Citation: | Sin-Yi Ling, Asis Junaidi, Abdullah Mohd-Harun, Musta Baba, 2023. Heavy metal pollution assessment in marine sediments in the Northwest coast of Sabah, Malaysia, China Geology, 6, 580-593. doi: 10.31035/cg2022079 |
Heavy metal contents along the Northwest coast of Sabah were determined to interpret the pollution level in the marine sediment. The metal abundance is regulated by the physico-chemical properties such as the average sediment pH (7.82, 9.00 and 8.99), organic matter (0.62%, 1.60%, and 2.27%), moisture content (25.00%, 29.70%, and 15.00%) and sandy texture in Kota Belud, Kudat and Mantanani Island, respectively. The major elements show Ca>Fe>Mg>Al>Mn for all study sites, while the heavy metals show Ni>Cr>Zn>Cu>Co>Pb, Cr>Ni>Zn>Cu>Pb>Co and Zn>Pb>Cr>Ni, for Kota Belud, Kudat and Mantanani Island, respectively. The pollution degree of heavy metals was evaluated by using the Sediment Quality Assessment (SQA). The SQA parameters indicated none to moderate pollution in Kota Belud that shows Class 0, Class 1 and Class 2 pollution. The parameters also indicated none to low pollution in Kudat and Mantanani Island that show only Class 0 pollution. The enrichment factor (EF) suggested minor to moderately severe metal enrichment by anthropogenic sources in Kota Belud, whereas only minor enrichment in Kudat and Mantanani Island. The modified pollution degree (MCD<1.5) and pollution load index (0
Abdu N, Abdullahi AA, Abdulkadir A. 2017. Heavy metals and soil microbes. Environmental Chemistry Letters, 15(1), 65–84. doi: 10.1007/s10311-016-0587-x. |
Abrahim GMS, Parker RJ. 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238. doi: 10.1007/s10661-007-9678-2. |
Adam AA, Othman N, Halim AA, Ismail SR, Samah AA. 2019. The practice of biodiversity–related indigenous knowledge in Kota Belud, Sabah: A Preliminary Study. Pertanika Journal of Social Science and Humanities, 27(S1), 215–225. |
Agoro MA, Adeniji AO, Adefisoye MA, Okoh OO. 2020. Heavy Metals in Wastewater and Sewage Sludge from Selected Municipal Treatment Plants in Eastern Cape Province, South Africa. Water, 12(10), 2746. doi: 10.3390/w12102746. |
Alabaster JS, Lloyd RS. 2013. Water quality criteria for freshwater fish. Cambridge, Elsevier, 3117. |
Ali H, Khan E, Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019(14), 1–14. doi: 10.1155/2019/6730305. |
Bayon G, German CR, Burton KW, Nesbitt RW, Rogers N. 2004. Sedimentary Fe–Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE. Earth and Planetary Science Letters, 224(3), 477–492. doi: 10.1016/j.jpgl.2004.05.033. |
BSI. 1990. BS1377: 1990 British Standard Methods of Tests for Soils for Civil Engineering Purposes. London, British Standard Institution (BSI), 1–64. |
Churchman GJ, Gates WP, Theng BKG. 2006. Clays and clay minerals for pollution control. Developments in Clay Science, 1, 625–675. doi: 10.1016/b978-0-08-098259-5.00021-4. |
Clement JF, Keij J. 1958. Geology of the Kudat Peninsula, North Borneo (Compilation) GR783. Unpublished Reports of the Royal Dutch Shell Group of Companies in British Borneo. |
Dai L, Ren J, Ling T, Wei B, Wang G. 2019. Chemical speciation and phytoavailability of Cr, Ni, Zn and Cu in loess amended with attapulgite-stabilized sewage sludge. Environmental Pollutants and Bioavailability, 31(1), 112–119. doi: 10.1080/26395940.2019.1588076. |
Dalai, TK, Rengarajan R, Patel PP. 2004. Sediment geochemistry of the Yamuna River System in the Himalaya: Implications to weathering and transport. Geochemical journal, 38(5), 441–453. doi: 10.2343/geochemj.38.441. |
Department of Minerals and Geoscience of Malaysia. 2010. Peta Geologi Negeri Sabah (4th Edition). Kota Kinabalu, JMG Sabah. |
Dey M, Akter A, Islam S, Dey SC, Choudhury TR, Fatema KJ, Begum BA. 2021. Assessment of Contamination Level, Pollution Risk and Source Apportionment of Heavy Metals in the Halda River Water, Bangladesh. Heliyon, 08625. https://doi.org/10.1016/j.heliyon.2021.e08625. |
Dou Y, Li J, Zhao J, Hu B, Yang S. 2013. Distribution, enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea. Marine pollution bulletin, 67(1), 137–145. doi: 10.1016/j.marpolbul.2012.11.022. |
Elder JF. 1989. Metal biogeochemistry in surface-water systems—A review of principles and concepts. U. S. Geological Survey Circular, 1013, 43. doi: 10.3133/cir1013. |
Gloaguen TV, Passe JJ. 2017. Importance of lithology in defining natural background concentrations of Cr, Cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil. Chemosphere, 186, 31–42. doi: 10.1016/j.chemosphere.2017.07.134. |
Li GZ, Zhou YZ, Yang ZJ, He DG, Ma TW, Lv WC, Zhou GF, An YF, Li W, Liang J, Wang C. 2010. A study of micro-area compositional characteristics and the evolution of cherts from Bafangshan Erlihe Pb-Zn ore deposit in Western Qinling Orogen. Earth Science Frontiers, 17(4), 290–303. |
Graf, Dl. 1960. Geochemistry of carbonate sediments and sedimentary carbonates. Illinois State Geological Survey Circular, 2, 297–388. |
Graves JE, Hutchison CS, Bergmen SC, Swauger DA. 2000. Age and MORB Geochemistry of the Sabah Ophiolite Basement. Bulletin of the Geological Society of Malaysia, 44, 151–158. doi: 10.7186/bgsm44200019. |
Gu S, Kang X, Wang L, Lichtfouse E, Wang C. 2019. Clay mineral adsorbents for heavy metal removal from wastewater: A review. Environmental Chemistry Letters, 17(2), 629–654. doi: 10.1007/s10311-018-0813-9. |
Gwak YS, Kim SH. 2016. Factors affecting soil moisture spatial variability for a humid forest Hillslope. Hydrological Processes, 31(2), 431–445. doi: 10.1002/hyp.11039. |
Hakanson L. 1980. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001. doi: 10.1016/0043-1354(80)90143-8. |
Harun MA, Ali I, Isnain Z, Joseph CG. 2021. Mantanani Island. Kota Kinabalu, Universiti Malaysia Sabah Press. |
Hassan FM, Saleh MM, Salman JM. 2010. A study of physicochemical parameters and nine heavy metals in the Euphrates River, Iraq. E-Journal of Chemistry, 7(3), 685–692. doi: 10.1155/2010/906837. |
Herut B, Sandler A. 2006. Normalization methods for pollutants in marine sediments: Review and recommendations for the Mediterranean. IOLR Report H, 18(23), 1–23. |
Hossain S, Ishiyama T, Hachinohe S, Oguchi, CT. 2019. Leaching Behavior of As, Pb, Ni, Fe, and Mn from subsurface marine and nonmarine depositional environment in Central Kanto Plain, Japan. Geosciences, 9(10), 435. doi: 10.3390/geosciences9100435. |
Idris MB, Kok KH. 1990. Stratigraphy of the Mantanani Islands, Sabah. Geological Society of Malaysia. Bulletin, 26, 35–46. doi: 10.7186/bgsm26199004. |
Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. doi: 10.2478/intox-2014-0009. |
Jayamurali D, Varier KM, Liu W, Raman J, Ben-David Y, Shen X, Gajendran B. 2021. An Overview of Heavy Metal Toxicity. Metal, Metal Oxides and Metal Sulphides for Biomedical Applications, 323–342. https://doi.org/10.1007/978-3-030-56413-1_12. |
Karageorgis AP, Botsou F, Kaber H, Iliakis S. 2020. Geochemistry of major and trace elements in surface sediments of the Saronikos Gulf (Greece): Assessment of contamination between 1999 and 2018. Science of The Total Environment, 717, 137046. doi: 10.1016/j.scitotenv.2020.137046. |
Keshavarzifard M, Moore F, Sharifi R. 2019. The influence of physicochemical parameters on bioavailability and bioaccessibility of heavy metals in sediments of the intertidal zone of Asaluyeh region, Persian Gulf, Iran. Geochemistry, 79(1), 178–187. doi: 10.1016/j.geoch.2018.12.007. |
Kierczak J, Pietranik A, Pędziwiatr A. 2021. Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review. Science of The Total Environment, 755, 142620. doi: 10.1016/j.scitotenv.2020.142620. |
Korfali SI, Davies BE. 2004. Speciation of metals in sediment and water in a river underlain by limestone: role of carbonate species for purification capacity of rivers. Advances in Environmental Research, 8(3), 599–612. doi: 10.1016/s1093-0191(03)00033-9. |
Koukina SE, Lobus NV, Peresypkin VI, Dara OM. 2016. Relationship between Bulk Metal Concentration and Bioavailability in Tropic Estuarine Sediments. Applied Studies of Coastal and Marine Environments, 205–225. https://doi.org/10.5772/62155. |
Kumar V, Sharma A, Kaur P, Sidhu GPS, Bali AS, Bhardwaj R, Thukral AK, Cerda A. 2019. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 216, 449–462. doi: 10.1016/j.chemosphere.2018.10.066. |
Lee CP, Leman MS, Hassan K, Nasib BM, Karim R. 2004. Stratigraphic lexicon of Malaysia. Geological Soc. of Malaysia, Malaysian Stratigraphic Central Registry Database Subcommittee, 7–162. |
Ling SY, Junaidi A, Harun AM, Baba M. 2022. Geochemical Assessment of Heavy Metal Contamination in Coastal Sediment Cores from Usukan Beach, Kota Belud, Sabah, Malaysia. In Journal of Physics: Conference Series, 2314(1), 012008. doi: 10.1088/1742-6596/2314/1/012008. |
Loring DH, Rantala RT. 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32(4), 235–283. doi: 10.1016/0012-8252(92)90001-a. |
Lough AJ, Connelly DP, Homoky WB, Hawkes JA, Chavagnac V, Castillo A, Kazemian M, Mills RA. 2019. Diffuse hydrothermal venting: A hidden source of iron to the oceans. Frontiers in Marine Science, 6, 329. doi: 10.3389/fmars.2019.00329. |
Luo JZ, Sheng BX, and Sheng QQ. 2020. A review on the migration and transformation of heavy metals influence by alkali/alkaline earth metals during combustion. Journal of Fuel Chemistry and Technology, 48(11), 1318–1326. doi: 10.1016/s1872-5813(20)30088-8. |
Madrid L, Diaz BE. 1992. Influence of carbonate on the reaction of heavy metals in soils. Journal of Soil Science, 43(4), 709–721. doi: 10.1111/j.1365-2389.1992.tb00170.x. |
Mansor HE, Hassan MHA, Asis J. A deep marine origin for the Tajau Sandstone Member of the Kudat Formation, Kudat Peninsula, Sabah: Evidence from facies analysis and ichnology. Sains Malaysiana, 50(2), 301–313. https://doi.org/10.17576/jsm-2021-5002-03. |
Martins MVA, Silva NMA, Alves MI, Coelho MHD, Castelo WFL, Lorini LM, Terroso D, Geraldes MC, Laut L, Zaaboub N, Rocha, F. 2018. Geochemical normalizers applied to the study of the provenance of lithogenic materials deposited at the entrance of a coastal lagoon. A case study I Aveiro Lagoon (Portugal). Journal of Sedimentary Environments, 3(2), 74–92. doi: 10.12957/jse.2018.34815. |
Miranda LS, Ayoko GA, Egodawatta P, Goonetilleke, A. 2022. Adsorption-desorption behavior of heavy metals in aquatic environments: Influence of sediment, water and metal ionic properties. Journal of Hazardous Materials, 421, 126743. doi: 10.1016/j.jhazmat.2021.126743. |
Mugwar AJ, Harbottle MJ. 2016. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. Journal of Hazardous Materials, 314, 237–248. doi: 10.1016/j.jhazmat.2016.04.039. |
Müller G. 1969. Index of geoaccumulation in the sediments of the Rhine River. Geojournal, 2, 108–118. |
Nobi EP, Dilipan E, Thangaradjou T, Sivakumar K, Kannan L. 2010. Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine, coastal and shelf science, 87(2), 253–264. https://doi.org/10.1016/j.ecss.2009.12.019. |
Ouhadi VR, Yong RN, Shariatmadari N, Saeidijam S, Goodarzi AR, Safari-Zanjani M. 2010. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method. Journal of Hazardous Materials, 173(1), 87–94. doi: 10.1016/j.jhazmat.2009.08.052. |
Pavoni E, Crosera M, Petranich E, Faganeli J, Klun K, Oliveri P, Covelli S, Adami G. 2021. Distribution, mobility and fate of trace elements in an estuarine system under anthropogenic pressure: The case of the Karstic Timavo River (Northern Adriatic Sea, Italy). Estuaries and Coasts, 44, 1831–1847. doi: 10.1007/s12237-021-00910-9. |
Pit IR, Dekker SC, Kanters TJ, Wassen MJ, Griffioen J. 2017. Mobilisation of toxic trace elements under various beach nourishments. Environmental Pollution, 231, 1063–1074. doi: 10.1016/j.envpol.2017.08.064. |
Praveena SM, Ahmed A, Radojevic M, Abdullah MH, Aris AZ. 2008. Heavy metals in mangrove surface sediment of Mengkabong Lagoon, Sabah: Multivariate and geo-accumulation index approaches. International Journal of Environmental Research, 2(2), 139–148. doi: 10.1007/s00484-007-0128-1. |
Rieuwerts JS, Thornton I, Farago ME, Ashmore MR. 1998. Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation & Bioavailability, 10(2), 61–75. https://doi.org/10.3184/095422998782775835. |
Saleh E, Manjaji-Matsumoto BM, Koiting RF. 2021. Natural and Anthropogenic Factors Affecting the Shoreline Changes of Mantanani Besar Island. Chapter in Book: Mantanani Island. Kota Kinabalu, Universiti Malaysia Sabah Press. |
Sany SBT, Salleh A, Sulaiman AH, Sasekumar A, Rezayi M, Tehrani GM. 2013. Heavy metal contamination in water and sediment of the Port Klang coastal area, Selangor, Malaysia. Environmental Earth Sciences, 69(6), 2013–2025. doi: 10.1007/s12665-012-2038-8. |
Satpathy D, Reddy MV, Dhal SP. 2014. Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L. ) at the East Coast of India. BioMed Research International, 1–11. https://doi.org/10.1155/2014/545473. |
Shahbazi K, Beheshti M. 2019. Comparison of three methods for measuring heavy metals in calcareous soils of Iran. SN Applied Sciences, 1(12), 1–19. doi: 10.1007/s42452-019-1578-x. |
Shi W, Zhao X, Han Y, Che Z, Chai X, Liu G. 2016. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety. Scientific Reports, 6(1), 1–8. doi: 10.1038/srep20197. |
Shine JP, Ika RV, Ford TE. 1995. Multivariate statistical examination of spatial and temporal patterns of heavy metal contamination in New Bedford Harbor marine sediments. Environmental Science &, Technology, 29(7), 1781–1788. doi: 10.1021/es00007a014. |
Siddiqui AS, Saher U. 2021. Distribution profile of heavy metals and associated contamination trend with the sedimentary environment of Pakistan coast bordering the Northern Arabian Sea. Environmental Science and Pollution Research, 28(23), 30121–30138. doi: 10.1007/s11356-021-12740-0. |
Simpson SL, Batley GE, Chariton AA. 2013. Revision of the ANZECC/ARMCANZ Sediment Quality Guidelines. CSIRO Land and Water Science Report 08/07. CSIRO Land and Water, 1–132. |
Singare PU, Trivedi MP, Mishra RM. 2011. Assessing the physico-chemical parameters of sediment ecosystem of Vasai Creek at Mumbai, India. Marine Science, 1(1), 22–29. doi: 10.5923/j.ms.20110101.03. |
Suggate SM, Hall R. 2014. Using detrital garnet compositions to determine provenance: a new compositional database and procedure. Geological Society of London, Special Publications, 386(1), 373–393. https://doi.org/10.1144/sp386.8. |
Tahir SH, Mustapa AT. 2020. Food security policy in Sabah, Malaysia: A case study of paddy field in Kota Belud district. Jurnal Kinabalu, 22–23. |
Tahir, SH, Talip AM. 2020. Dasar keselamatan makanan di Sabah, Malaysia: kajian kes jelapang padi di daerah Kota Belud: Food security policy in Sabah, Malaysia. A case study of paddy field in Kota Belud district. Jurnal Kinabalu, 23. https://doi.org/10.51200/ejk.vi.2220. |
Tao W, Li H, Peng X, Zhang W, Lou Q, Gong J, Ye J. 2021. Characteristics of Heavy Metals in Seawater and Sediments from Daya Bay (South China): Environmental Fates, Source Apportionment and Ecological Risks. Sustainability, 13(18), 10237. doi: 10.3390/su131810237. |
Tashakor M, Hochwimmer B, Brearley FQ. 2017. Geochemical assessment of metal transfer from rock and soil to water in serpentine areas of Sabah (Malaysia). Environmental Earth Sciences, 76(7), 281–293. doi: 10.1007/s12665-017-6585-x. |
Tashakor M, Yaacob WZW, Mohamad H. 2011. Speciation and availability of Cr, Ni and Co in serpentine soils of Ranau, Sabah. Current Research in Geoscience, 2(1), 4–9. doi: 10.3844/ajgsp.2011.4.9. |
Taylor SR. 1964. Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta, 28, 1273–1285. doi: 10.1016/0016-7037(64)90129-2. |
Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW. 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolä nder meeresuntersuchungen, 33(1), 566–575. doi: 10.1007/bf02414780. |
Tsen HW, Hock AL, Hussin R., Saleh, E. 2018. mariculture in Kudat and Kota Marudu, Sabah. Jurnal Kinabalu, 24, 81–102. doi: 10.51200/ejk.vi.1661. |
Turekian KK, Wedepohl KH. 1961. Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulltin., 72(2), 175–92. doi: 10.1130/0016-7606(1961)72[175:doteis]2.0.co;2. |
Ugwu IM, Igbokwe OA. 2019. Sorption of heavy metals on clay minerals and oxides: A review. Advanced Sorption Process Applications, 2019, 1–23. doi: 10.5772/intechopen.80989. |
USEPA, 1977. Guidance for the Pollutional Classification of Great Lakes Harbor Sediments, Region V, Chicago, Illinois. Washington, Environmental Protection Agency, 1–8. |
USEPA. 1996. Method 3050B (Revision 2): Acid Digestion of Sediments, Sludges, and Soils. Washington, U. S. Environmental Protection Agency, 1–12. |
USEPA. 2014. Method 6010D (Revision 4): Inductively coupled-plasma atomic emission spectrometry. Washington, U. S. Environmental Protection Agency, 1–35. |
Vallius H, Ryabchuk D, Kotilainen A. 2007. Distribution of heavy metals and arsenic in soft surface sediments of the coastal area off Kotka, northeastern Gulf of Finland, Baltic Sea. Holocene sedimentary environment and sediment geochemistry of the eastern Gulf of Finland, Baltic Sea. Geological Survey of Finland, Special Paper, 45, 33–48. https://doi.org/10.1016/s0045-6535(98)00353-1. |
White WM. 2020. Geochemistry: The Oceans as a Chemical System. Oxford, John Wiley & Sons, 1189-1197. |
Wuana RA, Okieimen FE. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011, 1–20. doi: 10.1201/b16566-7. |
Yi LS, Asis J, Musta B. 2021. The Quality Assessment of Heavy Metals in Marine Sediments from Usukan Coastal Beach, Kota Belud, Sabah. Borneo Science, 42(1), 1–11. |
Zhang C, Yu ZG, Zeng GM, Jiang M, Yang ZZ, Cui F, Zhu MY, Hu L. 2014. Effects of sediment geochemical properties on heavy metal bioavailability. Environment international. 73, 270–281. https://doi.org/10.1016/j.envint.2014.08.010. |
Zhang Y, Li H, Yin J, Zhu L. 2021. Risk assessment for sediment associated heavy metals using sediment quality guidelines modified by sediment properties. Environmental Pollution, 275, 115844. doi: 10.1016/j.envpol.2020.115844. |
Zhou H, Peng X, Pan J. 2004. Distribution, source and enrichment of some chemical elements in sediments of the Pearl River Estuary, China. Continental Shelf Research, 24, 1857–1875. doi: 10.1016/j.csr.2004.06.012. |
Zhou YF, Hayne RJ. 2010. Sorption of heavy metals by inorganic and organic components of solid wastes: significance to use of wastes as low-cost adsorbents and immobilizing agents. Critical Reviews in Environmental Science and Technology, 40(11), 909–977. doi: 10.1080/10643380802586857. |
Zubir AA, Saad FM, Dahalan FA. 2018. The study of heavy metals on sediment quality of Kuala Perlis Coastal Area. In EDP Sciences Web of Conferences, 34, 02018. doi: 10.1051/e3sconf/20183402018. |
Base map of the study sites (a)–Kudat, (b)–Kota Belud and (c)–Mantanani Island from the northwest coast of Sabah.
Geological map of the study sites (a)–Kudat, (b)–Kota Belud and (c)–Mantanani Island, from the northwest coast of Sabah (modified from Department of Minerals and Geoscience of Malaysia, 2010).