Citation: | Sen Zhang, Nan Ju, Guo-bin Zhang, Yuan-dong Zhao, Yun-sheng Ren, Bao-shan Liu, Hui Wang, Rong-rong Guo, Qun Yang, Zhen-ming Sun, Feng-ming Xu, Ke-yong Wang, Yu-jie Hao, 2023. Geology and mineralization of the Duobaoshan supergiant porphyry Cu-Au-Mo-Ag deposit (2.36 Mt) in Heilongjiang Province, China: A review, China Geology, 6, 100-136. doi: 10.31035/cg2023006 |
The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit (also referred to as the Duobaoshan porphyry Cu deposit) ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the world. It has proven resources of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) of 2.28×106 t, 80×103 t, 73 t, and 1046 t, respectively. The major characteristics of the Duobaoshan porphyry Cu deposit are as follows. It is located in a zone sandwiched by the Siberian, North China, and paleo-Pacific plates in an island arc tectonic setting and was formed by the Paleozoic mineralization and the Mesozoic mineralization induced by superposition and transformation. The metallogenic porphyries are the Middle Hercynian granodiorite porphyries. The alterations of surrounding rocks are distributed in a ring form. With silicified porphyries at the center, the alteration zones of K-feldspar, biotite, sericite, and propylite occur from inside to outside. This deposit is composed of 215 ore bodies (including 14 major ore bodies) in four mineralized zones. Ore body No. X in the No. 3 mineralized zone has the largest resource reserves, accounting for more than 78% of the total reserves of the deposit. Major ore components include Cu, Mo, Au, Ag, Se, and Ga, which have an average content of 0.46%, 0.015%, 0.16 g/t, 1.22 g/t, 0.0003%, and 0.001%‒0.003%, respectively. The ore minerals of this deposit primarily include pyrite, chalcopyrite, bornite, and molybdenite, followed by magnetite, hematite, rutile, gelenite, and sphalerite. The ore-forming fluids of this deposit were magmatic water in the early metallogenic stage and then the mixture of meteoric water and magmatic water at the late metallogenic stage. The ore-forming fluids experienced three stages. The ore-forming fluids of stage I had a hydrochemical type of H2O-CO2-NaCl, an ore-forming temperature of 375‒650°C, and ore-forming pressure of 110‒160 MPa. The ore-forming fluids of stage II had a hydrochemical type of H2O-CO2-NaCl, an ore-forming temperature of 310‒350°C, and ore-forming pressure of 58‒80 MPa. The ore-forming fluids of stage III had a hydrochemical type of NaCl-H2O, an ore-forming temperature of 210‒290°C, and ore-forming pressure of 5‒12 MPa. The Cu-Au-Mo-Ag mineralization mainly occurred at stages I and II, with the ore-forming materials having a mixed crust-mantle source. The Duobaoshan porphyry Cu deposit was formed in the initial subduction environment of the Paleo-Asian Ocean Plate during the Early Ordovician. Then, due to the closure of the Mongol-Okhotsk Ocean and the subduction and compression of the Paleo-Pacific Ocean, a composite orogenic metallogenic model of the deposit was formed. In other words, it is a porphyry - epithermal copper-gold polymetallic mineralization system of composite orogeny consisting of Paleozoic island arcs and Mesozoic orogeny and extension.
Bai LA. 2013. Study on Metallogenic Mechanism and Resource Forecast of Hydrothermal Cu Deposits in the Central and North of the Great Xing’an Range, NE China. Changchun, Jilin University, Ph. D thesis, 1–132 (in Chinese with English abstract). |
Bai LA, Sun JG, Zhang Y, Han SJ, Yang FC, Men LJ, Gu AL, Zhao KQ. 2012. Genetic type, mineralization epoch and geodynamical setting of endogenous copper deposits in the Great Xing’an Range. Acta Petrologica Sinica, 28(02), 468–482 (in Chinese with English abstract). |
Cai WY. 2020. Metallogenesis of Copper-molybdenum-gold Polymetallic in the Duobaoshan Orefield, Heilongjiang Province. Changchun, Jilin University, Ph. D thesis, 1–223 (in Chinese with English abstract). |
Chaussidon M, Lorand JP. 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochimicaet Cosmochimica Acta, 54, 2835–2846. doi: 10.1016/0016-7037(90)90018-G. |
Che HW. 2016. Study on Geological Features and Ore-forming Mechanisms of the Zhengguang Au Deposit in Northern Great Xing’an Range. Beijing, China University of Geosciences (Beijing), Master thesis, 1–77 (in Chinese with English abstract). |
Che HW, Zhou ZH, Ma XH, Ouyang HG, Liu J. 2015. Geochemical characteristics, zircons U-Pb ages and Hf isotopic composition of the dacite porphyry from Zhengguang Au deposit in Northern Great Xing’an Range. Acta Geologica Sinica, 89(8), 1417–1436 (in Chinese with English abstract). |
Chen YJ, NI P, Fan HR, Pirajno F, Lai Y, Su WC, Zhang H. 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrologica Sinica, 23(9), 2085–2108 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-4734.2007.z1.080. |
Chen ZG, Zhang LC, Wan B, Wu HY, Cleven N. 2011. Geochronology and geochemistry of the Wunugetushan porphyry Cu-Mo deposit in NE China, and their geological significance. Ore Geology Reviews, 43, 92–105. doi: 10.1016/j.oregeorev.2011.08.007. |
Chu SX, Liu JM, Xu JH, Wei H, Chai H, Tong KY. 2012. Zircon U-Pb dating, petrogenesis and tectonic significance of the granodiorite in the Sankuanggou skarn Fe-Cu deposit, Heilongjiang Province. Acta Petrologica Sinica, 28(2), 433–450 (in Chinese with English abstract). |
Chu SX, Zeng QD, Liu JM, Wang YB. 2019. Early–Middle Jurassic magmatism and skarn-porphyry mineralization in NE China: Geochronological and geochemical constraints from the Sankuanggou skarn Fe-Cu-(Mo) deposit, and tectonic implications. Journal of Geochemical Exploration, 200, 84–103. doi: 10.1016/j.gexplo.2019.01.013. |
Cogné JP, Kravchinsky VA, Halim N, Hankard F. 2005. Late Jurassic–Early Cretaceous closure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans-Ba¨ıkal area (SESiberia). Geophysical Journal of the Royal Astronomical Society, 163(2), 813–832. doi: 10.1111/j.1365-246X.2005.02782.x. |
Cooke DR, Hollings P, Walsh JL. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100, 801–818. doi: 10.2113/100.5.801. |
Cui G, Wang JY, Zhang JX, Cui G. 2008. U-Pb SHRIMP dating of zircons from Duobaoshan granodiorite in Heilongjiang and its geological significance. World Geology, 27(4), 387–394 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2008.04.006. |
Dai M, Yan GS, Liu C, Deng JF. 2017. Southward subduction of the Mongolia–Okhotsk Ocean: Insights from Early–Middle Triassic intrusive rocks from the Jiawula–Tsagenbulagen area in NE China. Geological Journal, 55(1), 967–993. |
Deng K, Li QG, Chen YJ, Zhang C, Zhu XF, Xu QW. 2018. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Jurassic granodiorite from the Sankuanggou intrusion, Heilongjiang Province, Northeastern China: Petrogenesis and geodynamic implications. Lithos, 296, 113–128. doi: 10.1016/j.lithos.2017.10.016. |
Du Q. 1980. Alteration and mineralization characteristics of Duobaoshan porphyry copper deposit. Acta Geologica Sinica, 59(4), 310–323 (in Chinese with English abstract). |
Du Q, Zhao YM, Lu BG. 1988. Duobaoshan Porphyry Cu (Mo) Deposit. Beijing, Geological Publishing House, 1–344 (in Chinese). |
Fan SW. 2020. Characteristics and Genesis of Sb-Au Mineralization in Zhuanghuhe Area, Heihe County, Heilongjiang Province. Changchun, Jilin University, Master thesis, 1–68 (in Chinese with English abstract). |
Feng JX. 2008. Distribution character of sulfur isotope in the Duobaoshan copper deposit. Geology and Exploration, 44(1), 46–49 (in Chinese with English abstract). |
Gao RZ, Xue CJ, Lü XB, Zhao XB, Yang YS, Li CC. 2017. Genesis of the Zhengguang gold deposit in the Duobaoshan ore field, Heilongjiang Province, NE China: Constraints from geology, geochronology and S-Pb isotopic compositions. Ore Geology Reviews, 84, 202–217. doi: 10.1016/j.oregeorev.2016.12.031. |
Ge WC, Wu FY, Zhou CY, Zhang JH. 2007a. Metallogenic age and geodynamic significance of porphyry Cu, Mo deposits in the eastern segment of Xingmeng orogenic belt. Chinese Science Bulletin, 52(20), 2407–2417 (in Chinese with English abstract). doi: 10.3321/j.issn:0023-074x.2007.20.012. |
Ge WC, Wu FY, Zhou C, Zhang JH. 2007b. Porphyry Cu-Mo deposits in the eastern Xing’an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications. Chinese Science Bulletin, 52(24), 3416–3427. doi: 10.1007/s11434-007-0466-8. |
Han ZX, Xu YQ, Zheng QD. 2004. Metallogenic series and evolution of important metallic and non-metallic minerals in Heilongjiang Province. Harbin, Heilongjiang Provincial People’s Publishing House, 1–241 (in Chinese). |
Hao YJ. 2015. Mineralization and Metallogenic Regularity of Duobaoshan Ore Concentration Area in Heilongjiang Province, Northeast China. Changchun, Jilin University, Ph. D thesis, 1–199 (in Chinese with English abstract). |
Hao YJ, Ren YS, Duan MX, Tong KY, Chen C, Li C. 2014. Re-Os isotopic dating of the molybdenite from the Tongshan porphyry Cu-Mo deposit in Heilongjiang Province, NE China. Acta Geologica Sinica (English Edition), 88, 522–523. doi: 10.1111/1755-6724.12374_14. |
Hao YJ, Ren YS, Duan MX, Tong KY, Chen C, Yang C, Li C. 2015. Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China. Journal of Asian Earth Sciences, 97, 442–458. doi: 10.1016/j.jseaes.2014.08.007. |
Hao YJ, Ren YS, Duan MX, Zhao X, Yang Q, Tong KY, Li C. 2016. Mineralization time and tectonic setting of the Zhengguang Au deposit in the Duobaoshan ore field, Heilongjiang Province, NE China. Arabian Journal of Geosciences, 9(15), 1–20. doi: 10.1007/s12517-016-2666-5. |
Hao YJ, Ren YS, Duan MX, Zhao HL, Tong KY, Sun ZM. 2017. Tectonic setting of Triassic magmatic and metallogenic event in the Duobaoshan mineralization area of Heilongjiang Province, NE China. Geological Journal, 52(1), 67–91. doi: 10.1002/gj.2732. |
Heilongjiang Bureau of Geology and Mineral Resources, 1993. Regional Geology of Heilongjiang Province. Beijing, Geological Publishing House, 1–734 (in Chinese). |
Hu XL, Yao SZ, Ding ZJ, He MC. 2017. Early Paleozoic magmatism and metallogeny in Northeast China: A record from the Tongshan porphyry Cu deposit. Mineralium Deposita, 52(1), 85–103. doi: 10.1007/s00126-016-0653-0. |
Hu XL, Yao SZ, He MC, Ding ZJ, Chen B. 2014. Geochemistry, U-Pb geochronology and Hf isotope studies of the Daheishan porphyry Mo deposit in Heilongjiang Province, NE China. Resource Geology, 64(2), 102–116. doi: 10.1111/rge.12031. |
Kravchinsky VA, Cogné JP, Harbert WP, Kuzmin, MI. 2002. Evolution of the Mongol–Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol–Okhotsk suture zone, Siberia. Geophysical Journal of the Royal Astronomical Society, 148, 34–57. doi: 10.1046/j.1365-246x.2002.01557.x. |
Kruk NN, Simanenko VP, Gvozdev VI, Golozubov VV, Kovach VP, Serov PI, Kholodnov VV, Moskalenko EY, Kuibida ML. 2014. Early Cretaceous granitoids of the Samarkaterrane (Sikhote-Alin’): Geochemistry and sources of melts. Russian Geology and Geophysics, 55(2), 216–236. doi: 10.1016/j.rgg.2014.01.007. |
Li DR, Lü FL, Liu SY, Lü J. 2011. Geological features and prospecting orientation of the Sankuanggou Cu-Mo-Au deposit in Nenjiang County, Heilongjiang Province. Geology in China, 38(2), 415–426 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2011.02.016. |
Li DR, Zhu CL, Lu J, Cui G. 2010. Structural-magmatic mineralization of Sankuanggou-Duobaoshan metallogenic belt, Heilongjiang. China Mining Magazine, 19(S1), 142–146 (in Chinese with English abstract). |
Li N, Chen YJ, Zhang H, Zhao TP, Deng XH, Wang Y, Ni ZY. 2007. Molybdenum deposits in East Qinling. Earth Science Frontiers, (5), 186–198 (in Chinese with English abstract). |
Li XY, Gao QZ, Song H, Song H, Chi GX, Lai CK. 2019. Discriminating ore fertile and barren granites using zircon Ce and Eu anomalies–Perspective from late Mesozoic (Yanshanian) granites in South China. Ore Geology Reviews, 113, 103105. doi: 10.1016/j.oregeorev.2019.103105. |
Li Y. 2016. The Study of The Main Rock and Typical Deposits in The North of Duobaoshan District, Heilongjiang Provice. Beijing, China University of Geosciences (Beijing), Master thesis, 1–104 (in Chinese with English abstract). |
Li Y, Zeng H, Qiao ZJ, Wang ZD, Zhao YY, Fu JJ, Chen L, Yang B. 2016a. Ore characteristics of the Sankuanggou iron copper ore deposit in Nenjiang County, Heilongjiang Province, and their significance. Acta Petrologicaet Mineralogica, 35(1), 97–110 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2016.01.007. |
Li Y, Fu JJ, Zhao YY, Zeng H. 2016b. Chronological characteristics and metallogenic significance of Zhengguang gold deposit, Heilongjiang Province, China. Acta Geologica Sinica, 90(1), 151–162 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.01.010. |
Li Y, Xu WL, Tang J, Pei FP, Wang F, Sun CY. 2018. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing’an Massif of NE China: Implications for the evolution and spatial extent of the Mongol–Okhotsk tectonic regime. Lithos, 304, 57–73. doi: 10.1016/j.lithos.2018.02.001. |
Li Y, Xu WL, Wang F, Tang J, Sun CY, Wang ZJ. 2017. Early–Middle Ordovician volcanism along the eastern margin of the Xing’an Massif, Northeast China: Constraints on the suture location between the Xing’an and Songnen–Zhangguangcai Range massifs. International Geology Review, 60(16), 2046–2062. doi: 10.1080/00206814.2017.1402378. |
Li ZT, Wang XJ, Wang HB, Wu G. 2008. Geology of the Sankuanggou gold-bearing iron-copper deposit in. Geology and Resources, 17(3), 170–174 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1947.2008.03.003. |
Liu J, Li Y, Zhou ZH, OuYang HG. 2017. The Ordovician igneous rocks with high Sr/Y at the Tongshan porphyry copper deposit, satellite of the Duobaoshan deposit, and their metallogenic role. Ore Geology Reviews, 86, 600–614. doi: 10.1016/j.oregeorev.2017.02.036. |
Liu J, Wu G, Li Y, Zhu MT, Zhong W. 2012. Re–Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China. Journal of Asian Earth Sciences, 49, 300–312. doi: 10.1016/j.jseaes.2011.10.014. |
Liu J, Wu G, Zhong W, Zhu MT. 2010. Fluid inclusion study of the Duobaoshan porphyry Cu(Mo) deposit, Heilongjiang Province. Acta Petrologica Sinica, 26(5), 1450–1464 (in Chinese with English abstract). |
Liu J, Zhou ZH, He ZF, Ouyang HG. 2015. Zircon U-Pb dating and geochemistry of ore-bearing tonalite in Tongshan copper deposit, Heilongjiang Province. Mineral Deposits, 34(2), 289–308 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2015.02.006. |
Lu HZ, Fan HR, Ni P, Ou GX, Shen K, Zhang WH. 2004. Fluid Inclusions. Beijing, Science Press, 1–487 (in Chinese). |
Lü PR, LI DR, Peng YW, Zhang MY. 2012. S-Pb isotopic characteristics of ore sulfides and U-Pb dating of zircon from the Sankuanggou skarn-type Cu-Fe-Mo deposit in Heilongjiang Province. Geology in China, 39(3), 717–728 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2012.03.013. |
Ma DY. 1984. Isotopic geological characteristics of Duobaoshan Copper deposit. Mineral Deposits, 3(1), 47–57 (in Chinese with English abstract). |
Mao JW, Zhang ZC, Zhang ZH. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northern Qilian mountains and its geological significance. Geochimicaet Cosmochimica Acta, 63(11‒12), 1815–1818. doi: 10.1111/1755-6724.12378_42. |
Niu SD, Li SR, Huizenga JM, Santosh M, Zhang DH, Zeng YJ, Li ZD, Zhao WB. 2017. Zircon U-Pb geochronology and geochemistry of the intrusions associated with the Jiawula Ag-Pb-Zn deposit in the Great Xing’an Range, NE China and their implications for mineralization. Ore Geology Reviews, 86, 35–54. doi: 10.1016/j.oregeorev.2017.02.007. |
Pass HE, Cooke DR, Davidson G, Mass R, Dipple G, Rees C, Ferreira L, Taylor C, Deyell C. 2014. Isotope geochemistry of the Northeast Zone, Mount Polley alkalic Cu-Au-Ag porphyry deposit, British Columbia: A case for carbonate assimilation. Economic Geology, 109, 859–890. doi: 10.2113/econgeo.109.4.859. |
Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation. Economic Geology, 98, 1515–1533. doi: 10.2113/98.8.1515. |
She HQ, Li JW, Xiang AP, Guan JD, Yang YC, Zhang DQ, Tan G, Zhang B. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrologica Sinica, 28(2), 571–594 (in Chinese with English abstract). |
Sillitoe RH. 2010. Porphyry copper systems. Economic Geology 105, 3–41. doi: 10.2113/gsecongeo.105.1.3. |
Song GX, Cook NJ, Wang L, Qin KZ, Ciobanu CL, Li GM. 2019. Gold behavior in intermediate sulfidation epithermal systems: A case study from the Zhengguang gold deposit, Heilongjiang Province, NE China. Ore Geology Reviews, 106, 446–462. doi: 10.1016/j.oregeorev.2019.02.001. |
Song GX, Qin KZ, Wang L, Guo JH, Li ZZ, Tong KY, Zou XY, Li GM. 2015. Type, zircon U-Pb age and Paleo-volcano edifice of Zhengguang gold deposit in Duobaoshan orefield in Heilongjiang Province, NE-China. Acta Petrologica Sinica, 31(8), 2402–2416 (in Chinese with English abstract). |
Sun MD, Chen HL, Milan LA. 2018. Continental arc and back-arc migration in Eastern NE China: New constraints on Cretaceous Paleo-Pacific subduction and rollback. tectonics, 37(10), 3893–3915. doi: 10.1029/2018TC005170. |
Tan CY, Wang GH, Li YS. 2010. New progress and significance on the mineral exploration in Duobaoshan mineralization area, Heilongjiang, China. Geological Bulletin of China, 29(Z1), 436–445 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.02.031. |
Tang J, Xu WL, Wang F, Zhao S, Li Y. 2015. Geochronology, geochemistry, and deformation history of Late Jurassic–Early Cretaceous intrusive rocks in the Erguna Massif, NE China: Constraints on the late Mesozoic tectonic evolution of the Mongol–Okhotsk suture belt. Tectonophysics, 658, 91–110. doi: 10.1016/j.tecto.2015.07.012. |
Tang J, Xu WL, Wang F, Zhao S, Wang W. 2016. Early Mesozoic southward subduction history of the Mongol–Okhotsk oceanic plate: evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Research, 31, 218–240. doi: 10.1016/j.gr.2014.12.010. |
Tang WH. 2020. Characteristics and Genesis of Copper-Molybdenum Mineralization in Huaduoshan area, Nenjiang County, Heilongjiang Province. Changchun, Jilin University, Master thesis, 1–87 (in Chinese with English abstract). |
Tsui WSR. 2018. Late Permian-early Cretaceous Igneous Events in the Erguna Massif, NE China: Constraints on the Timing of Closure of the Mongol-Okhotsk Ocean. Hong Kong, University of Hong Kong, Master thesis, 1–96. |
Wang L, Qin KZ, Song GX, Pang XY, Li ZZ, Zhao C, Jin LY, Zou XY, Li GM. 2018. Volcanic-subvolcanic rocks and tectonic setting of the Zhengguang intermediate sulfidation epithermal Au-Zn deposit, eastern Central Asian Orogenic Belt, NE China. Journal of Asian Earth Sciences, 165, 328–351. doi: 10.1016/j.jseaes.2018.07.023. |
Wang XC, Wang XL, Wang Lin, Liu JY, Xia B, Deng J, Xu XM. 2007. Metallogeny and reformation of the Duobaoshan superlarge porphyry copper deposit in Heilongjiang. Chinese Journal of Geology (Scientia Geologica Sinica), 42(1), 124–133 (in Chinese with English abstract). |
Wang Y, Chen YJ, MA HW, Xu YL. 2009. Study on ore geology and fluid inclusions of the Tangjiaping Mo deposit, Shangcheng County, Henan Province. Acta Petrologica Sinica, 25(02), 468–480 (in Chinese with English abstract). |
Wang YH, Zhao CB, Zhang FF, Liu JJ, Wang JP, Peng RM, Liu B. 2015. SIMS zircon U–Pb and molybdenite Re–Os geochronology, Hf isotope, and whole-rock geochemistry of the Wunugetushan porphyry Cu-Mo deposit and granitoids in NE China and their geological significance. Gondwana Research, 28, 1228–1245. doi: 10.1016/j.gr.2014.10.001. |
Wei H. 2014. Fluid Mineralization and Prospect Evaluation of the Duobaoshan Porphyry Cu (Mo) Deposit, Heilongjiang. Beijing, University of Science and Technology Beijing, Ph. D thesis, 1–155 (in Chinese with English abstract). |
Wei H, Xu JH, Zeng QD. 2013. Fluid inclusion study on the Duobaoshan porphyry copper deposit, Heilongjiang, China. Mineralogical Magazine, 77(2), 200. |
Wei H, Xu JH, Zeng QD, Wang YH, Liu JM, Chu SX. 2011. Fluid evoluton of alteration and mineralization at the Duobaoshan porphyry Cu (Mo) deposit Heilongjiang Province. Acta Petrologica Sinica, 27(05), 1361–1374 (in Chinese with English abstract). |
Wu G, Chen YH, Sun FY, Liu J, Wang GR, Xu B. 2015. Geochronology, geochemistry, and Sr–Nd–Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance. Journal of Asian Earth Sciences, 97, 229–250. doi: 10.1016/j.jseaes.2014.07.031. |
Wu G, Liu J, Zhong W, Zhu MG, Mi M, Wan Q. 2009. Fluid inclusion study of the Tongshan porphyry copper deposit, Heilongjiang province, China. Acta Petrologica Sinica, 25(11), 2995–3006 (in Chinese with English abstract). |
Wu JR. 2012. Ore Fluids and Stable Isotope Geochemistry of the Duobaoshan Prophyry Cu Deposit, Heilongjiang Province. Beijing, China University of Geosciences (Beijing), Master thesis, 1–55 (in Chinese with English abstract). |
Wu ZY, Sun YC, Wang BQ. 2006. Geology and geochemistry of Zhengguang gold deposit, Heilongjiang Province. Geology and Exploration, 42(1), 38–42 (in Chinese with English abstract). doi: 10.3969/j.issn.0495-5331.2006.01.009. |
Xiang AP, Yang YC, Li GT, She HQ, Guan JD, Li JW, Guo ZJ. 2012. Diagenetic and metallogenic ages of Duobaoshan porphyry Cu-Mo deposit in Heilongjiang Province. Mineral Deposits, 31(6), 1237–1248 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.06.009. |
Xu WL, Wang F, Pei FP, Meng E, Tang J, Xu MJ, Wang W. 2013. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rockassociations. Acta Petrologica Sinica, 29(02), 339–353 (in Chinese with English abstract). |
Yin BC, Ran QC. 1997. Metallogenic tectonic environment of Duobaoshan superlarge copper deposit. Acta Mineralogica Sinica, (2), 220–224 (in Chinese with English abstract). |
Yuan MW, Li SR, Li CL, Santosh M, Alam M, Zeng YJ. 2018. Geochemical and isotopic composition of auriferous pyrite from the Yongxin gold deposit, Central Asian Orogenic Belt: Implication for ore genesis. Ore Geology Reviews, 93, 255–267. doi: 10.1016/j.oregeorev.2018.01.002. |
Yu JJ, Xu ZG, Xu FS. 1996. Tectonic setting of Ordovician volcanic rocks in Northwestern Xiaoxing’anling, Heilongjiang Province. Acta Geoscientica Sinica, 17(1), 54–64 (in Chinese with English abstract). |
Zartman RE, Doe BR. 1981. Plumbotectonics–the model. Tectonophysics, 75, 135–162. doi: 10.1016/0040-1951(81)90213-4. |
Zeng QD, Liu JM, Chu SX, Wang YB, Sun Y, Duan XX, Zhou LL, Qu WJ. 2014. Re–Os and U–Pb geochronology of the Duobaoshan porphyry Cu–Mo–(Au) deposit, northeast China, and its geological significance. Journal of Asian Earth Sciences, 79, 895–909. doi: 10.1016/j.jseaes.2013.02.007. |
Zhai DG, Liu JJ, Ripley EM, Wang JP. 2015. Geochronological and He–Ar–S isotopic constraints on the origin of the Sandaowanzi gold-telluride deposit, northeastern China. Lithos, 212, 338–352. doi: 10.1016/j.lithos.2014.11.017. |
Zhang FF, Wang YH, Liu JJ, Wang JP, Zhao CB, Song ZW. 2015. Origin of the Wunugetushan porphyry Cu–Mo deposit, Inner Mongolia, NE China: Constraints from geology, geochronology, geochemistry, and isotopic compositions. Journal of Asian Earth Sciences, 117, 208–224. doi: 10.1016/j.jseaes.2015.12.018. |
Zhao C. 2019. Research on the Mineralogical Characteristics of Metallic Mineral and Mineralization of Longtougou Gold Deposit , Shanyang, Shanxi Province. Beijing, China University of Geosciences (Beijing), Master thesis, 1–48 (in Chinese with English abstract). |
Zhao C, Qin KZ, Song GX, Li GM. 2019a. Switch of geodynamic setting from the Paleo-Asian Ocean to the Mongol-Okhotsk Ocean: Evidence from granitoids in the Duobaoshan ore field, Heilongjiang Province, Northeast China. Lithos, 336, 202–220. doi: 10.1016/j.lithos.2019.04.006. |
Zhao C, Qin KZ, Song GX, Li GM, Li ZZ. 2019b. Early Palaeozoic high-Mg basalt-andesite suite in the Duobaoshan Porphyry Cu deposit, NE China: Constraints on petrogenesis, mineralization, and tectonic setting. Gondwana Research, 71, 91–116. doi: 10.1016/j.gr.2019.01.015. |
Zhao C, Qin KZ, Song GX, Li GM, Li ZZ, Pang XY, Wang L. 2018. Petrogenesis and tectonic setting of ore-related porphyry in the Duobaoshan Cu deposit within the eastern Central Asian Orogenic Belt, Heilongjiang Province, NE China. Journal of Asian Earth Sciences, 165, 352–370. doi: 10.1016/j.jseaes.2018.07.002. |
Zhao GJ, Hou YS, Cheng FQ. 2007. Geological characteristics and genisis of Zhengguang gold feposit in Heihe city of Heilongjiang Province. Nonferrous Metals Engineering, 59(3), 91–94 (in Chinese with English abstract). doi: 10.3969/j.issn.2095-1744.2007.03.023. |
Zhao HL, Zhu CY, Liu HY, Liu BS. 2012. Zircon Shrimp U-Pb dating and its tectonic implications of the granodiorite in Duobaoshan copper deposit, Heilongjiang Province. Geology and Resources, 21(5), 421–424 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1947.2012.05.001. |
Zhao YM, Bi CS, Zou XQ, Sun YL, Du AD, Zhao YM. 1997. Rhenium-osmium isotopic ages of molybdenite in Duobaoshan and Tongshan large porphyry copper (molybdenum) deposits, Heilongjiang Province. Acta Geoscientica Sinica, 18(1), 61–67 (in Chinese with English abstract). |
Zhao YY, Li DC, Cheng ZJ. 1994. Study on surrounding rock alteration characteristics of Anaodaba porphyry Cu-Ag-Snpolymetallic deposit, Inner Mongolia. Jilin Geology, 13(2), 57–62 (in Chinese with English abstract). |
Zhao YY, Zhang DQ. 1997. Metallogenic Regularity and Prospective Evaluation of Copper Polymetallic Deposits in Daxing’anling and Its Adjacent Areas. Beijing, Seismological Press, 1–318(in Chinese). |
Zhao YY, Zhao GJ. 1995. Geochemical characteristics of rare earth elements and genetic model of Duobaoshan copper deposit in Heilongjiang Province. Jilin Geology, 14(2), 71–78 (in Chinese with English abstract). |
Zhou JB, Cao JL, Wilde SA, Cao JL, Zhao G, Zhang JJ. 2014. Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33, 2444–2466. doi: 10.1002/2014TC003637. |
Geotectonic location map of the study area (a, b) and the regional geological map of the Duobaoshan area (c; modified from Liu J. et al., 2015). 1‒Quaternary; 2‒Cretaceous; 3‒Triassic; 4‒Devonian; 5‒Silurian; 6‒Ordovician; 7‒Early Jurassic granodiorite; 8‒Early Jurassic granodiorite porphyry; 9‒Late Triassic granodiorite/diorite; 10‒Middle Ordovician granodiorite porphyry; 11‒Early Ordovician granodiorite; 12‒diorite; 13‒copper ore body; 14‒ductile shear zone; 15‒volcanic rock; 16‒Paleozoic/Cenozoic strata; 17‒granite; 18‒monzogranite; 19‒fault; 20‒geological boundary; 21‒copper/gold/silver deposit; 22‒mining area.
Geological map (a) and an exploration line profile (b) of the Duobaoshan porphyry Cu deposit (after Wei H, 2014).
Structure outline map of the Duobaoshan porphyry Cu deposit (after Zhao C, 2019).
Distribution map of intrusions and structures in the Duobaoshan mining area (after Cai WY, 2020).
Distribution map of the ore bodies in the Duobaoshan porphyry Cu deposit and the profile of exploratory line No. 66 in the No. 3 mineralized zone (after Wei H, 2014).
Longitudinal profile of No. 3 mineralized zone of the Duobaoshan porphyry Cu deposit (after Wu JR, 2012).
Two hundred meters long horizontal section of the Duobaoshan porphyry Cu deposit (after Wei H, 2014).
Field and microscopic photomicrographs of major ore minerals. a‒sulphide ore; b‒photomicrograph of chalcopyrite mass; c‒photomicrograph of chalcopyrite metasomatic pyrite; d‒photomicrograph of disseminated chalcopyrite, local chalcopyrite metasomatic pyrite; e‒photomicrograph of molybdenite associated with chalcopyrite; f‒micrograph of chalcopyrite distributed around molybdenite (after Liu J. et al., 2015). Bn‒bornite; Cal‒calcite; Ccp‒chalcopyrite; Dg‒cyanite; Mot‒molybdenite; Py‒Pyrite; Qtz‒quartz; Sp‒sphalerite.
Schematic diagram of the alterations caused by granodiorite porphyries in the Duobaoshan porphyry Cu deposit and their distribution ranges.
Time framework of multi-stage magmatic-tectonic mineralization of the Duobaoshan porphyry Cu deposit (after Zhao C, 2019).
Homogeneous temperature vs. salinity histograms of primary fluid inclusions in quartz veins at different stages of the Duobaoshan porphyry Cu deposit (after Wei H, 2014).
Hydrogen and oxygen isotopic compositions of the Duobaoshan porphyry Cu deposit (after Wei H, 2014).
Hydrogen and oxygen isotopic compositions of the Duobaoshan porphyry Cu deposit (after Cai WY, 2020).
Distribution diagram (a) and histograms (b−c) of the sulfur isotopic composition in the Duobaoshan porphyry Cu deposit (after Cai WY, 2020).
Lead isotope growth curves (a, b) and tectonic environment discrimination diagram (c, d) of the Duobaoshan porphyry Cu deposit (after Cai WY, 2020). A‒mantle; B‒orogenic belt; C‒upper crust; D‒lower crust; LC‒lower crust; UC‒upper crust; OIV‒oceanic volcanic rocks; OR‒orogenic belt.
Schematic diagram of Caledonian porphyry Cu-Mo-Au mineralization in the Duobaoshan porphyry Cu deposit (after Cai WY, 2020).
Schematic diagram of Early Paleozoic‒Mesozoic tectonic evolution and mineralization of the Duobaoshan porphyry Cu deposit (after Cai WY, 2020).
Prospecting model of the Duobaoshan porphyry Cu deposit (after Zhao YY et al., 1997).