et al., 2021)
Location map of the Siberian Platform and four artesian basins indicating distribution of salt-bearing deposits and brines on the Platform (after Alexeev SV et al., 2007).
Map of the Salar de Atacama basin, showing the major rock units (Godfrey LV et al., 2019).
Regional geology of the Clayton Valley, NV region represented by USGS geologic map (afterLudington S et al., 2007)
a‒Location of Lake Zabuye in the world.
a‒Geographic location of the Jianghan Basin (after Gan YQ et al., 2014); b‒locations of sampling boreholes (after Yu XC et al., 2021); and c‒stratigraphic column of the Jianghan Basin (after Wang BJ et al., 2006).
Map of Pacific plate subduction into southern China plate and its stagnant slabs in the mantle transition zone during the late Mesozoic in southeast China (after Huang JL and Zhao DP, 2006).
Relationship between Mg/Li ratio and lithium concentration in terrestrial water body worldwide (data after Chan LH et al., 1993; Huh Y et al., 1998; James RH and Palmer MR, 2000; Kasemann SA et al., 2004; Teng FZ et al., 2004; Tomascak PB, 2004; Kay SM et al., 1994; Munk LA and Chamberlain CP, 2011; Misra S and Froelich PN, 2012; Wang LC et al., 2017; Godfrey LV et al., 2019; Garcia MG et al., 2020; He MY et al., 2020; Weynell et al., 2021, Yu XC et al., 2022; Yan K et al., 2022; Li ZY et al., 2024)
δ7Li vs. Li concentration or content diagram of terrestrial brines. (a) δ7Li vs. Li content of surrounding rocks of salt lake brine; (b) δ7Li vs. Li concentration of river, cold and hot spring; (c) δ7Li vs. Li concentration of brines. Data for Qaidam basin from He MY et al., 2020; Data for Tibet from Weynell M et al., 2021, Li ZY et al., 2024; North American data cited from Munk LA and Chamberlain CP, 2011; South American plateau salt lake data from Kasemann SA et al., 2004; Kay SM et al., 1994; Godfrey LV et al., 2019; García MG et al., 2020; Data of Jianghan Basin cited from Wang LC et al., 2017; Yan K et al., 2022; The Jitai Basin is from Yu XC et al., 2022. (Worldwide data on rivers, subsurface brines, continental hydrothermal fluids, and continental crust from Huh Y et al., 1998; James RH and Palmer MR, 2000; Chan LH et al., 1993; Tomascak PB, 2004; Misra S and Froelich PN, 2012; Teng FZ et al., 2004)
Genesis of high temperature Li-enriched brine in Jiangling depression, South China (after Liu CL et al., 2013)
Kinetic models of the formation of brine-Li deposits in salt lakes of plateaus in the world (after Liu CL et al., 2021).
Summary diagram of the geologic, geochemical, and hyprogeologic features of lithium brines emphasizing the sources, transport, and fate of lithium (after Bradley D et al., 2013)