2023 Vol. 6, No. 4
Article Contents

Sin-Yi Ling, Asis Junaidi, Abdullah Mohd-Harun, Musta Baba, 2023. Heavy metal pollution assessment in marine sediments in the Northwest coast of Sabah, Malaysia, China Geology, 6, 580-593. doi: 10.31035/cg2022079
Citation: Sin-Yi Ling, Asis Junaidi, Abdullah Mohd-Harun, Musta Baba, 2023. Heavy metal pollution assessment in marine sediments in the Northwest coast of Sabah, Malaysia, China Geology, 6, 580-593. doi: 10.31035/cg2022079

Heavy metal pollution assessment in marine sediments in the Northwest coast of Sabah, Malaysia

More Information
  • Heavy metal contents along the Northwest coast of Sabah were determined to interpret the pollution level in the marine sediment. The metal abundance is regulated by the physico-chemical properties such as the average sediment pH (7.82, 9.00 and 8.99), organic matter (0.62%, 1.60%, and 2.27%), moisture content (25.00%, 29.70%, and 15.00%) and sandy texture in Kota Belud, Kudat and Mantanani Island, respectively. The major elements show Ca>Fe>Mg>Al>Mn for all study sites, while the heavy metals show Ni>Cr>Zn>Cu>Co>Pb, Cr>Ni>Zn>Cu>Pb>Co and Zn>Pb>Cr>Ni, for Kota Belud, Kudat and Mantanani Island, respectively. The pollution degree of heavy metals was evaluated by using the Sediment Quality Assessment (SQA). The SQA parameters indicated none to moderate pollution in Kota Belud that shows Class 0, Class 1 and Class 2 pollution. The parameters also indicated none to low pollution in Kudat and Mantanani Island that show only Class 0 pollution. The enrichment factor (EF) suggested minor to moderately severe metal enrichment by anthropogenic sources in Kota Belud, whereas only minor enrichment in Kudat and Mantanani Island. The modified pollution degree (MCD<1.5) and pollution load index (0$\leqslant $PLI<1) indicating only low pollution level in the marine sediments for all study sites. The objectives of this study are: (1) to determine the physico-chemical parameters of sediments, (2) interpret the heavy metal contents and (3) evaluate the sediment quality.

  • 加载中
  • Abdu N, Abdullahi AA, Abdulkadir A. 2017. Heavy metals and soil microbes. Environmental Chemistry Letters, 15(1), 65–84. doi: 10.1007/s10311-016-0587-x.

    CrossRef Google Scholar

    Abrahim GMS, Parker RJ. 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238. doi: 10.1007/s10661-007-9678-2.

    CrossRef Google Scholar

    Adam AA, Othman N, Halim AA, Ismail SR, Samah AA. 2019. The practice of biodiversity–related indigenous knowledge in Kota Belud, Sabah: A Preliminary Study. Pertanika Journal of Social Science and Humanities, 27(S1), 215–225.

    Google Scholar

    Agoro MA, Adeniji AO, Adefisoye MA, Okoh OO. 2020. Heavy Metals in Wastewater and Sewage Sludge from Selected Municipal Treatment Plants in Eastern Cape Province, South Africa. Water, 12(10), 2746. doi: 10.3390/w12102746.

    CrossRef Google Scholar

    Alabaster JS, Lloyd RS. 2013. Water quality criteria for freshwater fish. Cambridge, Elsevier, 3117.

    Google Scholar

    Ali H, Khan E, Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019(14), 1–14. doi: 10.1155/2019/6730305.

    CrossRef Google Scholar

    Bayon G, German CR, Burton KW, Nesbitt RW, Rogers N. 2004. Sedimentary Fe–Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE. Earth and Planetary Science Letters, 224(3), 477–492. doi: 10.1016/j.jpgl.2004.05.033.

    CrossRef Google Scholar

    BSI. 1990. BS1377: 1990 British Standard Methods of Tests for Soils for Civil Engineering Purposes. London, British Standard Institution (BSI), 1–64.

    Google Scholar

    Churchman GJ, Gates WP, Theng BKG. 2006. Clays and clay minerals for pollution control. Developments in Clay Science, 1, 625–675. doi: 10.1016/b978-0-08-098259-5.00021-4.

    CrossRef Google Scholar

    Clement JF, Keij J. 1958. Geology of the Kudat Peninsula, North Borneo (Compilation) GR783. Unpublished Reports of the Royal Dutch Shell Group of Companies in British Borneo.

    Google Scholar

    Dai L, Ren J, Ling T, Wei B, Wang G. 2019. Chemical speciation and phytoavailability of Cr, Ni, Zn and Cu in loess amended with attapulgite-stabilized sewage sludge. Environmental Pollutants and Bioavailability, 31(1), 112–119. doi: 10.1080/26395940.2019.1588076.

    CrossRef Google Scholar

    Dalai, TK, Rengarajan R, Patel PP. 2004. Sediment geochemistry of the Yamuna River System in the Himalaya: Implications to weathering and transport. Geochemical journal, 38(5), 441–453. doi: 10.2343/geochemj.38.441.

    CrossRef Google Scholar

    Department of Minerals and Geoscience of Malaysia. 2010. Peta Geologi Negeri Sabah (4th Edition). Kota Kinabalu, JMG Sabah.

    Google Scholar

    Dey M, Akter A, Islam S, Dey SC, Choudhury TR, Fatema KJ, Begum BA. 2021. Assessment of Contamination Level, Pollution Risk and Source Apportionment of Heavy Metals in the Halda River Water, Bangladesh. Heliyon, 08625. https://doi.org/10.1016/j.heliyon.2021.e08625.

    Google Scholar

    Dou Y, Li J, Zhao J, Hu B, Yang S. 2013. Distribution, enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea. Marine pollution bulletin, 67(1), 137–145. doi: 10.1016/j.marpolbul.2012.11.022.

    CrossRef Google Scholar

    Elder JF. 1989. Metal biogeochemistry in surface-water systems—A review of principles and concepts. U. S. Geological Survey Circular, 1013, 43. doi: 10.3133/cir1013.

    CrossRef Google Scholar

    Gloaguen TV, Passe JJ. 2017. Importance of lithology in defining natural background concentrations of Cr, Cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil. Chemosphere, 186, 31–42. doi: 10.1016/j.chemosphere.2017.07.134.

    CrossRef Google Scholar

    Li GZ, Zhou YZ, Yang ZJ, He DG, Ma TW, Lv WC, Zhou GF, An YF, Li W, Liang J, Wang C. 2010. A study of micro-area compositional characteristics and the evolution of cherts from Bafangshan Erlihe Pb-Zn ore deposit in Western Qinling Orogen. Earth Science Frontiers, 17(4), 290–303.

    Google Scholar

    Graf, Dl. 1960. Geochemistry of carbonate sediments and sedimentary carbonates. Illinois State Geological Survey Circular, 2, 297–388.

    Google Scholar

    Graves JE, Hutchison CS, Bergmen SC, Swauger DA. 2000. Age and MORB Geochemistry of the Sabah Ophiolite Basement. Bulletin of the Geological Society of Malaysia, 44, 151–158. doi: 10.7186/bgsm44200019.

    CrossRef Google Scholar

    Gu S, Kang X, Wang L, Lichtfouse E, Wang C. 2019. Clay mineral adsorbents for heavy metal removal from wastewater: A review. Environmental Chemistry Letters, 17(2), 629–654. doi: 10.1007/s10311-018-0813-9.

    CrossRef Google Scholar

    Gwak YS, Kim SH. 2016. Factors affecting soil moisture spatial variability for a humid forest Hillslope. Hydrological Processes, 31(2), 431–445. doi: 10.1002/hyp.11039.

    CrossRef Google Scholar

    Hakanson L. 1980. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001. doi: 10.1016/0043-1354(80)90143-8.

    CrossRef Google Scholar

    Harun MA, Ali I, Isnain Z, Joseph CG. 2021. Mantanani Island. Kota Kinabalu, Universiti Malaysia Sabah Press.

    Google Scholar

    Hassan FM, Saleh MM, Salman JM. 2010. A study of physicochemical parameters and nine heavy metals in the Euphrates River, Iraq. E-Journal of Chemistry, 7(3), 685–692. doi: 10.1155/2010/906837.

    CrossRef Google Scholar

    Herut B, Sandler A. 2006. Normalization methods for pollutants in marine sediments: Review and recommendations for the Mediterranean. IOLR Report H, 18(23), 1–23.

    Google Scholar

    Hossain S, Ishiyama T, Hachinohe S, Oguchi, CT. 2019. Leaching Behavior of As, Pb, Ni, Fe, and Mn from subsurface marine and nonmarine depositional environment in Central Kanto Plain, Japan. Geosciences, 9(10), 435. doi: 10.3390/geosciences9100435.

    CrossRef Google Scholar

    Idris MB, Kok KH. 1990. Stratigraphy of the Mantanani Islands, Sabah. Geological Society of Malaysia. Bulletin, 26, 35–46. doi: 10.7186/bgsm26199004.

    CrossRef Google Scholar

    Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. doi: 10.2478/intox-2014-0009.

    CrossRef Google Scholar

    Jayamurali D, Varier KM, Liu W, Raman J, Ben-David Y, Shen X, Gajendran B. 2021. An Overview of Heavy Metal Toxicity. Metal, Metal Oxides and Metal Sulphides for Biomedical Applications, 323–342. https://doi.org/10.1007/978-3-030-56413-1_12.

    Google Scholar

    Karageorgis AP, Botsou F, Kaber H, Iliakis S. 2020. Geochemistry of major and trace elements in surface sediments of the Saronikos Gulf (Greece): Assessment of contamination between 1999 and 2018. Science of The Total Environment, 717, 137046. doi: 10.1016/j.scitotenv.2020.137046.

    CrossRef Google Scholar

    Keshavarzifard M, Moore F, Sharifi R. 2019. The influence of physicochemical parameters on bioavailability and bioaccessibility of heavy metals in sediments of the intertidal zone of Asaluyeh region, Persian Gulf, Iran. Geochemistry, 79(1), 178–187. doi: 10.1016/j.geoch.2018.12.007.

    CrossRef Google Scholar

    Kierczak J, Pietranik A, Pędziwiatr A. 2021. Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review. Science of The Total Environment, 755, 142620. doi: 10.1016/j.scitotenv.2020.142620.

    CrossRef Google Scholar

    Korfali SI, Davies BE. 2004. Speciation of metals in sediment and water in a river underlain by limestone: role of carbonate species for purification capacity of rivers. Advances in Environmental Research, 8(3), 599–612. doi: 10.1016/s1093-0191(03)00033-9.

    CrossRef Google Scholar

    Koukina SE, Lobus NV, Peresypkin VI, Dara OM. 2016. Relationship between Bulk Metal Concentration and Bioavailability in Tropic Estuarine Sediments. Applied Studies of Coastal and Marine Environments, 205–225. https://doi.org/10.5772/62155.

    Google Scholar

    Kumar V, Sharma A, Kaur P, Sidhu GPS, Bali AS, Bhardwaj R, Thukral AK, Cerda A. 2019. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 216, 449–462. doi: 10.1016/j.chemosphere.2018.10.066.

    CrossRef Google Scholar

    Lee CP, Leman MS, Hassan K, Nasib BM, Karim R. 2004. Stratigraphic lexicon of Malaysia. Geological Soc. of Malaysia, Malaysian Stratigraphic Central Registry Database Subcommittee, 7–162.

    Google Scholar

    Ling SY, Junaidi A, Harun AM, Baba M. 2022. Geochemical Assessment of Heavy Metal Contamination in Coastal Sediment Cores from Usukan Beach, Kota Belud, Sabah, Malaysia. In Journal of Physics: Conference Series, 2314(1), 012008. doi: 10.1088/1742-6596/2314/1/012008.

    CrossRef Google Scholar

    Loring DH, Rantala RT. 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32(4), 235–283. doi: 10.1016/0012-8252(92)90001-a.

    CrossRef Google Scholar

    Lough AJ, Connelly DP, Homoky WB, Hawkes JA, Chavagnac V, Castillo A, Kazemian M, Mills RA. 2019. Diffuse hydrothermal venting: A hidden source of iron to the oceans. Frontiers in Marine Science, 6, 329. doi: 10.3389/fmars.2019.00329.

    CrossRef Google Scholar

    Luo JZ, Sheng BX, and Sheng QQ. 2020. A review on the migration and transformation of heavy metals influence by alkali/alkaline earth metals during combustion. Journal of Fuel Chemistry and Technology, 48(11), 1318–1326. doi: 10.1016/s1872-5813(20)30088-8.

    CrossRef Google Scholar

    Madrid L, Diaz BE. 1992. Influence of carbonate on the reaction of heavy metals in soils. Journal of Soil Science, 43(4), 709–721. doi: 10.1111/j.1365-2389.1992.tb00170.x.

    CrossRef Google Scholar

    Mansor HE, Hassan MHA, Asis J. A deep marine origin for the Tajau Sandstone Member of the Kudat Formation, Kudat Peninsula, Sabah: Evidence from facies analysis and ichnology. Sains Malaysiana, 50(2), 301–313. https://doi.org/10.17576/jsm-2021-5002-03.

    Google Scholar

    Martins MVA, Silva NMA, Alves MI, Coelho MHD, Castelo WFL, Lorini LM, Terroso D, Geraldes MC, Laut L, Zaaboub N, Rocha, F. 2018. Geochemical normalizers applied to the study of the provenance of lithogenic materials deposited at the entrance of a coastal lagoon. A case study I Aveiro Lagoon (Portugal). Journal of Sedimentary Environments, 3(2), 74–92. doi: 10.12957/jse.2018.34815.

    CrossRef Google Scholar

    Miranda LS, Ayoko GA, Egodawatta P, Goonetilleke, A. 2022. Adsorption-desorption behavior of heavy metals in aquatic environments: Influence of sediment, water and metal ionic properties. Journal of Hazardous Materials, 421, 126743. doi: 10.1016/j.jhazmat.2021.126743.

    CrossRef Google Scholar

    Mugwar AJ, Harbottle MJ. 2016. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. Journal of Hazardous Materials, 314, 237–248. doi: 10.1016/j.jhazmat.2016.04.039.

    CrossRef Google Scholar

    Müller G. 1969. Index of geoaccumulation in the sediments of the Rhine River. Geojournal, 2, 108–118.

    Google Scholar

    Nobi EP, Dilipan E, Thangaradjou T, Sivakumar K, Kannan L. 2010. Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine, coastal and shelf science, 87(2), 253–264. https://doi.org/10.1016/j.ecss.2009.12.019.

    Google Scholar

    Ouhadi VR, Yong RN, Shariatmadari N, Saeidijam S, Goodarzi AR, Safari-Zanjani M. 2010. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method. Journal of Hazardous Materials, 173(1), 87–94. doi: 10.1016/j.jhazmat.2009.08.052.

    CrossRef Google Scholar

    Pavoni E, Crosera M, Petranich E, Faganeli J, Klun K, Oliveri P, Covelli S, Adami G. 2021. Distribution, mobility and fate of trace elements in an estuarine system under anthropogenic pressure: The case of the Karstic Timavo River (Northern Adriatic Sea, Italy). Estuaries and Coasts, 44, 1831–1847. doi: 10.1007/s12237-021-00910-9.

    CrossRef Google Scholar

    Pit IR, Dekker SC, Kanters TJ, Wassen MJ, Griffioen J. 2017. Mobilisation of toxic trace elements under various beach nourishments. Environmental Pollution, 231, 1063–1074. doi: 10.1016/j.envpol.2017.08.064.

    CrossRef Google Scholar

    Praveena SM, Ahmed A, Radojevic M, Abdullah MH, Aris AZ. 2008. Heavy metals in mangrove surface sediment of Mengkabong Lagoon, Sabah: Multivariate and geo-accumulation index approaches. International Journal of Environmental Research, 2(2), 139–148. doi: 10.1007/s00484-007-0128-1.

    CrossRef Google Scholar

    Rieuwerts JS, Thornton I, Farago ME, Ashmore MR. 1998. Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation & Bioavailability, 10(2), 61–75. https://doi.org/10.3184/095422998782775835.

    Google Scholar

    Saleh E, Manjaji-Matsumoto BM, Koiting RF. 2021. Natural and Anthropogenic Factors Affecting the Shoreline Changes of Mantanani Besar Island. Chapter in Book: Mantanani Island. Kota Kinabalu, Universiti Malaysia Sabah Press.

    Google Scholar

    Sany SBT, Salleh A, Sulaiman AH, Sasekumar A, Rezayi M, Tehrani GM. 2013. Heavy metal contamination in water and sediment of the Port Klang coastal area, Selangor, Malaysia. Environmental Earth Sciences, 69(6), 2013–2025. doi: 10.1007/s12665-012-2038-8.

    CrossRef Google Scholar

    Satpathy D, Reddy MV, Dhal SP. 2014. Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L. ) at the East Coast of India. BioMed Research International, 1–11. https://doi.org/10.1155/2014/545473.

    Google Scholar

    Shahbazi K, Beheshti M. 2019. Comparison of three methods for measuring heavy metals in calcareous soils of Iran. SN Applied Sciences, 1(12), 1–19. doi: 10.1007/s42452-019-1578-x.

    CrossRef Google Scholar

    Shi W, Zhao X, Han Y, Che Z, Chai X, Liu G. 2016. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety. Scientific Reports, 6(1), 1–8. doi: 10.1038/srep20197.

    CrossRef Google Scholar

    Shine JP, Ika RV, Ford TE. 1995. Multivariate statistical examination of spatial and temporal patterns of heavy metal contamination in New Bedford Harbor marine sediments. Environmental Science &, Technology, 29(7), 1781–1788. doi: 10.1021/es00007a014.

    CrossRef Google Scholar

    Siddiqui AS, Saher U. 2021. Distribution profile of heavy metals and associated contamination trend with the sedimentary environment of Pakistan coast bordering the Northern Arabian Sea. Environmental Science and Pollution Research, 28(23), 30121–30138. doi: 10.1007/s11356-021-12740-0.

    CrossRef Google Scholar

    Simpson SL, Batley GE, Chariton AA. 2013. Revision of the ANZECC/ARMCANZ Sediment Quality Guidelines. CSIRO Land and Water Science Report 08/07. CSIRO Land and Water, 1–132.

    Google Scholar

    Singare PU, Trivedi MP, Mishra RM. 2011. Assessing the physico-chemical parameters of sediment ecosystem of Vasai Creek at Mumbai, India. Marine Science, 1(1), 22–29. doi: 10.5923/j.ms.20110101.03.

    CrossRef Google Scholar

    Suggate SM, Hall R. 2014. Using detrital garnet compositions to determine provenance: a new compositional database and procedure. Geological Society of London, Special Publications, 386(1), 373–393. https://doi.org/10.1144/sp386.8.

    Google Scholar

    Tahir SH, Mustapa AT. 2020. Food security policy in Sabah, Malaysia: A case study of paddy field in Kota Belud district. Jurnal Kinabalu, 22–23.

    Google Scholar

    Tahir, SH, Talip AM. 2020. Dasar keselamatan makanan di Sabah, Malaysia: kajian kes jelapang padi di daerah Kota Belud: Food security policy in Sabah, Malaysia. A case study of paddy field in Kota Belud district. Jurnal Kinabalu, 23. https://doi.org/10.51200/ejk.vi.2220.

    Google Scholar

    Tao W, Li H, Peng X, Zhang W, Lou Q, Gong J, Ye J. 2021. Characteristics of Heavy Metals in Seawater and Sediments from Daya Bay (South China): Environmental Fates, Source Apportionment and Ecological Risks. Sustainability, 13(18), 10237. doi: 10.3390/su131810237.

    CrossRef Google Scholar

    Tashakor M, Hochwimmer B, Brearley FQ. 2017. Geochemical assessment of metal transfer from rock and soil to water in serpentine areas of Sabah (Malaysia). Environmental Earth Sciences, 76(7), 281–293. doi: 10.1007/s12665-017-6585-x.

    CrossRef Google Scholar

    Tashakor M, Yaacob WZW, Mohamad H. 2011. Speciation and availability of Cr, Ni and Co in serpentine soils of Ranau, Sabah. Current Research in Geoscience, 2(1), 4–9. doi: 10.3844/ajgsp.2011.4.9.

    CrossRef Google Scholar

    Taylor SR. 1964. Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta, 28, 1273–1285. doi: 10.1016/0016-7037(64)90129-2.

    CrossRef Google Scholar

    Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW. 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolä nder meeresuntersuchungen, 33(1), 566–575. doi: 10.1007/bf02414780.

    CrossRef Google Scholar

    Tsen HW, Hock AL, Hussin R., Saleh, E. 2018. mariculture in Kudat and Kota Marudu, Sabah. Jurnal Kinabalu, 24, 81–102. doi: 10.51200/ejk.vi.1661.

    CrossRef Google Scholar

    Turekian KK, Wedepohl KH. 1961. Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulltin., 72(2), 175–92. doi: 10.1130/0016-7606(1961)72[175:doteis]2.0.co;2.

    CrossRef Google Scholar

    Ugwu IM, Igbokwe OA. 2019. Sorption of heavy metals on clay minerals and oxides: A review. Advanced Sorption Process Applications, 2019, 1–23. doi: 10.5772/intechopen.80989.

    CrossRef Google Scholar

    USEPA, 1977. Guidance for the Pollutional Classification of Great Lakes Harbor Sediments, Region V, Chicago, Illinois. Washington, Environmental Protection Agency, 1–8.

    Google Scholar

    USEPA. 1996. Method 3050B (Revision 2): Acid Digestion of Sediments, Sludges, and Soils. Washington, U. S. Environmental Protection Agency, 1–12.

    Google Scholar

    USEPA. 2014. Method 6010D (Revision 4): Inductively coupled-plasma atomic emission spectrometry. Washington, U. S. Environmental Protection Agency, 1–35.

    Google Scholar

    Vallius H, Ryabchuk D, Kotilainen A. 2007. Distribution of heavy metals and arsenic in soft surface sediments of the coastal area off Kotka, northeastern Gulf of Finland, Baltic Sea. Holocene sedimentary environment and sediment geochemistry of the eastern Gulf of Finland, Baltic Sea. Geological Survey of Finland, Special Paper, 45, 33–48. https://doi.org/10.1016/s0045-6535(98)00353-1.

    Google Scholar

    White WM. 2020. Geochemistry: The Oceans as a Chemical System. Oxford, John Wiley & Sons, 1189-1197.

    Google Scholar

    Wuana RA, Okieimen FE. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011, 1–20. doi: 10.1201/b16566-7.

    CrossRef Google Scholar

    Yi LS, Asis J, Musta B. 2021. The Quality Assessment of Heavy Metals in Marine Sediments from Usukan Coastal Beach, Kota Belud, Sabah. Borneo Science, 42(1), 1–11.

    Google Scholar

    Zhang C, Yu ZG, Zeng GM, Jiang M, Yang ZZ, Cui F, Zhu MY, Hu L. 2014. Effects of sediment geochemical properties on heavy metal bioavailability. Environment international. 73, 270–281. https://doi.org/10.1016/j.envint.2014.08.010.

    Google Scholar

    Zhang Y, Li H, Yin J, Zhu L. 2021. Risk assessment for sediment associated heavy metals using sediment quality guidelines modified by sediment properties. Environmental Pollution, 275, 115844. doi: 10.1016/j.envpol.2020.115844.

    CrossRef Google Scholar

    Zhou H, Peng X, Pan J. 2004. Distribution, source and enrichment of some chemical elements in sediments of the Pearl River Estuary, China. Continental Shelf Research, 24, 1857–1875. doi: 10.1016/j.csr.2004.06.012.

    CrossRef Google Scholar

    Zhou YF, Hayne RJ. 2010. Sorption of heavy metals by inorganic and organic components of solid wastes: significance to use of wastes as low-cost adsorbents and immobilizing agents. Critical Reviews in Environmental Science and Technology, 40(11), 909–977. doi: 10.1080/10643380802586857.

    CrossRef Google Scholar

    Zubir AA, Saad FM, Dahalan FA. 2018. The study of heavy metals on sediment quality of Kuala Perlis Coastal Area. In EDP Sciences Web of Conferences, 34, 02018. doi: 10.1051/e3sconf/20183402018.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(5)

Article Metrics

Article views(475) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint