2024 Vol. 7, No. 2
Article Contents

Chang Yang, Yong-bo Tie, Xian-zheng Zhang, Yan-feng Zhang, Zhi-jie Ning, Zong-liang Li, 2024. Analysis of debris flow control effect and hazard assessment in Xinqiao Gully, Wenchuan Ms 8.0 earthquake area based on numerical simulation, China Geology, 7, 248-263. doi: 10.31035/cg2023144
Citation: Chang Yang, Yong-bo Tie, Xian-zheng Zhang, Yan-feng Zhang, Zhi-jie Ning, Zong-liang Li, 2024. Analysis of debris flow control effect and hazard assessment in Xinqiao Gully, Wenchuan Ms 8.0 earthquake area based on numerical simulation, China Geology, 7, 248-263. doi: 10.31035/cg2023144

Analysis of debris flow control effect and hazard assessment in Xinqiao Gully, Wenchuan Ms 8.0 earthquake area based on numerical simulation

More Information
  • Xinqiao Gully is located in the area of the 2008 Wenchuan Ms 8.0 earthquake in Sichuan province, China. Based on the investigation of the 2023 “6-26” Xinqiao Gully debris flow event, this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards. Through field investigation and numerical simulation methods, the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event. The simulation results show that the debris flow control project reduced the flow intensity by 41.05% to 64.61%. The storage capacity of the dam decreases gradually from upstream to the mouth of the gully, thus effectively intercepting and controlling the debris flow. By evaluating the debris flow of different recurrence intervals, further measures are recommended for managing debris flow events.

  • 加载中
  • Bai YJ, Tie YB, Meng MJ, Xiong XH, Gao YC, Ge H, Ba R, Xu W. 2022. Characteristics and temporal-spatial distribution of geohazards in western Sichuan. Sedimentary Geology and Tethyan Geology, 42(4), 666–674. (in Chinese with English abstract).

    Google Scholar

    Bastian VB, Theo VA, Wei H, Tang C, Mavrouli O, Jetten VG, Van CJ. 2021. Towards a model for structured mass movements: the OpenLISEM hazard model 2. 0a. Geoscientific Model Development, 14(4), 1841–1864. doi: 10.5194/gmd-14-1841-2021.

    CrossRef Google Scholar

    Chang M, Liu Y, Zhou C, Che HX. 2020. Hazard assessment of a catastrophic mine waste debris flow of Hou Gully, Shimian, China. Engineering Geology, 275, 105733. doi: 10.1016/j.enggeo.2020.105733.

    CrossRef Google Scholar

    Chang M, Tang C, Van AT, Cai F. 2017. Hazard assessment of debris flows in the Wenchuan earthquake-stricken area, South West China. Landslides, 14(5), 1783–1792. doi: 10.1007/s10346-017-0824-9.

    CrossRef Google Scholar

    Chang TC, Wang ZY, Chien YH. 2010. Hazard assessment model for debris flow prediction. Environmental Earth Sciences, 60(8), 1619–1630. doi: 10.1007/s12665-009-0296-x.

    CrossRef Google Scholar

    Chen R, Liu X, Huang E, Guo Z. 2013. Numerical analysis of emergency river restoration scheme for Qingping mega debris flow. Journal of Mountain Science, 10(1), 130–136. doi: 10.1007/s11629-013-2120-z.

    CrossRef Google Scholar

    Chen X, Cui P, You Y, Chen JG, Li DJ. 2015a. Engineering measures for debris flow hazard mitigation in the Wenchuan earthquake area. Engineering Geology, 194, 73–85. doi: 10.1016/j.enggeo.2014.10.002.

    CrossRef Google Scholar

    Chen X, Cui P, You Y, Chen JG, Li DJ. 2015b. Engineering measures for debris flow hazard mitigation in the Wenchuan earthquake area. Engineering Geology, 194, 73–85. doi: 10.1016/j.enggeo.2014.10.002.

    CrossRef Google Scholar

    Chen Z, He SM, Shen W, Wang DP. 2022. Effects of defense-structure system for bridge piers on two-phase debris flow wakes. Acta Geotechnica, 17(5), 1645–1665. doi: 10.1007/s11440-021-01296-5.

    CrossRef Google Scholar

    Cheng HL, Huang Y, Zhang WJ, Xu Q. 2022. Physical process-based runout modeling and hazard assessment of catastrophic debris flow using SPH incorporated with ArcGIS: A case study of the Hongchun gully. Catena, 212, 106052. doi: 10.1016/j.catena.2022.106052.

    CrossRef Google Scholar

    Cui P, Chen XQ, Zhu YY, Su FH, Wei FQ, Han YS, Liu HJ, Zhuang JQ. 2011a. The Wenchuan Earthquake (May 12, 2008), Sichuan Province, China, and resulting geohazards. Natural Hazards, 56(1), 19–36. doi: 10.1007/s11069-009-9392-1.

    CrossRef Google Scholar

    Cui P, Hu KH, Zhuang JQ, Yang Y, Zhang JQ. 2011b. Prediction of debris-flow danger area by combining hydrological and inundation simulation methods. Journal of Mountain Science, 8(1), 1–9. doi: 10.1007/s11629-011-2040-8.

    CrossRef Google Scholar

    Cui P, Liu SQ, Tang BX, Chen XQ. 2003. Debris flow prevention pattern in national parks - Taking the world natural heritage Jiuzhaigou as an example. Science in China E:Technological Sciences, 46(7), 1–11. doi: 10.1360/03ez0004.

    CrossRef Google Scholar

    Ding MT, Huang T. 2019. Vulnerability assessment of population in mountain settlements exposed to debris flow: A case study on Qipan gully, Wenchuan County, China. Natural Hazards, 99(1), 553–569. doi: 10.1007/s11069-019-03759-1.

    CrossRef Google Scholar

    Ding XY, Hu WJ, Liu F, Yang X. 2023. Risk assessment of debris flow disaster in mountainous area of northern Yunnan province based on FLO-2D under the influence of extreme rainfall. Frontiers in Environmental Science, 11, 1252206. doi: 10.3389/fenvs.2023.1252206.

    CrossRef Google Scholar

    Fan JC, Huang HY, Liu Chang, Yang CL, Guo JJ, Chang CF, Chang YC. 2015. Effects of landslide and other physiographic factors on the occurrence probability of debris flows in central Taiwan. Environmental Earth Sciences, 74(2), 1785–1801. doi: 10.1007/s12665-015-4187-z.

    CrossRef Google Scholar

    Gong XL, Chen XQ, Chen KT, Zhao WY, Chen JG. 2021. Engineering planning method and control modes for debris flow disasters in scenic areas. Frontiers in Earth Science, 9, 712403. doi: 10.3389/feart.2021.712403.

    CrossRef Google Scholar

    Haeberli W, Kääb A, Mühll DV, Teysseire P. 2001. Prevention of outburst floods from periglacial lakes at Grubengletscher, Valais, Swiss Alps. Journal of Glaciology, 47(156), 111–122. doi: 10.3189/172756501781832575.

    CrossRef Google Scholar

    Horton AJ, Hales TC, Ouyang CJ, Fan XM. 2019. Identifying post-earthquake debris flow hazard using Massflow. Engineering Geology, 258, 105134. doi: 10.1016/j.enggeo.2019.05.011.

    CrossRef Google Scholar

    Imaizumi F, Sidle RC, Kamei R. 2008. Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surface Processes and Landforms:The Journal of the British Geomorphological Research Group, 33(6), 827–840. doi: 10.1002/esp.1574.

    CrossRef Google Scholar

    Iverson RM. 1997. The physics of debris flows. Reviews of Geophysics, 35(3), 245–296. doi: 10.1029/97rg00426.

    CrossRef Google Scholar

    Jun H, Min DH, Yoon HK. 2017. Determination of monitoring systems and installation location to prevent debris flow through web-based database and AHP. Marine Georesources & Geotechnology, 35(8), 1049–1057. doi: 10.1080/1064119x.2017.1280716.

    CrossRef Google Scholar

    Kurovskaia VA, Chernomorets SS, Krylenko IN, Vinogradova TA, Dokukin MD, Zaporozhchenko EV. 2022. Buzulgan rockslide: Simulation of debris flows along Gerkhozhan-Su river and scenarios of their impact on Tyrnyauz Town after Changes in 2020. Water Resources, 49(1), 58–68. doi: 10.1134/s0097807822010110.

    CrossRef Google Scholar

    Li D, Zhang HQ, Li YQ, Zhen Z, Bu SL, Tang XC, Chen S, Luo S, Tian SF, Xiong MM. 2019. Hazard assessment of debris flow in Guangxi, China based on hydrodynamics mechanism. Environmental Earth Sciences, 78(2), 1–17. doi: 10.1007/s12665-018-8040-z.

    CrossRef Google Scholar

    Li M, Tian CS, Wang YK, Liu Q, Lu YF, Wang S. 2018. Impacts of future climate change (2030‒2059) on debris flow hazard: A case study in the Upper Minjiang River basin, China. Journal of Mountain Science, 15(8), 1836–1850. doi: 10.1007/s11629-017-4787-z.

    CrossRef Google Scholar

    Liu GX, Dai E, Ge QS, Wu WX, Xu XC. 2013. A similarity-based quantitative model for assessing regional debris-flow hazard. Natural Hazards, 69(1), 295–310. doi: 10.1007/s11069-013-0709-8.

    CrossRef Google Scholar

    Luna BQ, Blahut J, Van CJ, Sterlacchini S, Van TW, Akbas SO. 2011. The application of numerical debris flow modelling for the generation of physical vulnerability curves. Natural Hazards and Earth System Sciences, 11(7), 2047–2060. doi: 10.5194/nhess-11-2047-2011.

    CrossRef Google Scholar

    Mikos M, Bezak N. 2021. Debris Flow Modelling Using RAMMS Model in the Alpine Environment With Focus on the Model Parameters and Main Characteristics. Frontiers in Earth Science, 8, 605061. doi: 10.3389/feart.2020.605061.

    CrossRef Google Scholar

    Ni HY, Zheng WM, Song Z, Xu W. 2014. Catastrophic debris flows triggered by a 4 July 2013 rainfall in Shimian, SW China: formation mechanism, disaster characteristics and the lessons learned. Landslides, 11(5), 909–921. doi: 10.1007/s10346-014-0514-9.

    CrossRef Google Scholar

    Ni HY, Zheng WM, Tie YB, Su PC, Tang YQ, Xu RG, Wang DW, Chen XY. 2012. Formation and characteristics of post-earthquake debris flow: a case study from Wenjia gully in Mianzhu, Sichuan, SW China. Natural Hazards, 61(2), 317–335. doi: 10.1007/s11069-011-9914-5.

    CrossRef Google Scholar

    Nocentini M, Tofani V, Gigli G, Fidolini F, Casagli N. 2015. Modeling debris flows in volcanic terrains for hazard mapping: the case study of Ischia Island (Italy). Landslides, 12(5), 831–846. doi: 10.1007/s10346-014-0524-7.

    CrossRef Google Scholar

    Ouyang CJ, He SM, Tang C. 2015. Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area. Engineering Geology, 194, 62–72. doi: 10.1016/j.enggeo.2014.07.012.

    CrossRef Google Scholar

    Ouyang CJ, Wang ZW, An HC, Liu XR, Wang DP. 2019. An example of a hazard and risk assessment for debris flows-A case study of Niwan Gully, Wudu, China. Engineering Geology, 263, 105351. doi: 10.1016/j.enggeo.2019.105351.

    CrossRef Google Scholar

    Pai PF, Li LL, Hung WZ, Lin KP. 2014. Using ADABOOST and Rough Set Theory for Predicting Debris Flow Disaster. Water Resources Management, 28(4), 1143–1155. doi: 10.1007/s11269-014-0548-8.

    CrossRef Google Scholar

    Pudasaini SP. 2012. A general two-phase debris flow model. Journal of Geophysical Research: Earth Surface, 117, F3. doi: 10.1029/2011jf002186.

    CrossRef Google Scholar

    Ray A, Verma H, Bharati AK, Rai R, Koner R, Singh TN. 2022. Numerical modelling of rheological properties of landslide debris. Natural Hazards, 110(3), 2303–2327. doi: 10.1007/s11069-021-05038-4.

    CrossRef Google Scholar

    Scheidl C, McArdell BW, Rickenmann D. 2015. Debris-flow velocities and superelevation in a curved laboratory channel. Canadian Geotechnical Journal, 52(3), 305–317. doi: 10.1139/cgj-2014-0081.

    CrossRef Google Scholar

    Tang C, Zhu J, Ding J, Cui XF, Chen L, Zhang JS. 2011. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake. Landslides, 8(4), 485–497. doi: 10.1007/s10346-011-0269-5.

    CrossRef Google Scholar

    Tang HM, Wasowski J, Juang CH. 2019. Geohazards in the three Gorges Reservoir Area, China Lessons learned from decades of research. Engineering Geology, 261, 105267. doi: 10.1016/j.enggeo.2019.105267.

    CrossRef Google Scholar

    Tie YB, Ge H, Gao YC, Bai YJ, Xu W, Gong LF, Wang JZ, Tian K, Xiong XH, Fan WL, Zhang XZ. 2022. The research progress and prospect of geological hazards in Southwest China since the 20th Century. Sedimentary Geology and Tethyan Geology, 42(4), 653–665 (in Chinese with English abstract).

    Google Scholar

    Van B, Lombardo LG, Ma CY, Van C, Jetten V. 2021. Physically-based catchment-scale prediction of slope failure volume and geometry. Engineering Geology, 284, 105942. doi: 10.1016/j.enggeo.2020.105942.

    CrossRef Google Scholar

    Wang SY, Meng XM, Chen G, Guo P, Xiong MQ, Zeng RQ. 2017. Effects of vegetation on debris flow mitigation: A case study from Gansu province, China. Geomorphology, 282, 64–73. doi: 10.1016/j.geomorph.2016.12.024.

    CrossRef Google Scholar

    Wang W, Xu WL, Liu SJ. 2001. Prevention of debris flow disasters on Chengdu-Kunming Railway. Journal of Environmental Sciences, 13(3), 333–336.

    Google Scholar

    Wang ZF, Zhang XS, Zhang XZ, Wu MT, Wu B. 2023. Hazard assessment of potential debris flow: A case study of Shaling Gully, Lingshou County, Hebei Province, China. Frontiers in Earth Science, 11, 1089510. doi: 10.3389/feart.2023.1089510.

    CrossRef Google Scholar

    Xiong MQ, Meng XM, Wang SY, Guo P, Li YJ, Chen G, Qing F, Cui ZJ, Zhao Y. 2016. Effectiveness of debris flow mitigation strategies in mountainous regions. Progress in Physical Geography, 40(6), 768–793. doi: 10.1177/0309133316655304.

    CrossRef Google Scholar

    Yan Y, Tang H, Hu KH, Turowski JM, Wei FQ. 2023. Deriving Debris-Flow Dynamics From Real-Time Impact-Force Measurements. Journal of Geophysical Research:Earth Surface, 128(3), e2022JF006715. doi: 10.1029/2022jf006715.

    CrossRef Google Scholar

    Yang HQ, Haque ME, Song KL. 2021. Experimental study on the effects of physical conditions on the interaction between debris flow and baffles. Physics of Fluids, 33(5), 056601. doi: 10.1063/5.0046670.

    CrossRef Google Scholar

    Yang ZQ, Liao LP, Jin H. 2013. Debris flows in the NiuQuan valley-the epicentre of Wenchuan Earthquake. Disaster Advances, 6, 393–403.

    Google Scholar

    Yin HQ, Zhou W, Peng ZQ. 2023. Numerical simulation of rainfall-induced debris flow in the Hongchun gully based on the coupling of the LHT model and the Pudasaini model. Natural Hazards, 117(3), 2553–2572. doi: 10.1007/s11069-023-05956-5.

    CrossRef Google Scholar

    Yu B. 2008. Research on the Calculating Density by the Deposit of Debris Flows. Acta Sedimentologica Sinica, 26(5), 789–796 (in Chinese with English abstract).

    Google Scholar

    Zhang J, Guo ZX, Cao SY, Singh VP. 2013. Scale model for the confluent area of debris flow and main river: a case study of the Wenjia Gully. Natural Hazards and Earth System Sciences, 13(12), 3083–3093. doi: 10.5194/nhess-13-3083-2013.

    CrossRef Google Scholar

    Zhang WT, Liu JF, Li DL, You Y, Yang HQ. 2023. Evaluation of comprehensive treatment effect of geotechnical and ecological engineering for debris flow: case of Wenchuan County, Sichuan Province. Natural Hazards, 116(1), 769–794. doi: 10.1007/s11069-022-05698-w.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(11)

Article Metrics

Article views(368) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint