2023 Vol. 6, No. 1
Article Contents

Hong-zhe Xie, Xiang-kun Zhu, Xun Wang, Yuan He, Wei-bing Shen, 2023. Petrological and geochemical characteristics of mafic rocks from the Neoproterozoic Sugetbrak Formation in the northwestern Tarim Block, China, China Geology, 6, 85-99. doi: 10.31035/cg2021067
Citation: Hong-zhe Xie, Xiang-kun Zhu, Xun Wang, Yuan He, Wei-bing Shen, 2023. Petrological and geochemical characteristics of mafic rocks from the Neoproterozoic Sugetbrak Formation in the northwestern Tarim Block, China, China Geology, 6, 85-99. doi: 10.31035/cg2021067

Petrological and geochemical characteristics of mafic rocks from the Neoproterozoic Sugetbrak Formation in the northwestern Tarim Block, China

More Information
  • The Neoproterozoic Sugetbrak Formation in the Aksu area, which is located at the northwest margin of Tarim Block, comprises mafic rocks and provides key records of the evolution of the Rodinia supercontinent. However, the genetic relationship among these mafic rocks exposed in different geographical sections are still unclear. In this study, the petrology, geochemistry, and Sr-Nd-Pb isotope geochemistry of the mafic rocks exposed in the Aksu-Wushi and Yuermeinark areas have been studied in some detail along three sections. The authors found that the mafic rocks in these three typical sections were mainly composed of pyroxene and plagioclase, containing a small amount of Fe-Ti oxides and with typical diabasic textures. All the mafic rocks in this region also showed similar geochemical compositions. They were characterised by high TiO2 contents (1.47%–3.59%) and low MgO (3.52%–7.88%), K2O (0.12%–1.21%). Large ionic lithophile elements (LILEs) (Rb, Sr, and Cs) were significantly depleted. Meanwhile, high field strength elements (HFSEs) were relatively enriched. In the samples, light rare earth elements (LREEs) were enriched, while heavy rare earth elements (HREEs) were depleted. Based on the Zr/Nb, Nb/Y, and Zr/TiO2 ratios, the Aksu mafic rocks belong to a series of sub-alkaline and alkaline transitional rocks. The mafic rocks along the three typical sections showed similar initial values of 87Sr/86Sr (ISr) (0.7052–0.7097) and εNd(t) (–0.70 to –5.35), while the Pb isotopic compositions with 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values of 16.908–17.982, 15.487–15.721, 37.276–38.603, respectively. Most of the samples plot into the area near EM-Ⅰ, indicating that the magma of the mafic rocks might have derived from a relatively enriched mantle with some crustal materials involved. The geochemical element characteristics of most samples showed typical OIB-type geochemical characteristics indicating that the source region had received metasomatism of recycled materials. Combining with the regional geological background and geochemical data, we inferred that the mafic rocks of the Sugetbrak Formation in the Aksu area were formed in an intraplate rift environment. Summarily, based on our study, the mafic rocks of the Sugetbrak Formation in the Aksu area were derived from a common enriched mantle source, and they were product of a magmatic event during the rift development period caused by the breakup of the Rodinia supercontinent.

  • 加载中
  • Baker J, Peate D, Waight T, Meyzen C. 2004. Pb isotopic analysis of standards and samples using a 207Pb-204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chemical Geology, 211(3–4), 275–303. doi: 10.1016/j.chemgeo.2004.06.030

    Google Scholar

    Chen Y, Xu B, Zhan S, Li Y. 2004. First Mid-Neoproterozoic paleomagnetic results from the Tarim Basin (NW China) and their geodynamic implications. Precambrian Research, 133, 271–281. doi: 10.1016/j.precamres.2004.05.002.

    CrossRef Google Scholar

    Ding HF., Ma DS, Lin QZ, Jing LH. 2015. Age and nature of Cryogenian diamictites at Aksu, Northwest China: Implications for Sturtian tectonics and climate. International Geology Review, 57, 2044–2064. doi: 10.1080/00206814.2015.1050463.

    CrossRef Google Scholar

    Direen N, Crawford A. 2003. Fossil seaward-dipping reflector sequences preserved in southeastern Australia: A 600 Ma volcanic passive margin in eastern Gondwanaland. Journal of the Geological Society, London 160, 985–990. doi: 10.1144/0016-764903-010

    Google Scholar

    Doe BR and Zartman RE. 1979. Plumbotectonics: The Phanerozoic. In:Barnes HL (ed. ). Geochemistry of Hydrothermal Ore Deposit. 2nd Edition. New York:Wiley Interscience, 22–70.

    Google Scholar

    Frey FA, Prinz M. 1978. Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters, 38, 129–176. doi: 10.1016/0012-821X(78)90130-9.

    CrossRef Google Scholar

    Gao LZ, Wang ZQ, Xu ZQ, Yang JS, Zhang W. 2010. A new evidence from zircon SHRIMP U-Pb dating of the Neoproterozoic diamictite in Quruqtagh area, Tarim basin, Xinjiang, China. Geological Bulletin of China, 29(2/3), 205–213 (in Chinese with English abstract). doi: 10.1017/S0004972710001772.

    CrossRef Google Scholar

    Gao Z, Qian J. 1985. Sinian glacial deposits in Xinjiang, Northwest China. Precambrian Research, 29, 143–147. doi: 10.1016/0301-9268(85)90065-8.

    CrossRef Google Scholar

    Gao Z, Wang W, Peng C, Li Y, Xiao B. 1986. The Sinian System on Aksu-Wushi Region, Xinjiang. Urumqi. Xinjiang People’s Publishing House, 1–184 (in Chinese with English abstract).

    Google Scholar

    Goldstein SL, O’Nion RK, Hamilton PJ. 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river system. Earth and Planetary Science Letters, 70, 221–236. doi: 10.1016/0012-821X(84)90007-4.

    CrossRef Google Scholar

    Hamilton PJ, O’Nions RK, Bridgwater D, Nutman A. 1983. Sm-Nd studies of Archaean metasediments and metavolcanics from West Greenland and their implications for the Earth’s early history. Earth and Planetary Science Letters, 62, 263–272. doi: 10.1016/0012-821X(83)90089-4.

    CrossRef Google Scholar

    He JY, Xu B, Li D. 2019. Newly discovered early Neoproterozoic (ca. 900 Ma) andesitic rocks in the northwestern Tarim Craton: Implications for the reconstruction of the Rodinia supercontinent. Precambrian Research, 325, 55–68. doi: 10.1016/j.precamres.2019.02.018

    Google Scholar

    Karlstrom KE, Bowring SA, Dehler CM, Knoll AH, Porter SM, Marais DJDB, Weil A, Sharp ZD, Geissman JW, Elrick MB, Timmons JM, Crossey LJ, Davidek KL. 2000. Chuar group of the grand canyon: Record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma. Geology, 28, 619–622. doi: 10.1130/0091-7613(2000)282.0.CO;2.

    CrossRef Google Scholar

    Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745–750. doi: 10.1093/petrology/27.3.745.

    CrossRef Google Scholar

    Li CF, Li XH, Li QL, Guo JH, Yang YH. 2012. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. Analytica Chimica Acta, 727(10), 54–60. doi: 10.1016/j.aca.2012.03.040.

    CrossRef Google Scholar

    Li XH, Li ZX, Ge W, Zhou H, Li W, Liu Y, Wingate MTD. 2003. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Research, 122, 45–84. doi: 10.1016/S0301-9268(02)00207-3.

    CrossRef Google Scholar

    Li XH, Li ZX, Wingate MTD, Chung SL, Liu Y, Lin GC, Li WX. 2006. Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia? Precambrian Research, 146, 1–15. doi: 10.1016/j.precamres.2005.12.007

    Google Scholar

    Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160, 179–210. doi: 10.1016/j.precamres.2007.04.021.

    CrossRef Google Scholar

    Li ZX, Li XH, Kinny PD, Wang J. 1999. The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth and Planetary Science Letters, 173, 171–181. doi: 10.1016/S0012-821X(99)00240-X.

    Google Scholar

    Li ZX, Li XH, Kinny PD, Wang J, Zhang S, Zhou H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambian Research, 122, 85–110. doi: 10.1016/S0301-9268(02)00208-5.

    CrossRef Google Scholar

    Li ZX, Powell CM. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth Science Reviews, 53, 237–277. doi: 10.1016/S0012-8252(00)00021-0.

    CrossRef Google Scholar

    Li ZX, Zhang L, Powell CM. 1996. Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodinia. Australian Journal of Earth Sciences, 43, 593–604. doi: 10.1080/08120099608728281.

    CrossRef Google Scholar

    Liou JG, Graham SA, Maruyama S, Zhang RY. 1996. Characteristics and tectonicsignificance of the late Proterozoic Aksu blueschists and diabasic dikes, Northwest Xinjiang, China. International Geological Review, 38, 228–244. doi: 10.1080/00206819709465332.

    CrossRef Google Scholar

    Liou JG, Graham SA, Mayuyama S, Wang X, Xiao X, Carrroll AR, Chu J, Feng Y, Hendrix MS, Liang Y, Mcknight CL, Yang Y, Wang Z, Zhao M, Zhu B. 1989. Proterozoic blueschistbelt in westernChina: Best-documented precambrian blueschists in the world. Geology, 17, 1127–1131. doi: 10.1130/0091-7613(1989)017<1127:PBBIWC>2.3.CO;2.

    CrossRef Google Scholar

    Lu YZ, Zhu WB, Ge RF, Zheng BH, He JW, Diao Z. 2017. Neoproterozoic active continental margin in the northwestern Tarim Craton: Clues from Neoproterozoic (meta) sedimentary rocks in the Wushi area, northwest China. Precambrian Research, 88–106. doi: 1016/j.precamres.2017.06.002.

    CrossRef Google Scholar

    Lu YZ, Zhu W, Jourdan F. 2018. 40Ar/39Ar ages and geological significance of Neoproterozoic-Cambrian mafic rocks in the Aksu-Wushi area, NW Tarim Craton. Geological Journal, 54(6), 3803–3820. doi: 10.1002/gj.3375.

    CrossRef Google Scholar

    Lugmair GW, Harti K. 1978. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39, 349–357. doi: 10.1016/0012-821X(78)90021-3.

    CrossRef Google Scholar

    Meschede M. 1986. A method of discriminating between different types of micocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chemical Geology, 56, 207–218. doi: 10.1016/0009-2541(86)90004-5.

    CrossRef Google Scholar

    Nakajima T, Maruyama S, Uchiumi S, Liou JG, Wang X, Xiao X, Graham A. 1990. Evidence for late Proterozoic subduction from 700-My-old blueschists in China. Nature, 346, 263–265. doi: 10.1038/346263a0.

    CrossRef Google Scholar

    Pearce JA, Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19.2, 290–300. doi: 10.1016/0012-821X(73)90129-5.

    CrossRef Google Scholar

    Pearce JA, Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1), 33–47. doi: 10.1007/BF00375192.

    CrossRef Google Scholar

    Ren KX, Zheng Y, Xia Z. 2009, Characteristics of igneous rocks of upper Sinian section in Xiaoerbulake of Aksu, Xinjiang. Xinjiang Petroleum Geology, 30(01), 51–52. (in Chinese with English abstract). doi: 1016/S1874-8651(10)60080-4

    Google Scholar

    Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Singapore Publishers Ltd., Singapore, 1–351.

    Google Scholar

    Rudnick R, Gao S. 2003. Composition of the continental crust. In: Rudnick, R. L. (Ed. ), Treatise on Geochemistry, vol. 3. Elsevier-Pergamon, Oxford, 1–64. doi: 10.1016/B978-0-08-095975-7.00301-6ù

    Google Scholar

    Steiger RH, Jäger E. 1977. Subcommission on geochronology: convention on the use of decay constants in geology and cosmochronology. Earth and Planetary Science Letters 36, 359–362. doi: 10.1016/0012-821X(77)90060-7.

    CrossRef Google Scholar

    Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A. D. , Norry, M. J. (Eds. ), Magmatism in the Ocean Basins, Special Publications 42. Geological Society, London, 313–345. doi: 10.1144/GSL.SP.1989.042.01.19

    Google Scholar

    Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C. 2000. Jndi-1: a neodymium isotopic reference in consistency with lajolla neodymium. Chemical Geology, 168(168), 279–281. doi: 10.1016/S0009-2541(00)00198-4.

    CrossRef Google Scholar

    Taylor SR, McLennan S. 1995. The geochemical evolution of the continental crust. Review in Geophysics, 33, 241–265. doi: 10.1029/95RG00262.

    CrossRef Google Scholar

    Thirlwall MF. 1991. Long–term reproducibility of multicollector sr and nd isotope ratio analysis. Chemical Geology, 94(2), 85–104. doi: 10.1016/S0009-2541(10)80021-X.

    CrossRef Google Scholar

    Turner S. 2010. Sedimentary record of Late Neoproterozoic rifting in the NW Tarim basin, China. Precambrian Research, 181, 85–96. doi: 10.1016/j.precamres.2010.05.015.

    CrossRef Google Scholar

    Veevers JJ, Walter MR, Scheibner E. 1997. Neoproterozoic tectonics of Australia-Antarctica and Laurentia and the 560 Ma birth of the Pacific ocean reflect the 400 m. y. Pangean supercycle. The Journal of Geology, 105, 225–242. doi: 10.1086/515914.

    CrossRef Google Scholar

    Wang F, Wang B, Shu LS. 2010. Continental tholeiitic basalt of the Akesu area (NW China) and its implication for Neoproterozoic rifting in the northern Tarim. Acta Petrologica Sinica, 26, 547–558 (in Chinese with English abstract).

    Google Scholar

    Wen B, David AD Evans, Li YX, Wang ZR, Liu C. 2015. Newly discovered Neoproterozoic diamictite and cap carbonate (DCC) couplet in Tarim Craton, NW China: Stratigraphy, geochemistry, and paleoenvironment. Precambrian Research, 271, 278–294. doi: 10.1016/j.precamres.2015.10.006.

    CrossRef Google Scholar

    Winchester JA, Floyd PA. 1976. Geochemical magma type discrimination: Application to altered and metamorphosed igneous rocks. Earth and Planetary Science Letters, 28, 459–469. doi: 10.1016/0012-821X(76)90207-7.

    CrossRef Google Scholar

    Winchester JA, Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343. doi: 10.1016/0009-2541(77)90057-2.

    CrossRef Google Scholar

    Wingate MTD, Campbell IH, Compston W, Gibson GM. 1998. Ion microprobe U-Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Research, 87, 135–159. doi: 10.1016/S0301-9268(97)00072-7.

    CrossRef Google Scholar

    XBGMR (1957–1961). 1: 200000 Geological map of RPC, Wushi sheet (K-46-XXVI)National 543 Publishing House. (in Chinese).

    Google Scholar

    Xia B, Zhang LF, Du ZX, Xu B. 2017. Petrology and age of Precambrian Aksu blueschist, NW China. Precambrian Research, 326, 295–311. doi: 10.1016/j.precamres.2017.12.041.

    CrossRef Google Scholar

    Xiao YY, Fan TL, Yu BS. 2011. Geochronological implication of the diabase intrusion into the Sinian strata in Northwest Tarim Basin. Special Oil and Gas Reservoirs, 18(5): 21–25 (in Chinese with English abstract). doi: 10.1016/S1003-9953(10)60145-4

    Google Scholar

    Xu B, Jian P, Zheng H, Zou H, Zhang L, Liu D. 2005. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim block of Northwest China: Implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Research, 136, 107–123. doi: 10.1016/j.precamres.2004.09.007.

    CrossRef Google Scholar

    Xu B, Xiao S, Zou H, Chen Y, Li Z, Song B, Liu D, Zhou C, Yuan X. 2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Research, 168, 247–258. doi: 10.1016/j.precamres.2008.10.008.

    CrossRef Google Scholar

    Xu B, Zou HB, Chen Y, He JY, Wang Y. 2013. The Sugetbrak basalts from northwestern Tarim block of northwest China: Geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic. Precambrian Research, 236, 214–226. doi: 10.1016/j.precamres.2013.07.009.

    CrossRef Google Scholar

    Zhang CL, Yang DS, Wang HY, Takahashi Y, Ye HM. 2011. Neoproterozoic maficultramafic layered intrusion in Quruqtagh of northeastern Tarim block, NW China: Two phases of mafic igneous activity with different mantle sources. Gondwana Research, 19, 177–190. doi: 10.1016/j.gr.2010.03.012.

    CrossRef Google Scholar

    Zhang CL, Li XH, Li ZX, Lu SN, Ye HM, Li HM. 2007. Neoproterozoic ultramafic-mafic-carbonatite complex and granitoids in Quruqtagh of northeastern Tarim block, western China: Geochronology, geochemistry and tectonic implications. Precambrian Research, 152, 149–169. doi: 10.1016/j.precamres.2006.11.003.

    CrossRef Google Scholar

    Zhang CL, Li ZX, Li XH, Wang AG, Guo KY. 2006. Neoproterozoic bimodal intrusive complex in southwestern Tarim block of NW China: Age, geochemistry and Nd isotope and implications for the rifting of Rodinia. International Geology Review, 48, 112–128. doi: 10.2747/0020-6814.48.2.112.

    CrossRef Google Scholar

    Zhang CL, Li ZX, Li XH, Ye HM. 2009. Neoproterozoic mafic dyke swarm in north margin of the Tarim, NW China: age, geochemistry, petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 35, 167–179. doi: 10.1016/j.jseaes.2009.02.003.

    CrossRef Google Scholar

    Zhang CL, Shen JL, Guo KY. 2004. Geochemistry of the Neoproterozoic mafic dyke swarm and basalt in south of Tarim Plate and its tectonic significance. Acta Petrologica Sinica, 20, 473–482 (in Chinese with English abstract).

    Google Scholar

    Zhang CL, Yang DS, Wang HY, Yutaka Takahashi Y, Ye HM. 2011. Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim block, NW China: Two phases of mafic igneous activity with different mantle sources. Gondwana Research, 19, 177–190.

    Google Scholar

    Zhang ZC, Kang JL, Kusky T, Santosh M, Huang H, Zhang DY, Zhu J. 2012. Geochronology, geochemistry and petrogenesis of Neoproterozoic basalts from Sugetbrak, northwest Tarim block, China: implications for the onset of Rodinia supercontinent breakup. Precambrian Research, 220–221, 158–176. doi: 10.1016/j.precamres.2012.08.002

    Google Scholar

    Zhang CL, Zou HB, Li HK, Wang HY. 2013. Tectonic framework and evolution of the Tarim Block in NW China. Gondwana Research, 23, 1306–1315. doi: 10.1016/j.gr.2012.05.009.

    CrossRef Google Scholar

    Zhang ZY, Zhu WB, Shu LS, Su JB, Zheng BH. 2009. Neoproterozoic ages of the Kuluketage diabase dyke swarm in Tarim, NW China, and its relationship to the breakup of Rodinia. Geological Magazine, 146, 150–154. doi: 10.1017/S0016756808005839.

    CrossRef Google Scholar

    Zhu GY, Yan HH, Chen WY, Lei Y, Zhang, K J, Li TT, Chen ZY, Wu GH, Santosh M. 2020. Discovery of Cryogenian interglacial source rocks in the northern Tarim, NW China: Implications for Neoproterozoic paleoclimatic reconstructions and hydrocarbon exploration. Gondwana Research, 80, 370–384. doi: 10.1016/j.gr.2019.10.016.

    CrossRef Google Scholar

    Zhu WB, Zhang ZY, Shu LS, Lu HF, Su JB, Yang W. 2008. SHRIMP U-Pb zircon geochronology of Neoproterozoic Korla mafic dykes in the northern Tarim Block, NW China: Implications for the long-lasting breakup process of Rodinia. Journal of the Geological Society London, 165, 887–890. doi: 10.1144/0016-76492007-174.

    CrossRef Google Scholar

    Zhu WB, Zheng BH, Shu LS, Ma DS, Wu HL, Li YX, Huang WT, Yu JJ. 2011. Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China: Insights from LA-ICP-MS zircon U-Pb ages and geochemical data. Precambrian Research, 185, 215–230. doi: 10.1016/j.precamres.2011.01.012.

    CrossRef Google Scholar

    Zindle A, Hart SR. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493–571. doi: 10.1146/annurev.ea.14.050186.002425.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(1669) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint