China Geological Survey Chinese Academy of Geological SciencesHost

Sen Zhang, Nan Ju, Guo-bin Zhang, Yuan-dong Zhao, Yun-sheng Ren, Bao-shan Liu, Hui Wang, Rong-rong Guo, Qun Yang, Zhen-ming Sun, Feng-ming Xu, Ke-yong Wang, Yu-jie Hao, 2023. Geology and mineralization of the Duobaoshan supergiant porphyry Cu-Au-Mo-Ag deposit (2.36 Mt) in Heilongjiang Province, China: A review, China Geology, 6, 100-136. doi: 10.31035/cg2023006
Citation: Sen Zhang, Nan Ju, Guo-bin Zhang, Yuan-dong Zhao, Yun-sheng Ren, Bao-shan Liu, Hui Wang, Rong-rong Guo, Qun Yang, Zhen-ming Sun, Feng-ming Xu, Ke-yong Wang, Yu-jie Hao, 2023. Geology and mineralization of the Duobaoshan supergiant porphyry Cu-Au-Mo-Ag deposit (2.36 Mt) in Heilongjiang Province, China: A review, China Geology, 6, 100-136. doi: 10.31035/cg2023006

Geology and mineralization of the Duobaoshan supergiant porphyry Cu-Au-Mo-Ag deposit (2.36 Mt) in Heilongjiang Province, China: A review

More Information
  • The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit (also referred to as the Duobaoshan porphyry Cu deposit) ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the world. It has proven resources of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) of 2.28×106 t, 80×103 t, 73 t, and 1046 t, respectively. The major characteristics of the Duobaoshan porphyry Cu deposit are as follows. It is located in a zone sandwiched by the Siberian, North China, and paleo-Pacific plates in an island arc tectonic setting and was formed by the Paleozoic mineralization and the Mesozoic mineralization induced by superposition and transformation. The metallogenic porphyries are the Middle Hercynian granodiorite porphyries. The alterations of surrounding rocks are distributed in a ring form. With silicified porphyries at the center, the alteration zones of K-feldspar, biotite, sericite, and propylite occur from inside to outside. This deposit is composed of 215 ore bodies (including 14 major ore bodies) in four mineralized zones. Ore body No. X in the No. 3 mineralized zone has the largest resource reserves, accounting for more than 78% of the total reserves of the deposit. Major ore components include Cu, Mo, Au, Ag, Se, and Ga, which have an average content of 0.46%, 0.015%, 0.16 g/t, 1.22 g/t, 0.0003%, and 0.001%‒0.003%, respectively. The ore minerals of this deposit primarily include pyrite, chalcopyrite, bornite, and molybdenite, followed by magnetite, hematite, rutile, gelenite, and sphalerite. The ore-forming fluids of this deposit were magmatic water in the early metallogenic stage and then the mixture of meteoric water and magmatic water at the late metallogenic stage. The ore-forming fluids experienced three stages. The ore-forming fluids of stage I had a hydrochemical type of H2O-CO2-NaCl, an ore-forming temperature of 375‒650°C, and ore-forming pressure of 110‒160 MPa. The ore-forming fluids of stage II had a hydrochemical type of H2O-CO2-NaCl, an ore-forming temperature of 310‒350°C, and ore-forming pressure of 58‒80 MPa. The ore-forming fluids of stage III had a hydrochemical type of NaCl-H2O, an ore-forming temperature of 210‒290°C, and ore-forming pressure of 5‒12 MPa. The Cu-Au-Mo-Ag mineralization mainly occurred at stages I and II, with the ore-forming materials having a mixed crust-mantle source. The Duobaoshan porphyry Cu deposit was formed in the initial subduction environment of the Paleo-Asian Ocean Plate during the Early Ordovician. Then, due to the closure of the Mongol-Okhotsk Ocean and the subduction and compression of the Paleo-Pacific Ocean, a composite orogenic metallogenic model of the deposit was formed. In other words, it is a porphyry - epithermal copper-gold polymetallic mineralization system of composite orogeny consisting of Paleozoic island arcs and Mesozoic orogeny and extension.

  • The Sepon Au-Cu deposit is the largest polymetal deposit ever discovered in Laos, of which the resources of Gold and Copper is 102 t (Au: 1.6 g/t) and 196×106 t (T Cu: 2%) (Zhu HP et al., 2013; Shi MF et al., 2017) respectively. It has been investigated as a typical deposit, which will be of importance in understanding the regional metallogeny in the Paleotethys stage. At least three broad mineralization styles are recongised in the Sepon porphyry Au-Cu deposit: sedimentary rock-hosted Au, Cu-Au skarn and porphyry Mo-Cu. There have been few researches done in the deposit, and only Cromie PW, (2010)has done more in-depth research, such as the zircon U-Pb ages of the granodiorite porphyry, molybdenite Re–Os ages, the occurrence of Au in pyrites with different forms and structures, trace element investigations of sulphides, sources and characteristics of ore-bearing fluids, and sources of ore materials.

    In the Sepon deposit, the outcropping rocks are heavily weathered and whole-rock geochemical analysis data is not suitable for petrogenesis research. Zircon is high in enclosure temperature, strongly resistant to weathering and alteration, contains massive information on magma origin and evolution. Its topography, precise U-Pb geochronology and Hf isotope compositions can be used to define the timing and sources of the magmatism forming the magma of the porphyry deposits and can analyze information about the ore-bearing magmatism (Peytcheva I et al., 2009). Composition of trace elements in the zircon may reflect component evolution of crystallization solutions (Bea F et al., 1994; Sano Y. et al., 2002; Thomas JB et al., 2002; Nardi LVS et al., 2013), origin of trace elements (Hoskin PWO and Ireland TR, 2000; Belousova E et al., 2002) and tectonic settings (Breiter K et al., 2016).

    The Sepon deposit is also the largest Au-Cu polymetal deposit ever discovered in the Truong Son Fold Belt. In this paper, the metallogenic geologic setting and deposit characteristics of the Sepon deposit has been summarized. The Sepon ore-bearing porphyry was tested for zircon U-Pb-Hf isotopes and trace elements and the ore-bearing magma was investigated for the emplacement age, origin and tectonic environment.

    The tectonic framework in Laos is shown in Fig. 1. During the orogeny period of the Paleozoic and the Early Mesozoic, the Indochina block was formed from deformed crust around the Phanerozoic metamorphic rocks (Workman DR, 1975; Fontaine and Workman, 1978; Stokes RB and Smith S, 1990; Lepvrier C et al., 1997; Maluski H et al., 2005) and it underwent at least three main orogenic folding periods: the Hercynian period (middle Carboniferous), the early Indochina period (Permian-early Triassic) and the late IndoChina period (late Triassic). Orogenic folds might have existed before the Paleozoic but no evidence is found in Laos (Stokes RB et al., 1990; Cromie PW, 2010).

    Figure 1.  Tectonic location map of the Sepon deposit, Laos (modified from Cromie, 2010).

    Although there is no stratigraphic and geochronological evidence directly implying that the Precambrian crystalline basement is present, a small amount of high-grade metamorphic rock series has been found in northwest Laos (Fig. 1). This has been deemed as the most ancient stratum in Laos, formed mainly in the Proterozoic, and predominantly composed of migmatite, gneiss, quartz-mica schist, graphite schist and quartzite etc. Early Paleozoic formations are mainly distributed in northeast Laos (Fig. 1), with the outcropped rocks primarily epimetamorphic limestone, shale, sandstone (quartzite) and conglomerate, and a small amount of marine-facies limestone, sandstone (quartzite) and conglomerate. The mid-late Paleozoic formations are mainly marine-facies limestone, sandstone and argillite. The Mesozoic comprises overlying Triassic marine-facies sedimentation mainly distributed in the northwest (Fig. 1) and mainly consists of detrital sediments and detrital-sandwiched limestone, generally containing intermediate-acid volcanic rocks, which are products of strong denudation of the uplifted region by upthrowing of folds in most regions in the late Triassic (covered by Triassic-Cretaceous terrestrial-source and paralic-facies sandstone and conglomerate). Ever since the Jurassic period, especially in the late Cretaceous, massive red argillaceous siltstone and fine sandstone have been formed, and evaporite series have occurred.

    The outcropped formations in the Sepon deposit are mainly Paleozoic detrital rocks and carbonatite (Fig. 2a), which form a set of semi-graben-basin shore-shallow-abysmal facies and continental facies river sediments, the lower part of which is Ordovician sandstone, conglomerate and calcareous shale as well as turbiditic sandstone, the middle part of which is Silurian calcareous shale, laminated shale, conglomerate and volcanic rock, and the upper part of which is Devonian bioclastics-sandwiched dolomite, limestone, nodular calcareous shale and siltstone, with a formation thickness up to 2000 m. Mineralized gold is present mainly in calcareous shale of the Devonian Discovery Formation, then in bioclastic dolomite of the Devonian Nalou Formation, the calcareous shale of Silurian-Devonian Kengkeuk Formation, clay and siltstone of the Ordovician-Silurian Nampa Formation in descending order.

    Figure 2.  Geological sketch map and a schematic section model showing the mineralization styles in the Sepon deposit, Laos ( after Fig. 2a provided by geological department of Sepon mine;Fig. 2b modified from Manini AJ. et al., 2003).

    Fracture structures have been developed in the deposit, and these can be divided mainly into two groups: NW-strike fractures parallel to Truong Son fracture system, which is in the direction of the tectonic line of the Truong Son Fold Belt; EW-strike fractures parallel to the basin’s basement fracture, which is parallel with the border of the basin. Both groups of fractures intersect at the place where the products of the granodiorite porphyry intrusions and some small composite plutons of intermediate-acid dykes concentrate, which is also the most favorable place for mineralization.

    In the deposit, the magma activities feature developed granodiorite porphyry and a few veins. The outcropping granodiorite porphyry is mostly weathered, the residual coarse phenocrysts are quartz and plagioclase, and the matrix is white clay mineral. During exploration work, relatively fresh porphyritic texture is found in the deep drill holes. The phenocrysts are composed of quartz, plagioclase, orthoclase and few subhedral green hornblende. Quartz (15%-30%) is round, elongated, in bay contour, about 5 mm wide, 10 mm long. Plagioclase (20%-40%) is euhedral or subrounded, about 5 mm wide and 10 mm long. K-feldspar (5%-20%) is subhedral and less than 5 mm in diameter. Only a small amount of amphibole is 2 mm in diameter.

    Mineralization in the deposit is closely associated with the late Carboniferous activities of the intermediate-acid magma and therefore it is a porphyry-skarn deposit (Fig. 2b). There are three kinds of mineralization developed in the deposit: porphyry Mo-Cu mineralization, skarn Cu-Au mineralization near the porphyry bodies and sedimentary-hosted Au mineralization at the far end. The central porphyry Mo-Cu ore bodies are mainly distributed in Thengkham South and Padan, the neighboring skarn Cu-Au ore bodies mainly in Khanong, Discovery East, Thengkham South and Phavat, etc., and the sedimentary-hosted Au ore bodies mainly in Nalou and Discovery. Geometries of the sedimentary-hosted Au ore bodies mainly include: continually-outspread belt-like ore bodies, bedded ore bodies inclined at a small angle and nearly without contact with the fault, and the fault-controlled bedded ore bodies. The main ore minerals found in the deposit are: pyrite, galena, sphalerite, chalcopyrite, tetrahedrite, malachite and azurite, and the alteration types mainly include: carbonatization, siliconization(iasperoidization), argillization, dolomitization, sericitization, skarnization (to form garnet, chlorite, epidote), and hornstonization in the non-calcareous sediment).

    Rock samples were taken from the granodiorite porphyry intrusion in the Nalou ore district of the Sepon Au-Cu deposit, at the positions shown in Fig. 2a. Samples are weathered and weakly altered, the tectonic fissure is undeveloped and no late vein is found.

    Zircon crystals with higher purity are separated by conventionally crushing and gravity-concentrating samples and then put under binoculars to manually select zircon samples with purity above 99%. Preparation of zircon targets and cathode-luminescence image analysis were done at at Beijing Ion Microprobe Centre, Beijing, China. Zircon U-Pb and trace elements were determined at the Experimental Center of Geosciences (Beijing), and Hf isotope was analyzed at the MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing.

    In-situ U-Pb zircon dating and trace elements in zircon were done with a laser plasma mass spectrometer composed of a laser ablation system UP193SS (New Wave Research, USA) and a quadrupole plasma mass spectrometer Agilent 7500 (AGLENT, USA) (Liu JH et al., 2014). Laser at frequency 10 Hz, at the wavelength 193 nm and in the spot-beam diameter of 36 μm was used in analysis, and, during age computation, the standard zircon 91500 was used as an external standard to calibrate isotope ratio and TEM as blind sample for control; the international standard sample NIST612 was used as external standard and Si as internal standard to compute the content of elements. Andersen’s method used for the common lead correction was the same as the one for Andersen (Andersen T, 2002) and data were processed with the program Glitter 4.

    Zircon Hf isotope was detected with the multi-collection plasma mass spectrometer Neptune and the UV laser ablation system New Wave UP213 (LA-MC-ICP-MS), zircon Hf isotope was analyzed at the in-situ of U-Pb age analysis point, and in the experimental process, He (an element) was used as gas to carry ablated substance. The laser ablation beam was 55 μm in diameter and the time for laser ablation was about 27 s. In determination, the zircon international standard sample GJ-1 was used as a reference material. The relevant instrument operational conditions and the detailed analysis process were the same as those used by Hou KJ et al., (2007). During the analysis, the tested 176Hf/177Hf weighted average of zircon samples GJ-1 was 0.282012±17 (2SD, n=24), which was totally consistent with those reported in literatures (Elhlou S et al., 2006; Hou KJ et al., 2007) within the range of error. In computing εHf(t), the 176Hf/177Hf ratio and the 176Lu/177Hf ratio of the chondrite was 0.282772 and 0.0332, respectively. In computing the single-stage Hf model age (TDM1), the 176Hf/177Hf ratio and the 176Lu/177Hf ratio were 0.28325 and 0.0384 respectively for the depleted mantle. In computing the two-stage Hf model age (TDM2) , the fLu/Hf ratios were –0.34, –0.55 and 0.16 for the lower crust, the average crust and the depleted mantle, respectively. The decay constant of 176Lu was 1.867×10-11 a-1(Söderlund S et al., 2004). For related computation formulas, refer to those used by Wu et al., ( 2007).

    Most zircon grains are subhedral to anhedral. They are prismatic crystals and range from 80-250 μm in length and 60-120 μm in width. Their CL images commonly show oscillatory zoning (Fig. 3a). The LA-ICPMS zircon U-Pb analysis results of samples are presented in Table 1.

    Figure 3.  Cathodoluminescence (CL) images of represenitative zircons and concordia plots for zircon from the grandiorite porphyry of Sepon deposit.
    Table 1.  Zircon LA-ICPMS dating of the granodiorite porphyry in the Sepon deposit.
    Points Element/10-6 Th/U Isotopic ratios Age/Ma
    Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    1.1 197 1092 0.2 0.0603 0.0019 0.4017 0.0126 0.0483 0.0007 505 88 328 10 303 4
    1.2 52 494 0.1 0.0518 0.0018 0.3286 0.0117 0.046 0.0007 275 54 288 9 290 4
    1.3 192 692 0.3 0.0537 0.0018 0.3479 0.0117 0.047 0.0007 359 49 303 9 296 4
    1.6 68 554 0.1 0.0531 0.0018 0.3489 0.012 0.0477 0.0007 333 51 304 9 300 4
    1.7 113 966 0.1 0.0591 0.0019 0.3896 0.0127 0.0478 0.0007 434 88 316 10 300 4
    1.8 114 1192 0.1 0.0531 0.0017 0.3394 0.0109 0.0463 0.0007 333 46 297 8 292 4
    1.9 79 744 0.1 0.0526 0.0017 0.3627 0.012 0.05 0.0008 311 48 314 9 315 5
    1.11 75 673 0.1 0.0524 0.0018 0.347 0.0119 0.048 0.0007 303 51 302 9 302 4
    1.12 109 767 0.1 0.0507 0.0017 0.3383 0.0115 0.0484 0.0007 227 50 296 9 305 4
    1.13 134 805 0.2 0.0533 0.0019 0.3648 0.0132 0.0496 0.0008 341 54 316 10 312 5
    1.14 174 1009 0.2 0.0524 0.0017 0.337 0.0112 0.0467 0.0007 302 48 295 9 294 4
    1.15 291 966 0.3 0.0568 0.0019 0.3753 0.0128 0.0479 0.0007 483 49 324 9 302 4
    1.16 153 810 0.2 0.052 0.0018 0.3512 0.0121 0.049 0.0007 287 51 306 9 308 5
    1.17 90 730 0.1 0.0527 0.0018 0.3562 0.0125 0.0491 0.0008 314 52 309 9 309 5
    1.18 171 1180 0.1 0.0543 0.0018 0.3633 0.0123 0.0485 0.0007 384 49 315 9 305 5
    1.19 153 904 0.2 0.0541 0.0019 0.36 0.0128 0.0482 0.0007 377 53 312 10 304 5
    1.20 152 951 0.2 0.0519 0.0018 0.3535 0.0123 0.0494 0.0008 281 52 307 9 311 5
    1.22 122 756 0.2 0.0517 0.0018 0.349 0.0125 0.0489 0.0008 274 53 304 9 308 5
    1.24 98 871 0.1 0.0528 0.0019 0.3539 0.0126 0.0487 0.0008 318 53 308 9 306 5
    1.25 67 523 0.1 0.0518 0.002 0.3367 0.0129 0.0472 0.0007 274 59 295 10 297 5
    1.26 94 745 0.1 0.052 0.0019 0.3488 0.0127 0.0487 0.0008 285 55 304 10 306 5
    1.27 98 588 0.2 0.0527 0.002 0.3365 0.0128 0.0463 0.0007 317 58 295 10 292 4
    1.28 232 1080 0.2 0.0516 0.0018 0.3474 0.0124 0.0488 0.0008 269 53 303 9 307 5
    1.30 68 753 0.1 0.0511 0.0019 0.3492 0.0132 0.0496 0.0008 244 58 304 10 312 5
     | Show Table
    DownLoad: CSV

    The U and Th contents of zircons show a wide range, from 52×10-6 to 291×10-6 for U and from 494×10-6 to 1192×10-6 for Th, with Th/U values ranging from 0.1 to 0.3. In general, the high Th/U values ( generally > 0.1) for most of the zircons suggest that they are of magmatic origin; the low Th/U values (generally < 0.1) for most of the zircons suggest that they are of metamorphic origin ( Siebel W et al., 2005; Wu YB and Zheng YF, 2004). The high Th/U ratios (> 0.1) suggest their magmatic origin. Twenty-four zircons analyses in the samples give consistent206Pb/238U ages (290-315 Ma) that plot on the U-Pb concordia (Fig. 3b). The weighted mean age 206Pb/238U age is 302.1 ± 2.9 Ma (n=24, MSWD = 2.4), and represents the age of crystallization of the granodiorite porphyry.

    The zircon U-Pb isotope results of granodiorite prophyry are presented in Table 2. For REEs in zircon, the total quantity (∑REE) ranges from 702.44×10-6 to 2144.17×10-6, the LREE is 4.78×10-6-46.26×10-6, the HREE is 693.36×10-6-2129.62×10-6 and the LREE/HREE ratio is 0.01-0.04. As shown in Fig. 4a, the zircon REE assemblage plot shows relative enrichment for HREE and relative depletion for LREE, a strong positive Ce anomaly and a feeble negative Eu anomaly, meaning it is typical magma zircon (Hoskin PWO and Ireland YR, 2000).

    Table 2.  Zircon trace elements data of the granodiorite porphyry in the Sepon deposit.
    Points Elements/10-6 LREE/
    HREE
    δEu δCe
    La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE
    1.1 0.66 14.27 1.34 12.18 11.56 6.25 20.67 6.43 71.15 26.79 134.5 40.89 620.96 146.24 864.83 1113.89 46.26 1067.63 0.04 1.22 2.76
    1.2 0.01 5.19 0.01 0.29 0.74 0.54 4.73 2.14 33.73 16.73 99.7 33.55 535.37 133.49 581.97 866.21 6.77 859.44 0.01 0.67 115.02
    1.3 0.01 12.52 0.01 0.64 2.23 1.46 14.7 6.53 93.41 41.2 204.21 60.74 841.90 183.86 1235.30 1463.42 16.87 1446.55 0.01 0.59 277.47
    1.6 0.05 6.28 0.05 0.23 0.89 0.56 4.85 2.09 31.92 15.61 88.1 30.03 459.15 113.93 524.89 753.74 8.07 745.68 0.01 0.66 26.91
    1.7 0.6 8.7 0.64 5.59 4.94 2.83 14.6 5.53 83.15 37.61 212.11 65.33 965.44 213.62 1254.49 1620.68 23.30 1597.39 0.01 0.94 3.07
    1.8 0.11 8.62 0.11 0.88 1.56 1.09 9.07 3.92 58.66 27.38 155.47 51.77 804.35 189.20 918.81 1312.18 12.37 1299.82 0.01 0.69 17.06
    1.9 0.01 5.54 0.01 0.31 0.98 0.83 8.61 3.81 57.89 27.08 148.84 46.47 689.63 155.85 869.67 1145.86 7.68 1138.18 0.01 0.59 122.78
    1.11 0.01 5.5 0.01 0.01 0.59 0.51 5.64 2.41 38.32 17.54 103.96 33.96 540.96 128.33 618.04 877.74 6.63 871.12 0.01 0.56 121.89
    1.12 0.19 9.25 0.23 1.66 2.04 1.63 10.28 3.77 55.27 26.44 150.43 48.67 747.91 185.82 925.49 1243.59 15.00 1228.59 0.01 0.89 9.33
    1.13 0.01 7.31 0.11 1.2 2.19 1.05 8.24 3.6 50.25 23.29 130.66 40.89 651.06 159.75 767.15 1079.61 11.87 1067.74 0.01 0.67 19.73
    1.14 0.13 9.15 0.23 2.65 3.2 1.98 10.01 3.82 55.21 24.74 137.57 43.9 661.82 160.44 833.82 1114.85 17.34 1097.51 0.02 0.98 10.21
    1.15 0.28 14.2 0.75 7.13 7.29 4.26 17.39 6.31 79.13 33.2 178.68 55.05 786.27 193.49 1079.57 1383.42 33.90 1349.52 0.03 1.11 5.15
    1.16 0.01 7.24 0.01 0.35 0.83 0.64 5.95 2.49 36.18 15.94 88.28 27.4 416.98 100.14 527.49 702.44 9.08 693.36 0.01 0.64 160.45
    1.17 0.01 10.01 0.01 0.33 1.21 0.77 8.33 3.72 59.65 29.83 170 56.24 877.85 211.64 998.17 1429.60 12.34 1417.26 0.01 0.55 221.84
    1.18 0.36 11.7 0.73 6.13 6.35 2.94 15.77 5.55 71.42 31.74 177.56 57.24 873.22 208.67 1080.74 1469.37 28.20 1441.17 0.02 0.86 4.18
    1.19 0.34 8.41 0.65 5.73 5.44 3.24 12.08 4.7 58.85 24.87 133.46 41.34 611.07 149.03 827.03 1059.20 23.81 1035.40 0.02 1.18 3.33
    1.20 0.08 9.04 0.08 0.93 2.99 1.45 22.2 9.99 148.18 64.29 327.41 93.06 1208.27 256.22 1875.42 2144.17 14.56 2129.62 0.01 0.39 25.73
    1.22 0.06 6.83 0.06 0.78 1.43 1.05 8.63 3.72 53.02 25.02 138.79 44.95 679.68 163.13 846.89 1127.15 10.21 1116.94 0.01 0.71 25.47
    1.24 0.01 9.03 0.01 0.37 1.11 0.76 6.86 3.39 51.21 24.79 141.81 46.69 737.80 177.75 847.57 1201.58 11.28 1190.30 0.01 0.64 200.12
    1.25 0.01 6.44 0.01 0.01 0.58 0.39 5.3 2.52 39.52 17.86 97.9 29.87 425.30 93.56 599.35 719.26 7.44 711.83 0.01 0.45 142.72
    1.26 0.06 8.89 0.1 0.6 1.43 0.89 7.36 3.38 52.11 24.92 143.19 47.89 736.91 177.60 841.13 1205.32 11.96 1193.36 0.01 0.68 22.36
    1.27 0.09 8.3 0.22 2.05 2.25 1.65 9.21 3.53 54.42 24.95 139.12 44.16 678.80 162.62 834.99 1131.37 14.56 1116.81 0.01 0.96 10.05
    1.28 0.01 11.48 0.04 0.38 1.33 0.97 8.29 3.17 43.57 19.76 105.41 32.85 495.84 120.59 644.66 843.69 14.21 829.48 0.02 0.68 80.99
    1.30 0.01 3.29 0.01 0.23 0.82 0.42 5.45 2.82 46.98 22.86 126.67 39.02 558.23 124.76 739.50 931.56 4.78 926.79 0.01 0.45 72.91
     | Show Table
    DownLoad: CSV
    Figure 4.  Chondrite normalized REE patterns and εHf(t) values vs. age for zircon from the granodiorite porphyry in the Sepon deposit (normalization values after Sun and Mc Donough (after Sun SS, et al., 1989)).

    We employ a Ce4+ and Ce3+ calculation method proposed by Ballard JR et al., (2002), by which Ce4+ and Ce3+ ratios of zircon are calculated on the basis of a lattice-strain model for mineral-melt partitioning of Ce4+ and Ce3+ cations. The results are present in Table 3, which suggest that the zircon Ce4+/Ce3+ratio from the granodiorite porphyry varies to a great degree, ranging from 2.41 to 1438.29 (mean value 236.37), zircon Ce/Ce* ratios from 3.46 to 306.97 (mean value 82.59) and the Eu/Eu* ratios from 0.54 to 1.24 (mean value 0.90). According to the data collected by Lu YJ, (2016), compared to those barren, for the ore-bearing magma, the Eu/Eu* ratio is greater than 0.3, 1000*(Eu/Eu*)/Y greater than 1, (Ce/Nd)/Y greater than 0.01, Dy/Yb less than 0.3, and based on the tested data in this paper, Zircon Eu/Eu* ratios are from 0.54 to 1.24, 1000*(Eu/Eu*)/Y from 2.24 to 2622.10, (Ce/Nd)/Y ratio from 0.50 to 768.05 and Dy/Yb from 0.04 to 0.08.

    Table 3.  Partition coefficients and ratios of Ce3+and Ce4+ of zircons from the granodiorite porphyry in the Sepon deposit.
    Points DCe3+ DCe4+ Ce4+/Ce3+ Eu/Eu* Ce/Ce*
    1.1 0.13620 532.90 2.41 1.24 5.97
    1.2 0.00064 323.84 263.44 0.88 127.25
    1.3 0.00114 446.08 354.75 0.78 306.97
    1.6 0.00163 361.20 124.58 0.83 29.90
    1.7 0.03829 484.14 6.39 1.02 3.46
    1.8 0.00464 532.71 59.41 0.88 19.14
    1.9 0.00069 413.28 261.18 0.87 135.83
    1.11 0.00014 403.98 1255.55 0.85 134.85
    1.12 0.01049 454.58 27.66 1.09 10.83
    1.13 0.00599 466.52 38.64 0.76 53.79
    1.14 0.01519 538.23 18.58 1.07 13.09
    1.15 0.05793 608.17 6.97 1.16 7.67
    1.16 0.00081 489.93 290.68 0.87 177.51
    1.17 0.00067 411.99 485.49 0.74 245.42
    1.18 0.04811 555.57 6.90 0.90 5.64
    1.19 0.04803 488.90 4.69 1.22 4.41
    1.20 0.00389 512.84 74.55 0.54 28.79
    1.22 0.00311 424.69 70.44 0.91 27.70
    1.24 0.00073 440.91 403.13 0.84 221.40
    1.25 0.00015 362.85 1438.29 0.68 157.90
    1.26 0.00355 409.22 80.45 0.84 28.98
    1.27 0.01179 400.20 21.87 1.11 14.26
    1.28 0.00203 553.85 182.90 0.89 140.73
    1.30 0.00055 407.69 194.04 0.60 80.66
    Min 0.00014 323.84 2.41 0.54 3.46
    Max 0.13620 608.17 1438.29 1.24 306.97
    Ave 0.01652 459.34 236.37 0.90 82.59
    Notes: DCe3+、DCe4+ and Ce4+/Ce3+ in zircon were calculated based on the method described in Ballard et al.(2002); The data of the granodiorite porphyry is from (2002), Eu/Eu*= EuN/ (SmN×GdN)1/2; Ce/Ce*= CeN/ (LaN×PrN)1/2.
     | Show Table
    DownLoad: CSV

    21 zircon samples from the granodiorite porphyry were analyzed for Hf isotopic composition. The results of zircon in-situ Lu-Hf isotope analysis are shown in Table 4 and Fig. 4b. 176Lu/177Hf ratios acquired from zircon grains are very low (0.001252 to 0.00233), which indicates the accumulation of low-radioactive Hf after zircon crystallization (Wu FY, 2007). The fLu/Hf is –0.96 to –0.93, obviously less than fLu/Hf (–0.34) of mafic crust (Amelin Y et al., 2000) and fLu/Hf (–0.72) of sialic crust(Vervoort JD et al., 1996), and therefore the two-stage Hf model age TDM2 can more truly reflect the period extracting materials in sources from the depleted mantle. εHf(t) values range from 4.32 to 9.64, with the mean of 6.28. The single-stage Hf model age (TDM1) ranges from 569 to 769 Ma, with a mean of 696 Ma and the two stage model age (TDM2) range from 710 to 1031 Ma, with a mean 914 Ma.

    Table 4.  Zircon Hf isotopic data of the granodiorite porphyry in the Sepon deposit.
    Points Age/Ma 176Hf/177Hf 2σ 176Lu/177Hf 2σ 176Yb/177Hf 1σ (176Hf/177Hf)0 εHf(t) TDM1/Ma TDM2/Ma fLu/Hf
    1.1 304 0.282791 0.000019 0.001252 0.000021 0.031231 0.000517 0.282784 7.11 658 863 –0.96
    1.2 290 0.282759 0.000023 0.00189 0.000041 0.045024 0.000679 0.282749 5.55 716 952 –0.94
    1.3 296 0.282779 0.000018 0.001956 0.000009 0.048535 0.000194 0.282768 6.36 688 905 –0.94
    1.6 304 0.282741 0.000027 0.00201 0.000018 0.044335 0.000714 0.28273 5.2 743 984 –0.94
    1.7 300 0.28275 0.000022 0.00205 0.000009 0.053523 0.000578 0.282739 5.42 732 968 –0.94
    1.8 292 0.282724 0.00002 0.002006 0.000011 0.051977 0.000118 0.282713 4.32 769 1031 –0.94
    1.9 315 0.282859 0.00002 0.001814 0.000039 0.043229 0.000681 0.282849 9.64 569 710 –0.95
    1.11 302 0.282759 0.000021 0.001343 0.000039 0.034802 0.000663 0.282752 5.93 704 937 –0.96
    1.13 312 0.282801 0.000023 0.002282 0.000099 0.057341 0.002172 0.282787 7.4 662 850 –0.93
    1.14 294 0.282746 0.000018 0.00164 0.000017 0.038489 0.00072 0.282737 5.21 730 976 –0.95
    1.15 302 0.282749 0.000021 0.002158 0.000039 0.061937 0.000437 0.282737 5.41 735 969 –0.93
    1.16 308 0.282819 0.000024 0.001939 0.000011 0.056503 0.000419 0.282808 8.06 629 806 –0.94
    1.17 309 0.282758 0.000021 0.00147 0.000016 0.042549 0.00039 0.282749 6 709 938 –0.96
    1.20 311 0.282812 0.000022 0.001891 0.000014 0.053641 0.000264 0.282801 7.88 638 819 –0.94
    1.22 308 0.282793 0.000027 0.002185 0.000015 0.062936 0.000385 0.282781 7.09 671 868 –0.93
    1.24 306 0.282719 0.000022 0.001494 0.000007 0.046236 0.000228 0.282711 4.56 765 1027 –0.95
    1.25 297 0.282792 0.00002 0.00233 0.000035 0.052 0.000199 0.282779 6.78 676 879 –0.93
    1.26 306 0.28274 0.000016 0.001526 0.000005 0.040493 0.000273 0.282731 5.29 736 981 –0.95
    1.27 292 0.282775 0.000019 0.001548 0.000013 0.039011 0.000293 0.282767 6.24 685 909 –0.95
    1.28 292 0.282779 0.000015 0.002034 0.000024 0.050976 0.000639 0.282768 6.28 689 906 –0.94
    1.30 312 0.282762 0.000016 0.001856 0.000025 0.045408 0.000184 0.282751 6.12 711 932 –0.94
     | Show Table
    DownLoad: CSV

    The Truong Son Fold Belt, located at the northeast margin of the Indochina block, part of the east Paleotethys, preserved the evolution history of the Paleotethys Ocean. As the most important Fe-Au-Cu mineralized belt in the Indochina Block, the Truong Son Fold Belt is found many deposits during the Late Carboniferous to Early Permian, Sepon Au-Cu deposit, Phu Kham Cu-Au deposit, Phou Nhouan Fe deposit, Long Chieng Track Au deposit, Ban Houayxai Au-Ag deposit, Pha Lek Fe deposit, KTL-Bohr Thong-Tharkhek Cu-Au deposit and so on. The main deposit types includes skarn-related Fe deposit, porphyry-related Cu-Au deposit, porphyry-related skarn Cu-Au deposit, epithermal Au-Ag deposits, and intrusion-related Sn deposit. The published geochronological data indicates (Table 5) that main mineralization of the Truong Son Fold Belt was associated with calc-alkaline and intermediate-acid arc magmatism during Late Carboniferous to Early Permian period (Kamvong et al., 2013; Khin Z et al., 2014; Lai CK et al., 2014).

    Table 5.  Summary for magmatic-related ore deposits in Truong Son Belt from Late Carboniferous to Early Permian.
    No Deposit Longitude Latitude Metallogenic elements Deposit type U−Pb Ages of ore-bearing porphyries/Ma Alteration minerals and types Mineral assemblages Reference
    1 KTL 103.287E 19.434N Cu-Au PCD-SK 285-290 Silicification, propylitic (chlorite, epidote), phyllic (sericite, pyrite) Py+Ccp+Po+Gn+Bn+Sp+Mo+Eit Hotson(2009), Zaw(2014)
    2 Bohr Thong 103.195E 19.417N Cu-Au PCD-SK 282-285 Skarn prograde: garnet;skarn retrograde: epidote, chlorite Py+Ccp+Mag+Bn+Po+Eit Hotson(2009)
    3 Tharkhek 103.238E 19.409N Cu-Au PCD-SK 277-280 Silicification, propylitic (chlorite, epidote), phyllic (sericite, pyrite) Py+Ccp+Mo+Bn+Sp+Gn Hotson(2009)
    4 Phu Kham 102.908E 18.883N Cu-Au PCD-SK, ETL 299-306 Porphyry: potassic (K-feldspar, biotite, magnetite), phyllic (sericite, pyrite), propylitic (epidote, pyrite);skarn prograde: garnet;retrograde:chlorite, epidote, carbonate, quartz, sericite, hematite; high-sulphidation with pyrophyllite at hangingwall zone Py+Ccp+Mag+Bn+Hem+Tet+Gn+
    En+Sp+Mo+Au
    Backhouse(2004), Tate(2005), Kamvong(2013), Kamvong(2014)
    5 Phu He 103.256E 19.467N Au-Ag ETL 290 Porphyry:s potassic (K-feldspar, biotite, magnetite), phyllic (sericite, pyrite), propylitic (epidote, pyrite);skarn prograde: garnet; retrograde:chlorite, epidote, carbonate, quartz, sericite, hematite;high-sulphidation with pyrophyllite at hangingwall zone Py+Gn+Sp+Ccp+EIt Hotson(2009)
    6 LCT 102.884E 18.937N Au-Ag-Cu ETL 291 Silica, adularia, sericite, chlorite, pyrite, kaolinite, halloysite Py+Sp+Gn+Ccp+EIt Manaka(2008)
    7 Ban Houayxai 102.687E 18.927N Au-Ag ETL 286 Silica, adularia, sericite, chlorite, pyrite Py+Sp+Gn+Ccp+EIt+Apy Manaka(2008), Manaka(2014)
    8 Phou Nhouan 103.45E 19.32N Fe SK 282 Mag+Hem+Lm Hotson(2009), Zaw(2014), Jia(2014)
    9 Pha Lek 102.94E 18.989N Fe SK 280-317 Skarn, hornfels, marble, chloritization, magnetite, epidote Hem+Lm+Mag Wang(2013), Li(2012)
    10 Sepon 105.983E 16.976N Au-Cu PCD-SK 283-297 carbonatization, siliconization (iasperoidization), argillization, dolomitization, sericitization, skarnization (to form garnet, chlorite, epidote), and hornstonization in thenon-calcareous sediment). Ccp+Py+Apy+Stb+Gn+Sp+Bn+Au+
    Cc+Cin+Opm
    Smith(2005),
    Cromie (2006), Cannell and Smith(2008), Cromie(2010), Boutathep(2013), Zhu Huaping(2013)
    Notes: Mineral abbreviations: Py—Pyrite, Ccp—Chalcopyrite, Po—Pyrrhotite, Gn—Galena, Bn—Bornite, Sp—Sphalerite, Mo—Molybdenite, Mag—Magnetite, Hem—Hematite, EIt—Electrum, Tet—Tetrahedrite, En—Enargite, Apy—Arsenopyrite, Lm—Limonite, Stb—Stibnite, Cc—Chalcocite, Cin—Cinnabar, Opm—Orpiment. Deposit type abbreviations: SK-Skarn deposit, PCD-Porphyry deposit, ETL—Epithermal deposit.
     | Show Table
    DownLoad: CSV

    The zircon U-Pb analysis of the Sepon granodiorite porphyry in this study shows that the weighted mean 206Pb/238U age is 302.1 ± 2.9 Ma.This value indicates that the granodiorite porphyry is genetically related to the intermediate-acid magma insrusions during the Late Carboniferous to Early Permian. The Re-Os dating of molybdenite molybdenites 282.4 ± 1.6 Ma and 287.2 ± 1.0 Ma at Padan and Thenkham South of Sepon deposit respectively(Cromie PW, 2010). These results are merely from the testing molybdenite samples instead of isochron age; such results also indicate that a period slightly later than that of the diagenesis of the granodiorite porphyry. By comparing deposits formed in the same period in the region, at the KTL Cu-Au deposit, the age of ore-bearing porphyry is determined as 284.8 to 290 Ma and the Re-Os dating of molybdenite is 289.4 Ma (Hotson MD, 2009); at Phu Kham Cu-Au deposit, the age of the quartz diorite-porphyry is 299 to 306.2 Ma and the Re-Os dating of molybdenite is 304 Ma(Backhouse D, 2004; Tate NM, 2005; Kamvong et al., 2013), which means the emplacement of intrusions and mineralization occurred in roughly the same period at both deposits. Additionally, zircon trace element data of the granodiorite porphyry in the Sepon deposit shows that Eu/Eu* is 0.54 to 1.24, 1000*(Eu/Eu*)/Y is 2.24 to 2622.10, (Ce/Nd)/Y is 0.50 to 768.05 and Dy/Yb is 0.04 to 0.08, indicating that it is ore-bearing magma and revealing that the intermediate-acid magma is closely related to the Au-Cu mineralization in the deposit, which possibly provided thermal sources and minerals for mineralization.

    For porphyry Cu-Au deposits, the intrusions directly associated with porphyry Cu mineralization have higher zircon Ce4+/Ce3+ ratios than barren intrusion. Sulfur contained in magma with high fO2 is mainly sulfur oxide which helps metallogenic elements in the magma enrich the process of magma melting and crystallization differentiation. While zircon Ce4+/Ce3+ may reflect whether the magma’s fO2 is high or low and then be used as a marker to distinguish ore-bearing porphyries from barren counterparts (Ballard JR et al., 2002). The Sepon granodiorite porphyry REE we obtained shows a consistent trend of components. It shows obvious positive Ce anomaly and weak negative Eu anomaly. The Ce4+/Ce3+ varys greatly from 2.4 to 1438.29,which shows magma-mixing may occur. The high value of Ce4+/Ce3+ may indicate the existence of high oxygen fugacity magma injecting into the lower oxygen fugacity magma.

    In the Sepon deposit, the 176Hf/177Hf of the crystallized zircon from the granodiorite porphyry ranges from 0.282859 to 0.282719, indicating that the Hf isotope is homogeneous distribution in the zircon samples. The Hf isotope value indicates that there is only one single source of magma. All analysis points have positive εHf(t) values (ranging from 4.32 to 9.64), indicating that more components of the mantle had participated in the diagenetic process, because it generally had high εHf(t) value indicating participation of more components of mantle sources. TDM2 age is 710-1031 Ma, with the mean value 914 Ma, reflecting the duration of extracting the materials in the sources from the depleted mantle (or the residence age of materials of the sources in the crust). In plot εHf(t) values vs. age(Fig. 4b) the setting points are between the development lines of the depleted mantle (DM) and the crust, showing the characteristics of mantle-sourced Hf isotope. Therefore, the magma sources of the granodiorite porphyry in the Sepon deposit are mainly mantle source but underwent mixing and contamination of crust materials in the process of magma emplacement.

    Most of intrusions in the Truong Son Fold Belt that are closely related to metallogeny of porphyry-skarn and hydrothermal deposits are calc-alkaline magma (Backhouse D, 2004; Cromie PW et al., 2006, 2010; Manaka T et al., 2008; Li YF, 2012; Kamvong T et al., 2014; Shi MF et al., 2015) . At the Phu Kham Cu-Au deposit, adakites show a strong depletion in HREE and high LREE contents (high La/Yb rations), representing the initial stage when the Ailaoshan-Song Ma Ocean branch of the Paleotethys Ocean began subducting toward the Indochina Block (Kamvong T et al ., 2014; Liu JL et al., 2012; Khin Z et al., 2014). Whole rock geochemistry of the Pha Lek diorite and granodiorite samples are metalumious calc-alkaline granites enriched of Rb, Th, U, K, Pb, lack of Ba, Ta, P, Ti and high field strength element Nb; enriched with LREEs, moderate negative Eu anomaly, which indicates island arc environment (Li YF, 2012).

    Schulz JJ. et al. (Schulz et al., 2006) summarized the geochemical characteristics of trace elements contained in zircon crystallized under different tectonic settings (within the plate, volcanic arc and mid-oceanic ridge). In the Yb/Dy-Y, Lu/Hf-Y, Ce, Yb-Y and Th-Gd discrimination diagrams of zircon under different tectonic settings (Fig. 5), zircons from granodiorite porphyry in the Sepon deposit are interpreted as volcanic-arc basalt-type suit feature (VAB). Grimes CB et al., (2007)used some trace element diagrams of zircon to differentiate crystallization environments for zircon (continental or oceanic crust), and found in the U/Yb-Hf diagram of zircon under different crystallization environments (Fig. 6a), that the zircon of the granodiorite porphyry in the Sepon deposit falls within the region of continents and kimberlite (indicating the cause of mantle formation), and based on the U/Yb-Y diagram (Fig. 6b), it falls within a continental environment, indicating that the zircon originated from crystallization of magma in the continental crust. It follows that the Au-Cu ore in the Sepon deposit is closely related with arc magmatism, formed in a continental arc environment, consistent with the tectonic setting reflected by the characteristics of geologic formation, and in this area, the volcanic activity is undeveloped, and no back-arc spreading basin has been found.

    Figure 5.  Discrimination plots of different tectonic settings for the zircon (base map modified from Schulz, 2006)).
    Figure 6.  Geochemical discriminant diagrams for zircons (base map modified from Grimes et al., 2007).

    As noted above, the south of the Truong Son Fold Belt was in a subduction environment during the late Carboniferous to early Permian, a branch of Paleotethys Ocean, Ailaoshan-Song Ma Ocean subducted toward Indochina block, causing large-scale metallogeny of arc magma thus forming the Pha Lek skarn Fe ore, KTL skarn Cu-Au ore, Phu Kham porphyry Cu-Au ore and the Ban Houayxai hydrothermal Au-Ag ore, etc. During that moment, calc-alkaline magma coming from deep sources emplaced in the Sepon deposit in the subduction process of Paleotethyan Ocean, forming porphyry Mo-Cu, skarn Cu-Au mineralization and hydrothermal sedimentary-hosted Au mineralization in the wall rocks.

    In the Sepon porphyry Au-Cu deposit, LA-ICPMS zircon U-Pb dating from granodiorite porphyry is 302.1 ± 2.9 Ma and its emplacement occurred in the Late Carboniferous, suggesting an important magmatism-metallogeny that occurred in the Truong Son Fold Belt during the Late Carboniferous to Early Permian. The intermediate-acid magma intruded at the same time as the time for mineralization, thus providing thermal sources and material sources for the mineralization. The Ce4+/Ce3+ varys greatly from 2.4 to 1438.29,which shows magma mixing might occur. The high value of Ce4+/Ce3+ indicates the existence of high oxygen fugacity magma injecting into the lower oxygen fugacity magma. 176Hf/177Hf of zircon ranges from 0.282859 to 0.282719 with εHf(t) value from 4.32 to 9.64. The mean age TDM2 is 914 Ma, suggesting that the magma source of granodiorite porphyry in the Sepon deposit are mainly mantle source but they underwent mixing and contamination of crust materials. Considering the characteristics of trace elements in the zircon and the geochemical characteristics of intrusions as well as the characteristics of regional geologic formation, the tectonic setting might be a continental arc environment. The Sepon Au-Cu deposit is derived from emplacement of calc-alkaline intermediate-acid magma from deep sources in the subduction process of Paleotethys Ocean, forming porphyry Mo-Cu, Cu-Au mineralization and the hydrothermal sedimentary-hosted Au mineralization in wall rocks.

    The author hereby extends gratitude to the colleagues in Institute of Mineral Resources, Chinese Academy of Geological Sciences, Mr. Li Yike, who provided great support during the geologic work in the field; Mr. Hou Kejun, who assisted enthusiastically the experiments described in the paper; and the reviewers who gave precious comments after the submission of the paper. This study was financially co-supported by the National Science Foundation of China (41373036, 41002027), the Geological Survey of China Geological Survey Project (121201103000150006, 121201066307).

  • Bai LA. 2013. Study on Metallogenic Mechanism and Resource Forecast of Hydrothermal Cu Deposits in the Central and North of the Great Xing’an Range, NE China. Changchun, Jilin University, Ph. D thesis, 1–132 (in Chinese with English abstract).

    Google Scholar

    Bai LA, Sun JG, Zhang Y, Han SJ, Yang FC, Men LJ, Gu AL, Zhao KQ. 2012. Genetic type, mineralization epoch and geodynamical setting of endogenous copper deposits in the Great Xing’an Range. Acta Petrologica Sinica, 28(02), 468–482 (in Chinese with English abstract).

    Google Scholar

    Cai WY. 2020. Metallogenesis of Copper-molybdenum-gold Polymetallic in the Duobaoshan Orefield, Heilongjiang Province. Changchun, Jilin University, Ph. D thesis, 1–223 (in Chinese with English abstract).

    Google Scholar

    Chaussidon M, Lorand JP. 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochimicaet Cosmochimica Acta, 54, 2835–2846. doi: 10.1016/0016-7037(90)90018-G.

    CrossRef Google Scholar

    Che HW. 2016. Study on Geological Features and Ore-forming Mechanisms of the Zhengguang Au Deposit in Northern Great Xing’an Range. Beijing, China University of Geosciences (Beijing), Master thesis, 1–77 (in Chinese with English abstract).

    Google Scholar

    Che HW, Zhou ZH, Ma XH, Ouyang HG, Liu J. 2015. Geochemical characteristics, zircons U-Pb ages and Hf isotopic composition of the dacite porphyry from Zhengguang Au deposit in Northern Great Xing’an Range. Acta Geologica Sinica, 89(8), 1417–1436 (in Chinese with English abstract).

    Google Scholar

    Chen YJ, NI P, Fan HR, Pirajno F, Lai Y, Su WC, Zhang H. 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrologica Sinica, 23(9), 2085–2108 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-4734.2007.z1.080.

    CrossRef Google Scholar

    Chen ZG, Zhang LC, Wan B, Wu HY, Cleven N. 2011. Geochronology and geochemistry of the Wunugetushan porphyry Cu-Mo deposit in NE China, and their geological significance. Ore Geology Reviews, 43, 92–105. doi: 10.1016/j.oregeorev.2011.08.007.

    CrossRef Google Scholar

    Chu SX, Liu JM, Xu JH, Wei H, Chai H, Tong KY. 2012. Zircon U-Pb dating, petrogenesis and tectonic significance of the granodiorite in the Sankuanggou skarn Fe-Cu deposit, Heilongjiang Province. Acta Petrologica Sinica, 28(2), 433–450 (in Chinese with English abstract).

    Google Scholar

    Chu SX, Zeng QD, Liu JM, Wang YB. 2019. Early–Middle Jurassic magmatism and skarn-porphyry mineralization in NE China: Geochronological and geochemical constraints from the Sankuanggou skarn Fe-Cu-(Mo) deposit, and tectonic implications. Journal of Geochemical Exploration, 200, 84–103. doi: 10.1016/j.gexplo.2019.01.013.

    CrossRef Google Scholar

    Cogné JP, Kravchinsky VA, Halim N, Hankard F. 2005. Late Jurassic–Early Cretaceous closure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans-Ba¨ıkal area (SESiberia). Geophysical Journal of the Royal Astronomical Society, 163(2), 813–832. doi: 10.1111/j.1365-246X.2005.02782.x.

    CrossRef Google Scholar

    Cooke DR, Hollings P, Walsh JL. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100, 801–818. doi: 10.2113/100.5.801.

    CrossRef Google Scholar

    Cui G, Wang JY, Zhang JX, Cui G. 2008. U-Pb SHRIMP dating of zircons from Duobaoshan granodiorite in Heilongjiang and its geological significance. World Geology, 27(4), 387–394 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2008.04.006.

    CrossRef Google Scholar

    Dai M, Yan GS, Liu C, Deng JF. 2017. Southward subduction of the Mongolia–Okhotsk Ocean: Insights from Early–Middle Triassic intrusive rocks from the Jiawula–Tsagenbulagen area in NE China. Geological Journal, 55(1), 967–993.

    Google Scholar

    Deng K, Li QG, Chen YJ, Zhang C, Zhu XF, Xu QW. 2018. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Jurassic granodiorite from the Sankuanggou intrusion, Heilongjiang Province, Northeastern China: Petrogenesis and geodynamic implications. Lithos, 296, 113–128. doi: 10.1016/j.lithos.2017.10.016.

    CrossRef Google Scholar

    Du Q. 1980. Alteration and mineralization characteristics of Duobaoshan porphyry copper deposit. Acta Geologica Sinica, 59(4), 310–323 (in Chinese with English abstract).

    Google Scholar

    Du Q, Zhao YM, Lu BG. 1988. Duobaoshan Porphyry Cu (Mo) Deposit. Beijing, Geological Publishing House, 1–344 (in Chinese).

    Google Scholar

    Fan SW. 2020. Characteristics and Genesis of Sb-Au Mineralization in Zhuanghuhe Area, Heihe County, Heilongjiang Province. Changchun, Jilin University, Master thesis, 1–68 (in Chinese with English abstract).

    Google Scholar

    Feng JX. 2008. Distribution character of sulfur isotope in the Duobaoshan copper deposit. Geology and Exploration, 44(1), 46–49 (in Chinese with English abstract).

    Google Scholar

    Gao RZ, Xue CJ, Lü XB, Zhao XB, Yang YS, Li CC. 2017. Genesis of the Zhengguang gold deposit in the Duobaoshan ore field, Heilongjiang Province, NE China: Constraints from geology, geochronology and S-Pb isotopic compositions. Ore Geology Reviews, 84, 202–217. doi: 10.1016/j.oregeorev.2016.12.031.

    CrossRef Google Scholar

    Ge WC, Wu FY, Zhou CY, Zhang JH. 2007a. Metallogenic age and geodynamic significance of porphyry Cu, Mo deposits in the eastern segment of Xingmeng orogenic belt. Chinese Science Bulletin, 52(20), 2407–2417 (in Chinese with English abstract). doi: 10.3321/j.issn:0023-074x.2007.20.012.

    CrossRef Google Scholar

    Ge WC, Wu FY, Zhou C, Zhang JH. 2007b. Porphyry Cu-Mo deposits in the eastern Xing’an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications. Chinese Science Bulletin, 52(24), 3416–3427. doi: 10.1007/s11434-007-0466-8.

    CrossRef Google Scholar

    Han ZX, Xu YQ, Zheng QD. 2004. Metallogenic series and evolution of important metallic and non-metallic minerals in Heilongjiang Province. Harbin, Heilongjiang Provincial People’s Publishing House, 1–241 (in Chinese).

    Google Scholar

    Hao YJ. 2015. Mineralization and Metallogenic Regularity of Duobaoshan Ore Concentration Area in Heilongjiang Province, Northeast China. Changchun, Jilin University, Ph. D thesis, 1–199 (in Chinese with English abstract).

    Google Scholar

    Hao YJ, Ren YS, Duan MX, Tong KY, Chen C, Li C. 2014. Re-Os isotopic dating of the molybdenite from the Tongshan porphyry Cu-Mo deposit in Heilongjiang Province, NE China. Acta Geologica Sinica (English Edition), 88, 522–523. doi: 10.1111/1755-6724.12374_14.

    CrossRef Google Scholar

    Hao YJ, Ren YS, Duan MX, Tong KY, Chen C, Yang C, Li C. 2015. Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China. Journal of Asian Earth Sciences, 97, 442–458. doi: 10.1016/j.jseaes.2014.08.007.

    CrossRef Google Scholar

    Hao YJ, Ren YS, Duan MX, Zhao X, Yang Q, Tong KY, Li C. 2016. Mineralization time and tectonic setting of the Zhengguang Au deposit in the Duobaoshan ore field, Heilongjiang Province, NE China. Arabian Journal of Geosciences, 9(15), 1–20. doi: 10.1007/s12517-016-2666-5.

    CrossRef Google Scholar

    Hao YJ, Ren YS, Duan MX, Zhao HL, Tong KY, Sun ZM. 2017. Tectonic setting of Triassic magmatic and metallogenic event in the Duobaoshan mineralization area of Heilongjiang Province, NE China. Geological Journal, 52(1), 67–91. doi: 10.1002/gj.2732.

    CrossRef Google Scholar

    Heilongjiang Bureau of Geology and Mineral Resources, 1993. Regional Geology of Heilongjiang Province. Beijing, Geological Publishing House, 1–734 (in Chinese).

    Google Scholar

    Hu XL, Yao SZ, Ding ZJ, He MC. 2017. Early Paleozoic magmatism and metallogeny in Northeast China: A record from the Tongshan porphyry Cu deposit. Mineralium Deposita, 52(1), 85–103. doi: 10.1007/s00126-016-0653-0.

    CrossRef Google Scholar

    Hu XL, Yao SZ, He MC, Ding ZJ, Chen B. 2014. Geochemistry, U-Pb geochronology and Hf isotope studies of the Daheishan porphyry Mo deposit in Heilongjiang Province, NE China. Resource Geology, 64(2), 102–116. doi: 10.1111/rge.12031.

    CrossRef Google Scholar

    Kravchinsky VA, Cogné JP, Harbert WP, Kuzmin, MI. 2002. Evolution of the Mongol–Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol–Okhotsk suture zone, Siberia. Geophysical Journal of the Royal Astronomical Society, 148, 34–57. doi: 10.1046/j.1365-246x.2002.01557.x.

    CrossRef Google Scholar

    Kruk NN, Simanenko VP, Gvozdev VI, Golozubov VV, Kovach VP, Serov PI, Kholodnov VV, Moskalenko EY, Kuibida ML. 2014. Early Cretaceous granitoids of the Samarkaterrane (Sikhote-Alin’): Geochemistry and sources of melts. Russian Geology and Geophysics, 55(2), 216–236. doi: 10.1016/j.rgg.2014.01.007.

    CrossRef Google Scholar

    Li DR, Lü FL, Liu SY, Lü J. 2011. Geological features and prospecting orientation of the Sankuanggou Cu-Mo-Au deposit in Nenjiang County, Heilongjiang Province. Geology in China, 38(2), 415–426 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2011.02.016.

    CrossRef Google Scholar

    Li DR, Zhu CL, Lu J, Cui G. 2010. Structural-magmatic mineralization of Sankuanggou-Duobaoshan metallogenic belt, Heilongjiang. China Mining Magazine, 19(S1), 142–146 (in Chinese with English abstract).

    Google Scholar

    Li N, Chen YJ, Zhang H, Zhao TP, Deng XH, Wang Y, Ni ZY. 2007. Molybdenum deposits in East Qinling. Earth Science Frontiers, (5), 186–198 (in Chinese with English abstract).

    Google Scholar

    Li XY, Gao QZ, Song H, Song H, Chi GX, Lai CK. 2019. Discriminating ore fertile and barren granites using zircon Ce and Eu anomalies–Perspective from late Mesozoic (Yanshanian) granites in South China. Ore Geology Reviews, 113, 103105. doi: 10.1016/j.oregeorev.2019.103105.

    CrossRef Google Scholar

    Li Y. 2016. The Study of The Main Rock and Typical Deposits in The North of Duobaoshan District, Heilongjiang Provice. Beijing, China University of Geosciences (Beijing), Master thesis, 1–104 (in Chinese with English abstract).

    Google Scholar

    Li Y, Zeng H, Qiao ZJ, Wang ZD, Zhao YY, Fu JJ, Chen L, Yang B. 2016a. Ore characteristics of the Sankuanggou iron copper ore deposit in Nenjiang County, Heilongjiang Province, and their significance. Acta Petrologicaet Mineralogica, 35(1), 97–110 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2016.01.007.

    CrossRef Google Scholar

    Li Y, Fu JJ, Zhao YY, Zeng H. 2016b. Chronological characteristics and metallogenic significance of Zhengguang gold deposit, Heilongjiang Province, China. Acta Geologica Sinica, 90(1), 151–162 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.01.010.

    CrossRef Google Scholar

    Li Y, Xu WL, Tang J, Pei FP, Wang F, Sun CY. 2018. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing’an Massif of NE China: Implications for the evolution and spatial extent of the Mongol–Okhotsk tectonic regime. Lithos, 304, 57–73. doi: 10.1016/j.lithos.2018.02.001.

    CrossRef Google Scholar

    Li Y, Xu WL, Wang F, Tang J, Sun CY, Wang ZJ. 2017. Early–Middle Ordovician volcanism along the eastern margin of the Xing’an Massif, Northeast China: Constraints on the suture location between the Xing’an and Songnen–Zhangguangcai Range massifs. International Geology Review, 60(16), 2046–2062. doi: 10.1080/00206814.2017.1402378.

    CrossRef Google Scholar

    Li ZT, Wang XJ, Wang HB, Wu G. 2008. Geology of the Sankuanggou gold-bearing iron-copper deposit in. Geology and Resources, 17(3), 170–174 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1947.2008.03.003.

    CrossRef Google Scholar

    Liu J, Li Y, Zhou ZH, OuYang HG. 2017. The Ordovician igneous rocks with high Sr/Y at the Tongshan porphyry copper deposit, satellite of the Duobaoshan deposit, and their metallogenic role. Ore Geology Reviews, 86, 600–614. doi: 10.1016/j.oregeorev.2017.02.036.

    CrossRef Google Scholar

    Liu J, Wu G, Li Y, Zhu MT, Zhong W. 2012. Re–Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China. Journal of Asian Earth Sciences, 49, 300–312. doi: 10.1016/j.jseaes.2011.10.014.

    CrossRef Google Scholar

    Liu J, Wu G, Zhong W, Zhu MT. 2010. Fluid inclusion study of the Duobaoshan porphyry Cu(Mo) deposit, Heilongjiang Province. Acta Petrologica Sinica, 26(5), 1450–1464 (in Chinese with English abstract).

    Google Scholar

    Liu J, Zhou ZH, He ZF, Ouyang HG. 2015. Zircon U-Pb dating and geochemistry of ore-bearing tonalite in Tongshan copper deposit, Heilongjiang Province. Mineral Deposits, 34(2), 289–308 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2015.02.006.

    CrossRef Google Scholar

    Lu HZ, Fan HR, Ni P, Ou GX, Shen K, Zhang WH. 2004. Fluid Inclusions. Beijing, Science Press, 1–487 (in Chinese).

    Google Scholar

    Lü PR, LI DR, Peng YW, Zhang MY. 2012. S-Pb isotopic characteristics of ore sulfides and U-Pb dating of zircon from the Sankuanggou skarn-type Cu-Fe-Mo deposit in Heilongjiang Province. Geology in China, 39(3), 717–728 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2012.03.013.

    CrossRef Google Scholar

    Ma DY. 1984. Isotopic geological characteristics of Duobaoshan Copper deposit. Mineral Deposits, 3(1), 47–57 (in Chinese with English abstract).

    Google Scholar

    Mao JW, Zhang ZC, Zhang ZH. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northern Qilian mountains and its geological significance. Geochimicaet Cosmochimica Acta, 63(11‒12), 1815–1818. doi: 10.1111/1755-6724.12378_42.

    Google Scholar

    Niu SD, Li SR, Huizenga JM, Santosh M, Zhang DH, Zeng YJ, Li ZD, Zhao WB. 2017. Zircon U-Pb geochronology and geochemistry of the intrusions associated with the Jiawula Ag-Pb-Zn deposit in the Great Xing’an Range, NE China and their implications for mineralization. Ore Geology Reviews, 86, 35–54. doi: 10.1016/j.oregeorev.2017.02.007.

    CrossRef Google Scholar

    Pass HE, Cooke DR, Davidson G, Mass R, Dipple G, Rees C, Ferreira L, Taylor C, Deyell C. 2014. Isotope geochemistry of the Northeast Zone, Mount Polley alkalic Cu-Au-Ag porphyry deposit, British Columbia: A case for carbonate assimilation. Economic Geology, 109, 859–890. doi: 10.2113/econgeo.109.4.859.

    CrossRef Google Scholar

    Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation. Economic Geology, 98, 1515–1533. doi: 10.2113/98.8.1515.

    CrossRef Google Scholar

    She HQ, Li JW, Xiang AP, Guan JD, Yang YC, Zhang DQ, Tan G, Zhang B. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrologica Sinica, 28(2), 571–594 (in Chinese with English abstract).

    Google Scholar

    Sillitoe RH. 2010. Porphyry copper systems. Economic Geology 105, 3–41. doi: 10.2113/gsecongeo.105.1.3.

    CrossRef Google Scholar

    Song GX, Cook NJ, Wang L, Qin KZ, Ciobanu CL, Li GM. 2019. Gold behavior in intermediate sulfidation epithermal systems: A case study from the Zhengguang gold deposit, Heilongjiang Province, NE China. Ore Geology Reviews, 106, 446–462. doi: 10.1016/j.oregeorev.2019.02.001.

    CrossRef Google Scholar

    Song GX, Qin KZ, Wang L, Guo JH, Li ZZ, Tong KY, Zou XY, Li GM. 2015. Type, zircon U-Pb age and Paleo-volcano edifice of Zhengguang gold deposit in Duobaoshan orefield in Heilongjiang Province, NE-China. Acta Petrologica Sinica, 31(8), 2402–2416 (in Chinese with English abstract).

    Google Scholar

    Sun MD, Chen HL, Milan LA. 2018. Continental arc and back-arc migration in Eastern NE China: New constraints on Cretaceous Paleo-Pacific subduction and rollback. tectonics, 37(10), 3893–3915. doi: 10.1029/2018TC005170.

    CrossRef Google Scholar

    Tan CY, Wang GH, Li YS. 2010. New progress and significance on the mineral exploration in Duobaoshan mineralization area, Heilongjiang, China. Geological Bulletin of China, 29(Z1), 436–445 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.02.031.

    CrossRef Google Scholar

    Tang J, Xu WL, Wang F, Zhao S, Li Y. 2015. Geochronology, geochemistry, and deformation history of Late Jurassic–Early Cretaceous intrusive rocks in the Erguna Massif, NE China: Constraints on the late Mesozoic tectonic evolution of the Mongol–Okhotsk suture belt. Tectonophysics, 658, 91–110. doi: 10.1016/j.tecto.2015.07.012.

    CrossRef Google Scholar

    Tang J, Xu WL, Wang F, Zhao S, Wang W. 2016. Early Mesozoic southward subduction history of the Mongol–Okhotsk oceanic plate: evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Research, 31, 218–240. doi: 10.1016/j.gr.2014.12.010.

    CrossRef Google Scholar

    Tang WH. 2020. Characteristics and Genesis of Copper-Molybdenum Mineralization in Huaduoshan area, Nenjiang County, Heilongjiang Province. Changchun, Jilin University, Master thesis, 1–87 (in Chinese with English abstract).

    Google Scholar

    Tsui WSR. 2018. Late Permian-early Cretaceous Igneous Events in the Erguna Massif, NE China: Constraints on the Timing of Closure of the Mongol-Okhotsk Ocean. Hong Kong, University of Hong Kong, Master thesis, 1–96.

    Google Scholar

    Wang L, Qin KZ, Song GX, Pang XY, Li ZZ, Zhao C, Jin LY, Zou XY, Li GM. 2018. Volcanic-subvolcanic rocks and tectonic setting of the Zhengguang intermediate sulfidation epithermal Au-Zn deposit, eastern Central Asian Orogenic Belt, NE China. Journal of Asian Earth Sciences, 165, 328–351. doi: 10.1016/j.jseaes.2018.07.023.

    CrossRef Google Scholar

    Wang XC, Wang XL, Wang Lin, Liu JY, Xia B, Deng J, Xu XM. 2007. Metallogeny and reformation of the Duobaoshan superlarge porphyry copper deposit in Heilongjiang. Chinese Journal of Geology (Scientia Geologica Sinica), 42(1), 124–133 (in Chinese with English abstract).

    Google Scholar

    Wang Y, Chen YJ, MA HW, Xu YL. 2009. Study on ore geology and fluid inclusions of the Tangjiaping Mo deposit, Shangcheng County, Henan Province. Acta Petrologica Sinica, 25(02), 468–480 (in Chinese with English abstract).

    Google Scholar

    Wang YH, Zhao CB, Zhang FF, Liu JJ, Wang JP, Peng RM, Liu B. 2015. SIMS zircon U–Pb and molybdenite Re–Os geochronology, Hf isotope, and whole-rock geochemistry of the Wunugetushan porphyry Cu-Mo deposit and granitoids in NE China and their geological significance. Gondwana Research, 28, 1228–1245. doi: 10.1016/j.gr.2014.10.001.

    CrossRef Google Scholar

    Wei H. 2014. Fluid Mineralization and Prospect Evaluation of the Duobaoshan Porphyry Cu (Mo) Deposit, Heilongjiang. Beijing, University of Science and Technology Beijing, Ph. D thesis, 1–155 (in Chinese with English abstract).

    Google Scholar

    Wei H, Xu JH, Zeng QD. 2013. Fluid inclusion study on the Duobaoshan porphyry copper deposit, Heilongjiang, China. Mineralogical Magazine, 77(2), 200.

    Google Scholar

    Wei H, Xu JH, Zeng QD, Wang YH, Liu JM, Chu SX. 2011. Fluid evoluton of alteration and mineralization at the Duobaoshan porphyry Cu (Mo) deposit Heilongjiang Province. Acta Petrologica Sinica, 27(05), 1361–1374 (in Chinese with English abstract).

    Google Scholar

    Wu G, Chen YH, Sun FY, Liu J, Wang GR, Xu B. 2015. Geochronology, geochemistry, and Sr–Nd–Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance. Journal of Asian Earth Sciences, 97, 229–250. doi: 10.1016/j.jseaes.2014.07.031.

    CrossRef Google Scholar

    Wu G, Liu J, Zhong W, Zhu MG, Mi M, Wan Q. 2009. Fluid inclusion study of the Tongshan porphyry copper deposit, Heilongjiang province, China. Acta Petrologica Sinica, 25(11), 2995–3006 (in Chinese with English abstract).

    Google Scholar

    Wu JR. 2012. Ore Fluids and Stable Isotope Geochemistry of the Duobaoshan Prophyry Cu Deposit, Heilongjiang Province. Beijing, China University of Geosciences (Beijing), Master thesis, 1–55 (in Chinese with English abstract).

    Google Scholar

    Wu ZY, Sun YC, Wang BQ. 2006. Geology and geochemistry of Zhengguang gold deposit, Heilongjiang Province. Geology and Exploration, 42(1), 38–42 (in Chinese with English abstract). doi: 10.3969/j.issn.0495-5331.2006.01.009.

    CrossRef Google Scholar

    Xiang AP, Yang YC, Li GT, She HQ, Guan JD, Li JW, Guo ZJ. 2012. Diagenetic and metallogenic ages of Duobaoshan porphyry Cu-Mo deposit in Heilongjiang Province. Mineral Deposits, 31(6), 1237–1248 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.06.009.

    CrossRef Google Scholar

    Xu WL, Wang F, Pei FP, Meng E, Tang J, Xu MJ, Wang W. 2013. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rockassociations. Acta Petrologica Sinica, 29(02), 339–353 (in Chinese with English abstract).

    Google Scholar

    Yin BC, Ran QC. 1997. Metallogenic tectonic environment of Duobaoshan superlarge copper deposit. Acta Mineralogica Sinica, (2), 220–224 (in Chinese with English abstract).

    Google Scholar

    Yuan MW, Li SR, Li CL, Santosh M, Alam M, Zeng YJ. 2018. Geochemical and isotopic composition of auriferous pyrite from the Yongxin gold deposit, Central Asian Orogenic Belt: Implication for ore genesis. Ore Geology Reviews, 93, 255–267. doi: 10.1016/j.oregeorev.2018.01.002.

    CrossRef Google Scholar

    Yu JJ, Xu ZG, Xu FS. 1996. Tectonic setting of Ordovician volcanic rocks in Northwestern Xiaoxing’anling, Heilongjiang Province. Acta Geoscientica Sinica, 17(1), 54–64 (in Chinese with English abstract).

    Google Scholar

    Zartman RE, Doe BR. 1981. Plumbotectonics–the model. Tectonophysics, 75, 135–162. doi: 10.1016/0040-1951(81)90213-4.

    CrossRef Google Scholar

    Zeng QD, Liu JM, Chu SX, Wang YB, Sun Y, Duan XX, Zhou LL, Qu WJ. 2014. Re–Os and U–Pb geochronology of the Duobaoshan porphyry Cu–Mo–(Au) deposit, northeast China, and its geological significance. Journal of Asian Earth Sciences, 79, 895–909. doi: 10.1016/j.jseaes.2013.02.007.

    CrossRef Google Scholar

    Zhai DG, Liu JJ, Ripley EM, Wang JP. 2015. Geochronological and He–Ar–S isotopic constraints on the origin of the Sandaowanzi gold-telluride deposit, northeastern China. Lithos, 212, 338–352. doi: 10.1016/j.lithos.2014.11.017.

    CrossRef Google Scholar

    Zhang FF, Wang YH, Liu JJ, Wang JP, Zhao CB, Song ZW. 2015. Origin of the Wunugetushan porphyry Cu–Mo deposit, Inner Mongolia, NE China: Constraints from geology, geochronology, geochemistry, and isotopic compositions. Journal of Asian Earth Sciences, 117, 208–224. doi: 10.1016/j.jseaes.2015.12.018.

    CrossRef Google Scholar

    Zhao C. 2019. Research on the Mineralogical Characteristics of Metallic Mineral and Mineralization of Longtougou Gold Deposit , Shanyang, Shanxi Province. Beijing, China University of Geosciences (Beijing), Master thesis, 1–48 (in Chinese with English abstract).

    Google Scholar

    Zhao C, Qin KZ, Song GX, Li GM. 2019a. Switch of geodynamic setting from the Paleo-Asian Ocean to the Mongol-Okhotsk Ocean: Evidence from granitoids in the Duobaoshan ore field, Heilongjiang Province, Northeast China. Lithos, 336, 202–220. doi: 10.1016/j.lithos.2019.04.006.

    CrossRef Google Scholar

    Zhao C, Qin KZ, Song GX, Li GM, Li ZZ. 2019b. Early Palaeozoic high-Mg basalt-andesite suite in the Duobaoshan Porphyry Cu deposit, NE China: Constraints on petrogenesis, mineralization, and tectonic setting. Gondwana Research, 71, 91–116. doi: 10.1016/j.gr.2019.01.015.

    CrossRef Google Scholar

    Zhao C, Qin KZ, Song GX, Li GM, Li ZZ, Pang XY, Wang L. 2018. Petrogenesis and tectonic setting of ore-related porphyry in the Duobaoshan Cu deposit within the eastern Central Asian Orogenic Belt, Heilongjiang Province, NE China. Journal of Asian Earth Sciences, 165, 352–370. doi: 10.1016/j.jseaes.2018.07.002.

    CrossRef Google Scholar

    Zhao GJ, Hou YS, Cheng FQ. 2007. Geological characteristics and genisis of Zhengguang gold feposit in Heihe city of Heilongjiang Province. Nonferrous Metals Engineering, 59(3), 91–94 (in Chinese with English abstract). doi: 10.3969/j.issn.2095-1744.2007.03.023.

    CrossRef Google Scholar

    Zhao HL, Zhu CY, Liu HY, Liu BS. 2012. Zircon Shrimp U-Pb dating and its tectonic implications of the granodiorite in Duobaoshan copper deposit, Heilongjiang Province. Geology and Resources, 21(5), 421–424 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1947.2012.05.001.

    CrossRef Google Scholar

    Zhao YM, Bi CS, Zou XQ, Sun YL, Du AD, Zhao YM. 1997. Rhenium-osmium isotopic ages of molybdenite in Duobaoshan and Tongshan large porphyry copper (molybdenum) deposits, Heilongjiang Province. Acta Geoscientica Sinica, 18(1), 61–67 (in Chinese with English abstract).

    Google Scholar

    Zhao YY, Li DC, Cheng ZJ. 1994. Study on surrounding rock alteration characteristics of Anaodaba porphyry Cu-Ag-Snpolymetallic deposit, Inner Mongolia. Jilin Geology, 13(2), 57–62 (in Chinese with English abstract).

    Google Scholar

    Zhao YY, Zhang DQ. 1997. Metallogenic Regularity and Prospective Evaluation of Copper Polymetallic Deposits in Daxing’anling and Its Adjacent Areas. Beijing, Seismological Press, 1–318(in Chinese).

    Google Scholar

    Zhao YY, Zhao GJ. 1995. Geochemical characteristics of rare earth elements and genetic model of Duobaoshan copper deposit in Heilongjiang Province. Jilin Geology, 14(2), 71–78 (in Chinese with English abstract).

    Google Scholar

    Zhou JB, Cao JL, Wilde SA, Cao JL, Zhao G, Zhang JJ. 2014. Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33, 2444–2466. doi: 10.1002/2014TC003637.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(18)

Tables(10)

Article Metrics

Article views(5059) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    • Table 1.  Zircon LA-ICPMS dating of the granodiorite porphyry in the Sepon deposit.
      Points Element/10-6 Th/U Isotopic ratios Age/Ma
      Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      1.1 197 1092 0.2 0.0603 0.0019 0.4017 0.0126 0.0483 0.0007 505 88 328 10 303 4
      1.2 52 494 0.1 0.0518 0.0018 0.3286 0.0117 0.046 0.0007 275 54 288 9 290 4
      1.3 192 692 0.3 0.0537 0.0018 0.3479 0.0117 0.047 0.0007 359 49 303 9 296 4
      1.6 68 554 0.1 0.0531 0.0018 0.3489 0.012 0.0477 0.0007 333 51 304 9 300 4
      1.7 113 966 0.1 0.0591 0.0019 0.3896 0.0127 0.0478 0.0007 434 88 316 10 300 4
      1.8 114 1192 0.1 0.0531 0.0017 0.3394 0.0109 0.0463 0.0007 333 46 297 8 292 4
      1.9 79 744 0.1 0.0526 0.0017 0.3627 0.012 0.05 0.0008 311 48 314 9 315 5
      1.11 75 673 0.1 0.0524 0.0018 0.347 0.0119 0.048 0.0007 303 51 302 9 302 4
      1.12 109 767 0.1 0.0507 0.0017 0.3383 0.0115 0.0484 0.0007 227 50 296 9 305 4
      1.13 134 805 0.2 0.0533 0.0019 0.3648 0.0132 0.0496 0.0008 341 54 316 10 312 5
      1.14 174 1009 0.2 0.0524 0.0017 0.337 0.0112 0.0467 0.0007 302 48 295 9 294 4
      1.15 291 966 0.3 0.0568 0.0019 0.3753 0.0128 0.0479 0.0007 483 49 324 9 302 4
      1.16 153 810 0.2 0.052 0.0018 0.3512 0.0121 0.049 0.0007 287 51 306 9 308 5
      1.17 90 730 0.1 0.0527 0.0018 0.3562 0.0125 0.0491 0.0008 314 52 309 9 309 5
      1.18 171 1180 0.1 0.0543 0.0018 0.3633 0.0123 0.0485 0.0007 384 49 315 9 305 5
      1.19 153 904 0.2 0.0541 0.0019 0.36 0.0128 0.0482 0.0007 377 53 312 10 304 5
      1.20 152 951 0.2 0.0519 0.0018 0.3535 0.0123 0.0494 0.0008 281 52 307 9 311 5
      1.22 122 756 0.2 0.0517 0.0018 0.349 0.0125 0.0489 0.0008 274 53 304 9 308 5
      1.24 98 871 0.1 0.0528 0.0019 0.3539 0.0126 0.0487 0.0008 318 53 308 9 306 5
      1.25 67 523 0.1 0.0518 0.002 0.3367 0.0129 0.0472 0.0007 274 59 295 10 297 5
      1.26 94 745 0.1 0.052 0.0019 0.3488 0.0127 0.0487 0.0008 285 55 304 10 306 5
      1.27 98 588 0.2 0.0527 0.002 0.3365 0.0128 0.0463 0.0007 317 58 295 10 292 4
      1.28 232 1080 0.2 0.0516 0.0018 0.3474 0.0124 0.0488 0.0008 269 53 303 9 307 5
      1.30 68 753 0.1 0.0511 0.0019 0.3492 0.0132 0.0496 0.0008 244 58 304 10 312 5
       | Show Table
      DownLoad: CSV
    • Table 2.  Zircon trace elements data of the granodiorite porphyry in the Sepon deposit.
      Points Elements/10-6 LREE/
      HREE
      δEu δCe
      La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE
      1.1 0.66 14.27 1.34 12.18 11.56 6.25 20.67 6.43 71.15 26.79 134.5 40.89 620.96 146.24 864.83 1113.89 46.26 1067.63 0.04 1.22 2.76
      1.2 0.01 5.19 0.01 0.29 0.74 0.54 4.73 2.14 33.73 16.73 99.7 33.55 535.37 133.49 581.97 866.21 6.77 859.44 0.01 0.67 115.02
      1.3 0.01 12.52 0.01 0.64 2.23 1.46 14.7 6.53 93.41 41.2 204.21 60.74 841.90 183.86 1235.30 1463.42 16.87 1446.55 0.01 0.59 277.47
      1.6 0.05 6.28 0.05 0.23 0.89 0.56 4.85 2.09 31.92 15.61 88.1 30.03 459.15 113.93 524.89 753.74 8.07 745.68 0.01 0.66 26.91
      1.7 0.6 8.7 0.64 5.59 4.94 2.83 14.6 5.53 83.15 37.61 212.11 65.33 965.44 213.62 1254.49 1620.68 23.30 1597.39 0.01 0.94 3.07
      1.8 0.11 8.62 0.11 0.88 1.56 1.09 9.07 3.92 58.66 27.38 155.47 51.77 804.35 189.20 918.81 1312.18 12.37 1299.82 0.01 0.69 17.06
      1.9 0.01 5.54 0.01 0.31 0.98 0.83 8.61 3.81 57.89 27.08 148.84 46.47 689.63 155.85 869.67 1145.86 7.68 1138.18 0.01 0.59 122.78
      1.11 0.01 5.5 0.01 0.01 0.59 0.51 5.64 2.41 38.32 17.54 103.96 33.96 540.96 128.33 618.04 877.74 6.63 871.12 0.01 0.56 121.89
      1.12 0.19 9.25 0.23 1.66 2.04 1.63 10.28 3.77 55.27 26.44 150.43 48.67 747.91 185.82 925.49 1243.59 15.00 1228.59 0.01 0.89 9.33
      1.13 0.01 7.31 0.11 1.2 2.19 1.05 8.24 3.6 50.25 23.29 130.66 40.89 651.06 159.75 767.15 1079.61 11.87 1067.74 0.01 0.67 19.73
      1.14 0.13 9.15 0.23 2.65 3.2 1.98 10.01 3.82 55.21 24.74 137.57 43.9 661.82 160.44 833.82 1114.85 17.34 1097.51 0.02 0.98 10.21
      1.15 0.28 14.2 0.75 7.13 7.29 4.26 17.39 6.31 79.13 33.2 178.68 55.05 786.27 193.49 1079.57 1383.42 33.90 1349.52 0.03 1.11 5.15
      1.16 0.01 7.24 0.01 0.35 0.83 0.64 5.95 2.49 36.18 15.94 88.28 27.4 416.98 100.14 527.49 702.44 9.08 693.36 0.01 0.64 160.45
      1.17 0.01 10.01 0.01 0.33 1.21 0.77 8.33 3.72 59.65 29.83 170 56.24 877.85 211.64 998.17 1429.60 12.34 1417.26 0.01 0.55 221.84
      1.18 0.36 11.7 0.73 6.13 6.35 2.94 15.77 5.55 71.42 31.74 177.56 57.24 873.22 208.67 1080.74 1469.37 28.20 1441.17 0.02 0.86 4.18
      1.19 0.34 8.41 0.65 5.73 5.44 3.24 12.08 4.7 58.85 24.87 133.46 41.34 611.07 149.03 827.03 1059.20 23.81 1035.40 0.02 1.18 3.33
      1.20 0.08 9.04 0.08 0.93 2.99 1.45 22.2 9.99 148.18 64.29 327.41 93.06 1208.27 256.22 1875.42 2144.17 14.56 2129.62 0.01 0.39 25.73
      1.22 0.06 6.83 0.06 0.78 1.43 1.05 8.63 3.72 53.02 25.02 138.79 44.95 679.68 163.13 846.89 1127.15 10.21 1116.94 0.01 0.71 25.47
      1.24 0.01 9.03 0.01 0.37 1.11 0.76 6.86 3.39 51.21 24.79 141.81 46.69 737.80 177.75 847.57 1201.58 11.28 1190.30 0.01 0.64 200.12
      1.25 0.01 6.44 0.01 0.01 0.58 0.39 5.3 2.52 39.52 17.86 97.9 29.87 425.30 93.56 599.35 719.26 7.44 711.83 0.01 0.45 142.72
      1.26 0.06 8.89 0.1 0.6 1.43 0.89 7.36 3.38 52.11 24.92 143.19 47.89 736.91 177.60 841.13 1205.32 11.96 1193.36 0.01 0.68 22.36
      1.27 0.09 8.3 0.22 2.05 2.25 1.65 9.21 3.53 54.42 24.95 139.12 44.16 678.80 162.62 834.99 1131.37 14.56 1116.81 0.01 0.96 10.05
      1.28 0.01 11.48 0.04 0.38 1.33 0.97 8.29 3.17 43.57 19.76 105.41 32.85 495.84 120.59 644.66 843.69 14.21 829.48 0.02 0.68 80.99
      1.30 0.01 3.29 0.01 0.23 0.82 0.42 5.45 2.82 46.98 22.86 126.67 39.02 558.23 124.76 739.50 931.56 4.78 926.79 0.01 0.45 72.91
       | Show Table
      DownLoad: CSV
    • Table 3.  Partition coefficients and ratios of Ce3+and Ce4+ of zircons from the granodiorite porphyry in the Sepon deposit.
      Points DCe3+ DCe4+ Ce4+/Ce3+ Eu/Eu* Ce/Ce*
      1.1 0.13620 532.90 2.41 1.24 5.97
      1.2 0.00064 323.84 263.44 0.88 127.25
      1.3 0.00114 446.08 354.75 0.78 306.97
      1.6 0.00163 361.20 124.58 0.83 29.90
      1.7 0.03829 484.14 6.39 1.02 3.46
      1.8 0.00464 532.71 59.41 0.88 19.14
      1.9 0.00069 413.28 261.18 0.87 135.83
      1.11 0.00014 403.98 1255.55 0.85 134.85
      1.12 0.01049 454.58 27.66 1.09 10.83
      1.13 0.00599 466.52 38.64 0.76 53.79
      1.14 0.01519 538.23 18.58 1.07 13.09
      1.15 0.05793 608.17 6.97 1.16 7.67
      1.16 0.00081 489.93 290.68 0.87 177.51
      1.17 0.00067 411.99 485.49 0.74 245.42
      1.18 0.04811 555.57 6.90 0.90 5.64
      1.19 0.04803 488.90 4.69 1.22 4.41
      1.20 0.00389 512.84 74.55 0.54 28.79
      1.22 0.00311 424.69 70.44 0.91 27.70
      1.24 0.00073 440.91 403.13 0.84 221.40
      1.25 0.00015 362.85 1438.29 0.68 157.90
      1.26 0.00355 409.22 80.45 0.84 28.98
      1.27 0.01179 400.20 21.87 1.11 14.26
      1.28 0.00203 553.85 182.90 0.89 140.73
      1.30 0.00055 407.69 194.04 0.60 80.66
      Min 0.00014 323.84 2.41 0.54 3.46
      Max 0.13620 608.17 1438.29 1.24 306.97
      Ave 0.01652 459.34 236.37 0.90 82.59
      Notes: DCe3+、DCe4+ and Ce4+/Ce3+ in zircon were calculated based on the method described in Ballard et al.(2002); The data of the granodiorite porphyry is from (2002), Eu/Eu*= EuN/ (SmN×GdN)1/2; Ce/Ce*= CeN/ (LaN×PrN)1/2.
       | Show Table
      DownLoad: CSV
    • Table 4.  Zircon Hf isotopic data of the granodiorite porphyry in the Sepon deposit.
      Points Age/Ma 176Hf/177Hf 2σ 176Lu/177Hf 2σ 176Yb/177Hf 1σ (176Hf/177Hf)0 εHf(t) TDM1/Ma TDM2/Ma fLu/Hf
      1.1 304 0.282791 0.000019 0.001252 0.000021 0.031231 0.000517 0.282784 7.11 658 863 –0.96
      1.2 290 0.282759 0.000023 0.00189 0.000041 0.045024 0.000679 0.282749 5.55 716 952 –0.94
      1.3 296 0.282779 0.000018 0.001956 0.000009 0.048535 0.000194 0.282768 6.36 688 905 –0.94
      1.6 304 0.282741 0.000027 0.00201 0.000018 0.044335 0.000714 0.28273 5.2 743 984 –0.94
      1.7 300 0.28275 0.000022 0.00205 0.000009 0.053523 0.000578 0.282739 5.42 732 968 –0.94
      1.8 292 0.282724 0.00002 0.002006 0.000011 0.051977 0.000118 0.282713 4.32 769 1031 –0.94
      1.9 315 0.282859 0.00002 0.001814 0.000039 0.043229 0.000681 0.282849 9.64 569 710 –0.95
      1.11 302 0.282759 0.000021 0.001343 0.000039 0.034802 0.000663 0.282752 5.93 704 937 –0.96
      1.13 312 0.282801 0.000023 0.002282 0.000099 0.057341 0.002172 0.282787 7.4 662 850 –0.93
      1.14 294 0.282746 0.000018 0.00164 0.000017 0.038489 0.00072 0.282737 5.21 730 976 –0.95
      1.15 302 0.282749 0.000021 0.002158 0.000039 0.061937 0.000437 0.282737 5.41 735 969 –0.93
      1.16 308 0.282819 0.000024 0.001939 0.000011 0.056503 0.000419 0.282808 8.06 629 806 –0.94
      1.17 309 0.282758 0.000021 0.00147 0.000016 0.042549 0.00039 0.282749 6 709 938 –0.96
      1.20 311 0.282812 0.000022 0.001891 0.000014 0.053641 0.000264 0.282801 7.88 638 819 –0.94
      1.22 308 0.282793 0.000027 0.002185 0.000015 0.062936 0.000385 0.282781 7.09 671 868 –0.93
      1.24 306 0.282719 0.000022 0.001494 0.000007 0.046236 0.000228 0.282711 4.56 765 1027 –0.95
      1.25 297 0.282792 0.00002 0.00233 0.000035 0.052 0.000199 0.282779 6.78 676 879 –0.93
      1.26 306 0.28274 0.000016 0.001526 0.000005 0.040493 0.000273 0.282731 5.29 736 981 –0.95
      1.27 292 0.282775 0.000019 0.001548 0.000013 0.039011 0.000293 0.282767 6.24 685 909 –0.95
      1.28 292 0.282779 0.000015 0.002034 0.000024 0.050976 0.000639 0.282768 6.28 689 906 –0.94
      1.30 312 0.282762 0.000016 0.001856 0.000025 0.045408 0.000184 0.282751 6.12 711 932 –0.94
       | Show Table
      DownLoad: CSV
    • Table 5.  Summary for magmatic-related ore deposits in Truong Son Belt from Late Carboniferous to Early Permian.
      No Deposit Longitude Latitude Metallogenic elements Deposit type U−Pb Ages of ore-bearing porphyries/Ma Alteration minerals and types Mineral assemblages Reference
      1 KTL 103.287E 19.434N Cu-Au PCD-SK 285-290 Silicification, propylitic (chlorite, epidote), phyllic (sericite, pyrite) Py+Ccp+Po+Gn+Bn+Sp+Mo+Eit Hotson(2009), Zaw(2014)
      2 Bohr Thong 103.195E 19.417N Cu-Au PCD-SK 282-285 Skarn prograde: garnet;skarn retrograde: epidote, chlorite Py+Ccp+Mag+Bn+Po+Eit Hotson(2009)
      3 Tharkhek 103.238E 19.409N Cu-Au PCD-SK 277-280 Silicification, propylitic (chlorite, epidote), phyllic (sericite, pyrite) Py+Ccp+Mo+Bn+Sp+Gn Hotson(2009)
      4 Phu Kham 102.908E 18.883N Cu-Au PCD-SK, ETL 299-306 Porphyry: potassic (K-feldspar, biotite, magnetite), phyllic (sericite, pyrite), propylitic (epidote, pyrite);skarn prograde: garnet;retrograde:chlorite, epidote, carbonate, quartz, sericite, hematite; high-sulphidation with pyrophyllite at hangingwall zone Py+Ccp+Mag+Bn+Hem+Tet+Gn+
      En+Sp+Mo+Au
      Backhouse(2004), Tate(2005), Kamvong(2013), Kamvong(2014)
      5 Phu He 103.256E 19.467N Au-Ag ETL 290 Porphyry:s potassic (K-feldspar, biotite, magnetite), phyllic (sericite, pyrite), propylitic (epidote, pyrite);skarn prograde: garnet; retrograde:chlorite, epidote, carbonate, quartz, sericite, hematite;high-sulphidation with pyrophyllite at hangingwall zone Py+Gn+Sp+Ccp+EIt Hotson(2009)
      6 LCT 102.884E 18.937N Au-Ag-Cu ETL 291 Silica, adularia, sericite, chlorite, pyrite, kaolinite, halloysite Py+Sp+Gn+Ccp+EIt Manaka(2008)
      7 Ban Houayxai 102.687E 18.927N Au-Ag ETL 286 Silica, adularia, sericite, chlorite, pyrite Py+Sp+Gn+Ccp+EIt+Apy Manaka(2008), Manaka(2014)
      8 Phou Nhouan 103.45E 19.32N Fe SK 282 Mag+Hem+Lm Hotson(2009), Zaw(2014), Jia(2014)
      9 Pha Lek 102.94E 18.989N Fe SK 280-317 Skarn, hornfels, marble, chloritization, magnetite, epidote Hem+Lm+Mag Wang(2013), Li(2012)
      10 Sepon 105.983E 16.976N Au-Cu PCD-SK 283-297 carbonatization, siliconization (iasperoidization), argillization, dolomitization, sericitization, skarnization (to form garnet, chlorite, epidote), and hornstonization in thenon-calcareous sediment). Ccp+Py+Apy+Stb+Gn+Sp+Bn+Au+
      Cc+Cin+Opm
      Smith(2005),
      Cromie (2006), Cannell and Smith(2008), Cromie(2010), Boutathep(2013), Zhu Huaping(2013)
      Notes: Mineral abbreviations: Py—Pyrite, Ccp—Chalcopyrite, Po—Pyrrhotite, Gn—Galena, Bn—Bornite, Sp—Sphalerite, Mo—Molybdenite, Mag—Magnetite, Hem—Hematite, EIt—Electrum, Tet—Tetrahedrite, En—Enargite, Apy—Arsenopyrite, Lm—Limonite, Stb—Stibnite, Cc—Chalcocite, Cin—Cinnabar, Opm—Orpiment. Deposit type abbreviations: SK-Skarn deposit, PCD-Porphyry deposit, ETL—Epithermal deposit.
       | Show Table
      DownLoad: CSV