2024 Vol. 7, No. 2
Article Contents

Zi-zheng Guo, Xin-yong Zhou, Da Huang, Shi-jie Zhai, Bi-xia Tian, Guang-ming Li, 2024. Dynamic simulation insights into friction weakening effect on rapid long-runout landslides: A case study of the Yigong landslide in the Tibetan Plateau, China, China Geology, 7, 222-236. doi: 10.31035/cg2023132
Citation: Zi-zheng Guo, Xin-yong Zhou, Da Huang, Shi-jie Zhai, Bi-xia Tian, Guang-ming Li, 2024. Dynamic simulation insights into friction weakening effect on rapid long-runout landslides: A case study of the Yigong landslide in the Tibetan Plateau, China, China Geology, 7, 222-236. doi: 10.31035/cg2023132

Dynamic simulation insights into friction weakening effect on rapid long-runout landslides: A case study of the Yigong landslide in the Tibetan Plateau, China

More Information
  • This study proposed a novel friction law dependent on velocity, displacement and normal stress for kinematic analysis of runout process of rapid landslides. The well-known Yigong landslide occurring in the Tibetan Plateau of China was employed as the case, and the derived dynamic friction formula was included into the numerical simulation based on Particle Flow Code. Results showed that the friction decreased quickly from 0.64 (the peak) to 0.1 (the stead value) during the 5s-period after the sliding initiation, which explained the behavior of rapid movement of the landslide. The monitored balls set at different sections of the mass showed similar variation characteristics regarding the velocity, namely evident increase at the initial phase of the movement, followed by a fluctuation phase and then a stopping one. The peak velocity was more than 100 m/s and most particles had low velocities at 300s after the landslide initiation. The spreading distance of the landslide was calculated at the two-dimension (profile) and three-dimension scale, respectively. Compared with the simulation result without considering friction weakening effect, our results indicated a max distance of about 10 km from the initial unstable position, which fit better with the actual situation.

  • 加载中
  • Agterberg F. 2022. How Can Earth Science Help Reduce the Adverse Effects of Climate Change? Journal of Earth Science, 33 (5), 1338–1338. doi:10.1007/s12583-022-1741-y

    Google Scholar

    Cai Z, Liu E, Chen N, Feng J, Hu G, Su Y. 2022. Numerical analysis of the initiation and sliding process of the Yigong landslide using a continuous–discontinuous method. Environmental Earth Sciences, 81(5), 150. doi: 10.1007/s12665-022-10279-y.

    CrossRef Google Scholar

    Crozier MJ. 2010. Deciphering the effect of climate change on landslide activity: A review. Geomorphology, 124(3–4), 260–267. doi: 10.1016/j.geomorph.2010.04.009.

    CrossRef Google Scholar

    Cui P, Ge Y. , Li S, Li Z, Xu X, Zhou GGD, Chen H, Wang H, Lei Y, Zhou L, Yi S, Wu C, Guo J, Wang Q, Lan H, Ding M, Ren J, Zeng L, Jiang Y, Wang Y. 2022. Scientific challenges in disaster risk reduction for the Sichuan–Tibet Railway. Engineering Geology, 309, 106837. doi:10.1016/j.enggeo.2022.106837

    Google Scholar

    Dawso AG, Matthews JA, Shakes RA. 2017. A Catastrophic Landslide (Sturzstrom) in Verkilsdalen, Rondane National Park, Southern Norway. Physical Geography, 68(1–2), 77–87. doi: 10.1080/04353676.1986.11880160.

    CrossRef Google Scholar

    De Blasio FV, Elverho A. 2008. A model for frictional melt production beneath large rock avalanches. Journal of Geophysical Research: Earth Surface, 113, F02014. doi: 10.1029/2007JF000867.

    CrossRef Google Scholar

    Delaney KB, Evans SG. 2015. The 2000 Yigong landslide (Tibetan Plateau), rockslide-dammed lake and outburst flood: Review, remote sensing analysis, and process modelling. Geomorphology, 246, 377–393. doi: 10.1016/j.geomorph.2015.06.020.

    CrossRef Google Scholar

    Dufresne A, Davies TR. 2009. Longitudinal ridges in mass movement deposits. Geomorphology, 105(3–4), 171–181. doi: 10.1016/j.geomorph.2008.09.009.

    CrossRef Google Scholar

    Erismann TH. 1979. Mechanisms of large landslide. Rock Mechanics, 12, 15–46. doi: 10.1007/BF01241087.

    CrossRef Google Scholar

    Fei M, Sun Q, Zhong D, Zhou GG. 2012. Simulations of granular flow along an inclined plane using the Savage–Hutter model. Particuology, 10(2), 236–241. doi: 10.1016/j.partic.2011.11.007.

    CrossRef Google Scholar

    Feng ZY, Lo CM, Lin QF. 2017. The characteristics of the seismic signals induced by landslides using a coupling of discrete element and finite difference methods. Landslides, 14, 661–674. doi: 10.1007/s10346-016-0714-6.

    CrossRef Google Scholar

    Fort M. 2000. Glaciers and mass wasting processes: their influence on the shaping of the Kali Gandaki valley (higher Himalaya of Nepal). Quaternary International, 65–66, 101–119. doi:10.1016/S1040-6182(99)00039-7

    Google Scholar

    Goguel J. 1978. Chapter 20 - Scale-Dependent Rockslide Mechanisms, with Emphasis on the Role of Pore Fluid Vaporization. Rockslides and avalanches, 14, 693–705.

    Google Scholar

    Guo Z, Chen L, Yin K, Shrestha DP, Zhang L. 2020a. Quantitative risk assessment of slow-moving landslides from the viewpoint of decision-making: A case study of the Three Gorges Reservoir in China. Engineering Geology, 273, 105667. doi: 10.1016/j.enggeo.2020.105667.

    CrossRef Google Scholar

    Guo C, Montgomery DR, Zhang Y, Zhong N, Fan C, Wu R, Yang Z, Ding Y, Jin J, Yan Y. 2020b. Evidence for repeated failure of the giant Yigong landslide on the edge of the Tibetan Plateau. Scientific Reports, 10, 14371. doi: 10.1038/s41598-020-71335-w.

    CrossRef Google Scholar

    Guo Z, Chen L, Gui L, Du J, Yin K, Do HM. 2020c. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model. Landslides, 17, 567–583. doi: 10.1007/s10346-019-01314-4.

    CrossRef Google Scholar

    Guo Z, Torra O, Hürlimann M, Medina V, Puig-Polo C. 2022a. FSLAM: A QGIS plugin for fast regional susceptibility assessment of rainfall-induced landslides. Environmental Modelling and Software, 150, 105354. doi: 10.1016/j.envsoft.2022.105354.

    CrossRef Google Scholar

    Guo J, Cui Y, Xu W, Shen W, Li T, Yi S. 2022b. A novel friction weakening-based dynamic model for landslide runout assessment along the Sichuan-Tibet Railway. Engineering Geology, 306, 106721. doi: 10.1016/j.enggeo.2022.106721.

    CrossRef Google Scholar

    Guo Z, Tian B, He J, Xu C, Zeng T, Zhu Y. 2023. Hazard assessment for regional typhoon-triggered landslides by using physically-based model -A case study from southeastern China. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 17(4), 740–754. doi: 10.1080/17499518.2023.2188465.

    CrossRef Google Scholar

    Guo Z, Tian B, Zhu Y, He J, Zhang T. 2024. How do the landslide and non-landslide sampling strategies impact landslide susceptibility assessment? — A case study at catchment scale from China. Journal of Rock Mechanics and Geotechnical Engineering, 16(3), 877–894. doi: 10.1016/j.jrmge.2023.07.026.

    CrossRef Google Scholar

    Hsu K J. 1975. Catastrophic debris streams (sturzstroms) generated by rockfalls. Geological Society of America Bulletin, 86(1), 129–140. doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2.

    CrossRef Google Scholar

    Hu K, Wu C, Wei L, Zhang X, Zhang Q, Liu W, Yanites BJ. 2021. Geomorphic effects of recurrent outburst superfloods in the Yigong River on the southeastern margin of Tibet. Scientific Reports, 11(1), 15577. doi: 10.1038/s41598-021-95194-1.

    CrossRef Google Scholar

    Huang T, Ding M, She T, Tian S, Yang J. 2017. Numerical simulation of a high-speed landslide in Chenjiaba, Beichuan, China. Engineering Geology, 14(11), 2137–2149. doi: 10.1007/s11629-017-4516-7.

    CrossRef Google Scholar

    Huang F, Xiong H, Chen S, Lv Z, Huang J, Chang Z, Catani F. 2023. Slope stability prediction based on a long short-term memory neural network: comparisons with convolutional neural networks, support vector machines and random forest models. International Journal of Coal Science and Technology, 10(1), 18. doi: 10.1007/s40789-023-00579-4.

    CrossRef Google Scholar

    Hungr O, Leroueil S, Picarelli L. 2014. The Varnes classification of landslide types, an update. Landslides, 11(2), 167–194. doi: 10.1007/s10346-013-0436-y.

    CrossRef Google Scholar

    Hungr O, McDougall S. 2009. Two numerical models for landslide dynamic analysis. Computers and Geosciences, 35(5), 978–992. doi: 10.1016/j.cageo.2007.12.003.

    CrossRef Google Scholar

    Hürlimann M, Guo Z, Puig-Polo C, Medina V. 2022. Impacts of future climate and land cover changes on landslide susceptibility: regional scale modelling in the Val d'Aran region (Pyrenees, Spain). Landslides, 19(1), 99–118. doi: 10.1007/s10346-021-01775-6.

    CrossRef Google Scholar

    Iverson RM, Ouyang C. 2015. Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory. Reviews of Geophysics, 53(1), 27–58. doi: 10.1002/2013RG000447.

    CrossRef Google Scholar

    Jaboyedoff M, Oppikofer T, Abellán A, Derron MH, Loye A, Metzger R, Pedrazzini A. 2012. Use of LIDAR in landslide investigations: a review. Natural hazards, 61, 5–28. doi: 10.1007/s11069-010-9634-2.

    CrossRef Google Scholar

    Lin A, Ren Z, Kumahara Y. 2010. Structural analysis of the coseismic shear zone of the 2008 Mw 7.9 Wenchuan earthquake, China. Journal of Structural Geology, 32 (6), 781–791. doi:10.1016/j.jsg.2010.05.004

    Google Scholar

    Liu H D, Li D D, Wang Z F. 2018. Dynamic process of the Wenjiagou rock landslide in Sichuan Province, China. Arabian Journal of Geosciences, 11, 1–19. doi: 10.1007/s12517-018-3564-9.

    CrossRef Google Scholar

    Liu W, He S. 2018. Dynamic simulation of a mountain disaster chain: landslides, barrier lakes, and outburst floods. Natural Hazards, 90, 757–775. doi: 10.1007/s11069-017-3073-2.

    CrossRef Google Scholar

    Liu W, He S, Li X, Xu Q. 2016. Two-dimensional landslide dynamic simulation based on a velocity-weakening friction law. Landslides, 13, 957–965. doi: 10.1007/s10346-015-0632-z.

    CrossRef Google Scholar

    Luo J, Pei X, Evans SG, Huang R. 2019. Mechanics of the earthquake-induced Hongshiyan landslide in the 2014 Mw 6.2 Ludian earthquake, Yunnan, China. Engineering Geology, 251, 197–213. doi:10.1016/j.enggeo.2018.11.011

    Google Scholar

    Ma P, Peng J, Zhuang J, Zhu X, Liu C, Cheng Y, Zhang Z. 2022. Initiation Mechanism of Loess Mudflows by Flume Experiments. Journal of Earth Science, 33(5), 1166–1178. doi: 10.1007/s12583-022-1660-y.

    CrossRef Google Scholar

    Melosh HJ. 1979. Acoustic fluidization: A new geologic process? Journal of Geophysical Research: Solid Earth, 84 (B13), 7513–7520. doi:10.1029/JB084iB13p07513

    Google Scholar

    Mizoguchi K, Hirose T, Shimamoto T, Fukuyama E. 2007. Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake. Geophysical Research Letters, 34(1), L01038. doi: 10.1029/2006GL027931.

    CrossRef Google Scholar

    Moore DE, Lockner, DA. 2008. Talc friction in the temperature range 25–400 C: Relevance for fault-zone weakening. Tectonophysics, 449(1-4), 120–132. doi: 10.1016/j.tecto.2007.11.039.

    CrossRef Google Scholar

    Ouyang C, Zhao W, He S, Wang D, Zhou S, An H, Wang Z, Cheng D. 2017. Numerical modeling and dynamic analysis of the 2017 Xinmo landslide in Maoxian County, China. Journal of Mountain Science, 14, 1701–1711. doi: 10.1007/s11629-017-4613-7.

    CrossRef Google Scholar

    Oldrich H, McDougal S. 2009. Two numerical models for landslide dynamic analysis. Computers and geosciences, 35(5), 978–992. doi: 10.1016/j.cageo.2007.12.003.

    CrossRef Google Scholar

    Pritchard MA, Savigny K. 1991. The Heather Hill landslide: an example of a large scale toppling failure in a natural slope. Canadian Geotechnical Journal, 28(3), 410–422. doi: 10.1139/t91-051.

    CrossRef Google Scholar

    Potyondy DO, Cundall PA. 2004. A bonded-particle model for rock. International journal of rock mechanics and mining sciences, 41(8), 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011.

    CrossRef Google Scholar

    Qi W, Yang W, He X, Xu C. 2021. Detecting Chamoli landslide precursors in the southern Himalayas using remote sensing data. Landslides, 18, 3449–3456. doi: 10.1007/s10346-021-01753-y.

    CrossRef Google Scholar

    Royden LH, Burchfiel BC, Van Der Hilst R. 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892), 1054–1058. doi: 10.1126/science.115537.

    CrossRef Google Scholar

    Schneider D, Huggei C, Haeberli W, Kaitna R. 2011. Unraveling driving factors for large rock–ice avalanche mobility. Earth Surface Processes and Landforms, 36(14), 1948–1966. doi: 10.1002/esp.2218.

    CrossRef Google Scholar

    Shang Y, Yang Z, Li L, Liao Q, Wang Y. 2003. A super-large landslide in Tibet in 2000: background, occurrence, disaster, and origin. Geomorphology, 54(3–4), 225–243. doi: 10.1016/S0169-555X(02)00358-6.

    CrossRef Google Scholar

    Shen P, Zhang L, Wong H, Deng D, Zhou S, Zhang S, Chen C. 2020. Debris flow enlargement from entrainment: A case study for comparison of three entrainment models. Engineering Geology. 270, 105581. doi:10.1016/j.enggeo.2020.105581

    Google Scholar

    Song Y, Huang D, Ce D. 2016. Numerical modelling of the 2008 Wenchuan earthquake-triggered Daguangbao landslide using a velocity and displacement dependent friction law. Engineering Geology, 215, 50–68. doi: 10.1016/j.enggeo.2016.11.003.

    CrossRef Google Scholar

    Song D, Du H. 2023. Numerical Investigation of the Evolution Process of an Open-Pit Mine Landslide Using Discrete-Element Method. International Journal of Geomechanics, 23(6), 7568. doi: 10.1061/IJGNAI.GMENG-7568.

    CrossRef Google Scholar

    Spagnuolo E, Nielsen S, Violay M, Di Toro G. 2016. An empirically based steady state friction law and implications for fault stability. Geophysical Research Letters, 43(7), 3263–3271. doi: 10.1002/2016GL067881.

    CrossRef Google Scholar

    Su A, Feng M, Dong S, Zou Z, Wang J. 2022. Improved statically solvable slice method for slope stability analysis. Journal of Earth Science, 33(5), 1190–1203. doi: 10.1007/s12583-022-1631-3.

    CrossRef Google Scholar

    Wang F, Sun P, Highland L, Cheng Q. 2013. Initiation and motion mechanism of the Donghekou rapid and long runout landslide triggered by the 2008 Wenchuan earthquake, China. Earthquake-Induced Landslides, 473–483. doi:10.1007/978-3-642-32238-9_50

    Google Scholar

    Wang W, Chen G, Zhang H, Zhou S, Liu S, Wu Y Q, Fan F. 2016. Analysis of landslide-generated impulsive waves using a coupled DDA-SPH method. Engineering Analysis with Boundary Elements, 64, 267–277. doi: 10.1016/j.enganabound.2015.12.014.

    CrossRef Google Scholar

    Wang Y, Dong J, Cheng Q. 2017. Velocitdepey-ndent frictional weakening of large rock avalanche basal facies: Implications for rock avalanche hypermobility? Journal of Geophysical Research: Solid Earth, 122 (3), 1648–1676. doi:10.1002/2016JB013624

    Google Scholar

    Wang Y, Dong J, Cheng Q. 2018. Normal stress-dependent frictional weakening of large rock avalanche basal facies: Implications for the rock avalanche volume effect. Journal of Geophysical Research:Solid Earth, 123(4), 3270–3282. doi: 10.1002/2018JB015602.

    CrossRef Google Scholar

    Wang Z. 2006. Large scale individual landslide remote sensing. Earth Science Frontiers, 13(5), 516. (in Chinese with English

    Google Scholar

    Wei J, Zhao Z, Xu C, Wen Q. 2019. Numerical investigation of landslide kinetics for the recent Mabian landslide (Sichuan, China). Landslides, 16, 2287–2298. doi: 10.1007/s10346-019-01237-0.

    CrossRef Google Scholar

    Wu J H, Lin W, Hu H. 2018. Post-failure simulations of a large slope failure using 3DEC: The Hsien-du-shan slope. Engineering geology, 242, 92–107. doi: 10.1016/j.enggeo.2018.05.018.

    CrossRef Google Scholar

    Xing A, Wang G, Li B, Jiang Y, Feng Z, Kamai T. 2015. Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in Guanling, Guizhou, China. Canadian Geotechnical Journal, 52(7), 971–981. doi: 10.1139/cgj-2014-0122.

    CrossRef Google Scholar

    Xu Q, Shang Y, Asch van T, Wang S, Zhang Z, Dong X. 2012. Observations from the large, rapid Yigong rock slide–debris avalanche, southeast Tibet. Canadian Geotechnical Journal, 49(5), 589–606. doi: 10.1139/t2012-021.

    CrossRef Google Scholar

    Yang L, Zhang M, Jiao W, Wu Y, Zhang C, Wang Z. 2023a. Influence of intergranular friction weakening on rock avalanche dynamics. Computers and Geotechnics, 159, 105440. doi: 10.1016/j.compgeo.2023.105440.

    CrossRef Google Scholar

    Yang G, Chen Y, Liu X, Yang Ri, Zhang Y, Zhang J. 2023b. Stability analysis of a slope containing water-sensitive mudstone considering different rainfall conditions at an open-pit mine. International Journal of Coal Science and Technology, 10(1), 64. doi: 10.1007/s40789-023-00619-z.

    CrossRef Google Scholar

    Yin Y, Xing A. 2012. Aerodynamic modeling of the Yigong gigantic rock slide-debris avalanche, Tibet, China. Bulletin of Engineering Geology and the Environment, 71, 149–160. doi: 10.1007/s10064-011-0348-9.

    CrossRef Google Scholar

    Zhang H, He S, Liu W, Deng Y, Hu W. 2023. Creep-to-Runout Transition of Large Landslides Controlled by Frictional Velocity Strengthening and Weakening (Vajont 1963, Italy). Rock Mechanics and Rock Engineering, 56, 8471–8483. doi: 10.1007/s00603-023-03473-2.

    CrossRef Google Scholar

    Zhang Z, Wang T, Wu S, Tang H, Liang C. 2017. The role of seismic triggering in a deep-seated mudstone landslide, China: historical reconstruction and mechanism analysis. Engineering Geology, 226, 122–135. doi: 10.1016/j.enggeo.2017.06.001.

    CrossRef Google Scholar

    Zhang, M, Yin, Y. 2013. Dynamics, mobility-controlling factors and transport mechanisms of rapid long-runout rock avalanches in China. Engineering Geology, 167, 37–58. doi: 10.1016/j.enggeo.2013.10.010.

    CrossRef Google Scholar

    Zhao N, Zhang R, Yan E, He X, Liu J. 2020. A dynamic model for rapid startup of high-speed landslides based on the mechanism of friction-induced thermal pressurization considering vaporization. Landslides, 17, 1545–1560. doi: 10.1007/s10346-020-01372-z.

    CrossRef Google Scholar

    Zhao T, Dai F, Xu N. 2017. Coupled DEM-CFD investigation on the formation of landslide dams in narrow rivers. Landslides, 14, 189–201. doi: 10.1007/s10346-015-0675-1.

    CrossRef Google Scholar

    Zhou J, Cui P, Hao M. 2016. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides, 13, 39–54. doi: 10.1007/s10346-014-0553-2.

    CrossRef Google Scholar

    Zhu C, Huang Y, Zhan L. 2018. SPH-based simulation of flow process of a landslide at Hongao landfill in China. Natural Hazards, 93, 1113–1126. doi: 10.1007/s11069-018-3342-8.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views(556) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint