2024 Vol. 7, No. 2
Article Contents

Yu-feng Wang, Qian-gong Cheng, Qi Zhu, 2024. Airblast evolution initiated by Wangjiayan landslides in the Ms 8.0 Wenchuan earthquake and its destructive capacity analysis, China Geology, 7, 237-247. doi: 10.31035/cg2023154
Citation: Yu-feng Wang, Qian-gong Cheng, Qi Zhu, 2024. Airblast evolution initiated by Wangjiayan landslides in the Ms 8.0 Wenchuan earthquake and its destructive capacity analysis, China Geology, 7, 237-247. doi: 10.31035/cg2023154

Airblast evolution initiated by Wangjiayan landslides in the Ms 8.0 Wenchuan earthquake and its destructive capacity analysis

More Information
  • Airblasts, as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches, commonly result in catastrophic damages and are attracting more and more scientific attention. To quantitatively analyze the intensity of airblast initiated by landslides, the Wangjiayan landslide, occurred in the Wenchuan earthquake, is selected here with the landslide propagation and airblast evolution being studied using FLUENT by introducing the Voellmy rheological law. The results reveal that: (1) For the Wangjiayan landslide, its whole travelling duration is only 12 s with its maximum velocity reaching 36 m/s at t=10 s; (2) corresponding to the landslide propagation, the maximum velocity, 28 m/s, of the airblast initiated by the landslide also appears at t=10 s with its maximum pressure reaching 594.8 Pa, which is equivalent to violent storm; (3) under the attack of airblast, the load suffered by buildings in the airblast zone increases to 1300 Pa at t=9.4 s and sharply decreased to ‒7000 Pa as the rapid decrease of the velocity of the sliding mass at t=10 s, which is seriously unfavorable for buildings and might be the key reason for the destructive collapse of buildings in the airblast zone of the Wangjiayan landslide.

  • 加载中
  • Catane SG, Cabria HB, Zarco MAH, Saturay Jr RM, Mirasol-Robert AA. 2008. The 17 February 2006 Guinsaugon rock slide-debris avalanche, Southern Leyte, Philippines: deposit characteristics and failure mechanism. Bulletin of Engineering Geology and the Environment, 67, 305–320. doi: 10.1007/s10064-008-0120-y.

    CrossRef Google Scholar

    Chen H, Lee CF. 2003. A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology, 51(4), 269–288. doi: 10.1016/S0169-555X(02)00224-6.

    CrossRef Google Scholar

    Cheng QG, Wang YF, Zhu Q. 2012. Airblast generated by rock avalanche. In: Landslides and Engineered Slopes: Protecting Society through Improved Understanding. London, UK, CRC Press, Taylor & Francis Group, 841‒848.

    Google Scholar

    Crosta GB, Chen H, Lee CF. 2004. Replay of the 1987 Val Pola Landslide, Italian Alps. Geomorphology, 60(1–2), 127–146. doi: 10.1016/j.geomorph.2003.07.015.

    CrossRef Google Scholar

    Cruden DM, Lu ZY. 1992. The landslide and debris flow from Mount Cayley, B. C., in June 1984. Canada Geotechnical Journal, 29 (4), 614‒626. doi: 10.1139/t92-069.

    Google Scholar

    Cui P, Chen XQ, Zhu YY, Su FH, Wei FQ, Han YS, Liu HJ, Zhuang JQ. 2011. The Wenchuan Earthquake (May 12, 2008), Sichuan Province, China, and resulting geo-hazards. Natural Hazards, 56, 19–36. doi: 10.1007/s11069-009-9392-1.

    CrossRef Google Scholar

    Dai FC, Xu C, Yao X, Lu L, Tu XB, Gong QM. 2011. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. Journal Asian Earth Sciences, 40(4), 883‒895. doi: 10.1016/j.jseaes.2010.04.010.

    Google Scholar

    Delaney KB, Evans SG. 2015. The 2000 Yigong landslide (Tibetan Plateau), landslide-dammed lake and outburst flood: Review, remote sensing analysis, and process modelling. Geomorphology, 246, 377–393. doi: 10.1016/j.geomorph.2015.06.020.

    CrossRef Google Scholar

    Dreier L, Bühler Y, Ginzler C, Bartelt P. 2016. Comparison of simulated powder snow avalanches with photogrammetric measurements. Annals of Glaciology, 57(71), 371–381. doi: 10.3189/2016aog71a532.

    CrossRef Google Scholar

    Erismann TH, Abele G. 2001. Dynamics of landslides and rockfalls. Berlin, Springer Berlin, Heidelberg, 316.

    Google Scholar

    Fahnestock RK. 1978. Little Tahoma Peak rockfalls and avalanches, MountRainier, Washington, U. S. A. In: Landslides and Avalanches: Vo. l 1, Natural Phenomena. US, Elsevier, 181‒196.

    Google Scholar

    Ginger J. 2000. Internal pressures and cladding net wind loads on full-scale low-rise building. Journal of Structure Engineering, 126(4), 538–543. doi: 10.1061/(ASCE)0733-9445(2000)126:4(538).

    CrossRef Google Scholar

    Heim A. 1932. Bergsturz und Menschenleben. Zütich: Naturforschenden Gesellschaft. English Translation by SKERNER N A. Landslides and Human Lives. Vancouver: BiTech Publishers Ltd, 1989, 1‒195.

    Google Scholar

    Hungr O. 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canada Geotechnical Journal, 32(4), 610–623. doi: 10.1139/t95-063.

    CrossRef Google Scholar

    Hungr O, Evans SG. 1996. Rock avalanche runout prediction using a dynamic model. In: Proceedings of the 7th International Symposium on Landslides. CRC Press, Taylor & Francis Group, Trondheim, NO, 233‒238.

    Google Scholar

    Hungr O, Evans SG. 2004. Entrainment of debris in rock avalanches; an analysis of a long run-out mechanism. GSA Bulletin, 116(9‒10), 1240‒1252. doi: 10.1130/B25362.1.

    Google Scholar

    Jiang Y, Zhao QH, Yan MG. 1991. Xikou mountain landslide-debris flow, China. In: Balkema AA and Rotterdam (eds.), International symposlum on landslides. Netherlands, 133‒138.

    Google Scholar

    Kargel JS, Leonard GJ, Shugar DH, Haritashya UK, Bevington A, Fielding EJ, Fujita K, Geertsema M, Miles ES, Steiner J, Anderson E, Bajracharya S, Bawden GW, Breashears DF, Byers A, Collins B, Dhital MR, Donnellan A, Evans TL, Geai ML, Glasscoe MT, Green D, Gurung DR, Heijenk R, Hilborn A, Hudnut K, Huyck C, Immerzeel WW, Jiang LM, Jibson R, Kääb A, Khanal NR, Kirschbaum D, Kraaijenbrink PDA, Lamsal D, Liu SY, Lv MY, Mckinney D, Nahirnick NK, Nan ZT, Ojha S, Olsenholler J, Painter TH, Pleasants M, Pratima KC, Yuan QI, Raup BH, Regmi D, Rounce DR, Sakai A, Shangguan DH, Shea JM, Shrestha AB, Shukla A, Stumm D, Van der kooij m, Voss K, Wang X, Weihs B, Wolfe D, Wu LZ, Yao XJ, Yoder MR, Young N. 2016. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science, 351 (6269). doi: 10.1126/science.aac8353.

    Google Scholar

    Kiersch GW. 1964. Vaiont reservoir disaster. Civil Engineering, 34, 32–39.

    Google Scholar

    Mathews WH, McTaggart KC. 1978. Hope landslides, British Columbia, Canada. In: Landslides and Avalanches: Vol. 1, Natural Phenomena. US, Elsevier, 259‒276.

    Google Scholar

    McKinnon M, Hungr O, McDougall S. 2008. Dynamic analyses of Canadian landslides. In: Proceedings of the Fourth Canadian Conference on GeoHazards: From Causes to Management. Canadian Geotechnical Society, Engineering Geology Division, Presse de l'Université de Laval, CA, 20‒24.

    Google Scholar

    Mehta KC. 1984. Wind induced damage observations and their implications to design practice. Engineering Structure, 6(4), 242–247. doi: 10.1016/0141-0296(84)90019-1.

    CrossRef Google Scholar

    Morrissey MM, Savage WZ, Wieczorek GF. 1999. Air blasts generated from rockfall impacts: Analysis of the 1996 Happy Isles event in Yosemite National Park. Journal of Geophysical Research:Solid Earth, 104(B10), 23189–23198. doi: 10.1029/1999JB900189.

    CrossRef Google Scholar

    Penna IM, Hermanns RL, Nicolet P, Morken OA, Dehls J, Gupta V, Jaboyedoff M. 2021. Airblasts caused by large slope collapses. GSA Bulletin, 133 (5‒6), 939‒948. doi: 10.1130/B35531.1.

    Google Scholar

    Pirulli M, Scavia C, Hungr O. 2004. Determination of rock avalanche run-out parameters through back analyses. In: Balkema AA and Rotterdam (eds. ), Proceedings of the 9th International Symposium on Landslides. London, UK, 1361‒1366.

    Google Scholar

    Plafker G, Ericksen GE. 1978. Nevados Huascaran avalanches, Peru. In: Landslides and Avalanches: Vol. 1, Natural Phenomena. US, Elsevier, 277‒314.

    Google Scholar

    Sosio R, Crosta GB, Hungr O. 2008. Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Engineering Geology, 100(1‒2), 11‒26. doi: 10.1016/j.enggeo.2008.02.012.

    Google Scholar

    Tang HM, Jia HB, Hu XL, Li DW, Xiong CR. 2010. Characteristics of landslides induced by the great Wenchuan earthquake. Journal of Earth Science, 21, 104–113. doi: 10.1007/s12583-010-0008-1.

    CrossRef Google Scholar

    Voight B. 1978. Lower Gros Ventre slide, Wyoming, U. S. A., In: Landslides and Avalanches: Vo. l 1, Natural Phenomena. US, Elsevier, 113‒166.

    Google Scholar

    Wieczorek GF, Snyder JB, Waitt RB, Morrissey MM, Uhrhammer RA, Harp EL, Norris RD, Bursik MI, Finewood LG. 2000. Unusual July 10, 1996, rock fall at Happy Isles, Yosemite National Park, California. GSA Bulletin 112(1), 75‒85. doi: 10.1130/0016-7606(2000)112<75:UJRFAH>2.0.CO;2.

    Google Scholar

    Xu Q, Shang YJ, Asch TV, Wang ST, Zhang ZY, Dong XJ. 2012. Observations from the large, rapid Yigong landslide-debris avalanche, southeast Tibet. Canada Geotechnical Journal, 49, 589–606. doi: 10.1139/t2012-0.

    CrossRef Google Scholar

    Yin YP, Wang FW, Sun P. 2009. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides, 6, 139–152. doi: 10.1007/s10346-009-0148-5.

    CrossRef Google Scholar

    Yin YP, Zheng WM, Li XC, Sun P, Li B. 2011. Catastrophic landslides associated with the M 8. 0 Wenchuan earthquake. Bulletin of Engineering Geology and the Environment, 70, 15–32. doi: 10.1007/s10064-010-0334-7.

    CrossRef Google Scholar

    Zhuang Y, Xu Q, Xing AG. 2019. Numerical investigation of the air blast generated by the Wenjia valley rock avalanche in Mianzhu, Sichuan, China. Landslides, 16, 2499–2508. doi: 10.1007/s10346-019-01253-0.

    CrossRef Google Scholar

    Zhuang Y, Xu Q, Xing AG, Bilal M, Gnyawali KR. 2023a. Catastrophic air blasts triggered by large ice/rock avalanches. Landslide, 20, 53–64. doi: 10.1007/s10346-022-01967-8.

    CrossRef Google Scholar

    Zhuang Y, Xing AG, Bartelt P, Bilal M, Ding ZW. 2023b. Dynamic response and breakage of trees subject to a landslide-induced air blast: Implications for air blasts risk assessment in mountainous regions. Natural Hazards and Earth System Sciences, 23(4), 1257–1266. doi: 10.5194/nhess-23-1257-2023.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(111) PDF downloads(4) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint