2023 Vol. 6, No. 4
Article Contents

Xue-yang Yu, Si-yuan Ye, Li-xin Pei, Liu-juan Xie, Ken W. Krauss, Samantha K. Chapman, Hans Brix, 2023. Biophysical warming patterns of an open-top chamber and its short-term influence on a Phragmites wetland ecosystem in China, China Geology, 6, 594-610. doi: 10.31035/cg2022064
Citation: Xue-yang Yu, Si-yuan Ye, Li-xin Pei, Liu-juan Xie, Ken W. Krauss, Samantha K. Chapman, Hans Brix, 2023. Biophysical warming patterns of an open-top chamber and its short-term influence on a Phragmites wetland ecosystem in China, China Geology, 6, 594-610. doi: 10.31035/cg2022064

Biophysical warming patterns of an open-top chamber and its short-term influence on a Phragmites wetland ecosystem in China

More Information
  • Passive-warming, open-top chambers (OTCs) are widely applied for studying the effects of future climate warming on coastal wetlands. In this study, a set of six OTCs were established at a Phragmites wetland located in the Yellow River Delta of Dongying City, China. With data collected through online transmission and in-situ sensors, the attributes and patterns of realized OTCs warming are demonstrated. The authors also quantified the preliminary influence of experimental chamber warming on plant traits. OTCs produced an elevated average air temperature of 0.8°C (relative to controls) during the growing season (June to October) of 2018, and soil temperatures actually decreased by 0.54°C at a depth of 5 cm and 0.46°C at a depth of 30 cm in the OTCs. Variations in diel patterns of warming depend greatly on the heat sources of incoming radiation in the daytime versus soil heat flux at night. Warming effects were often larger during instantaneous analyses and influenced OTCs air temperatures from −2.5°C to 8.3°C dependent on various meteorological conditions at any given time, ranging from cooling influences from vertical heat exchange and vegetation to radiation-associated warming. Night-time temperature depressions in the OTCs were due to the low turbulence inside OTCs and changes in surface soil-atmosphere heat transfer. Plant shoot density, basal diameter, and biomass of Phragmites decreased by 23.2%, 6.3%, and 34.0%, respectively, under experimental warming versus controls, and plant height increased by 4.3%, reflecting less carbon allocation to stem structures as plants in the OTCs experienced simultaneous wind buffering. While these passive-warming OTCs created the desired warming effects both to the atmosphere and soils, pest damages on the plant leaves and lodging within the OTCs were extensive and serious, creating the need to consider control options for these chambers and the replicated OTCs studies underway in other Chinese Phragmites marshes (Panjin and Yancheng).

  • 加载中
  • Adler LS, Valpine PD, Harte J, Call J. 2007. Effects of long-term experimental warming on Aphid density in the field. Journal of the Kansas Entomological Society, 80(2), 156–168. doi: 10.2317/0022-8567(2007)80[156:EOLEWO]2.0.CO;2.

    CrossRef Google Scholar

    Aronson EL, Mcnulty SG, Sun G, Sun JX, Zhou GS. 2009. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology, 149(11), 1791–1799. doi: 10.1016/j.agrformet.2009.06.007.

    CrossRef Google Scholar

    Baldwin AH, Jensen K. 2014. Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities. Global Change Biology, 20(3), 835–850. doi: 10.1111/gcb.12378.

    CrossRef Google Scholar

    Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8(1), 1–16. doi: 10.1046/j.1365-2486.2002.00451.x.

    CrossRef Google Scholar

    Baruah G, Molau U, Bai Y, Alatalo JM. 2017. Community and species-specific responses of plant traits to 23 years of experimental warming across subarctic tundra plant communities. Scientific Reports, 7, 2571. doi: 10.1038/s41598-017-02595-2.

    CrossRef Google Scholar

    Bondlamberty B, Thomson A. 2010. Temperature-associated increases in the global soil respiration record. Nature, 464(7288), 579–582. doi: 10.1038/nature08930.

    CrossRef Google Scholar

    Burt MA, Dunn RR, Nichols LM, Sanders NJ. 2016. Interactions in a warmer world: Effects of experimental warming, conspecific density, and herbivory on seedling dynamics. Ecosphere, 5(1), 1–12. doi: 10.1890/ES13-00198.1.

    CrossRef Google Scholar

    Carey JC, Kroeger KD, Zafari B, Tang JW. 2018. Passive experimental warming decouples air and sediment temperatures in a salt marsh. Limnology and Oceanography: Methods, 16, 640–648. doi: 10.1002/lom3.10270.

    CrossRef Google Scholar

    Carey JC, Tang J, Templer PH, Kroeger KD, Crowther TW, Burton AJ, Dukes JS, Emmett B, Frey SD, Heskel MA. 2016. Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences of the United States of America, 113(48), 13797. doi: 10.1073/pnas.1605365113.

    CrossRef Google Scholar

    Charles H, Dukes JS. 2009. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England Salt Marsh. Ecological Applications, 19(7), 1758–1773. doi: 10.1890/08-0172.1.

    CrossRef Google Scholar

    Chen J, Luo YQ, Xia JY, Zheng S, Jiang LF, Niu SL, Zhou XH, Cao JJ. 2016. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agricultural and Forest Meteorology, 220, 21–29. doi: 10.1016/j.agrformet.2016.01.010.

    CrossRef Google Scholar

    Cornelius C, Heinichen J, Drösler M, Menzel A. 2015. Impacts of temperature and water table manipulation on grassland phenology. Applied Vegetation Science, 17(4), 625–635. doi: 10.1111/avsc.12105.

    CrossRef Google Scholar

    Crowther TW, Toddbrown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD. 2016. Quantifying global soil carbon losses in response to warming. Nature, 540(7631), 104–108. doi: 10.1038/nature20150.

    CrossRef Google Scholar

    Day TA, Ruhland CT, Xiong FS. 2010. Warming increases aboveground plant biomass and C stocks in vascular-plant-dominated Antarctic tundra. Global Change Biology, 14(8), 1827–1843. doi: 10.1111/j.1365-2486.2008.01623.x.

    Google Scholar

    Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature, 490(7420), 388–392. doi: 10.1038/nature11533.

    CrossRef Google Scholar

    de Valpine P, Harte J. 2001. Plant responses to experimental warming in a montane meadow. Ecology, 82(3), 637–648. doi: 10.1890/0012-9658(2001)082[0637:PRTEWI]2.0.CO;2.

    CrossRef Google Scholar

    Ding YR, Ye SY, Zhao QS. 2012. Nutrients and carbon sequestration in the newly created wetlands of the Yellow River Delta. Geological Review, 58(1), 183–189 (in Chinese with English abstract). doi: 10.16509/j.georeview.2012.01.009.

    CrossRef Google Scholar

    Edith B, Li SL, Xu WH, Li W, Dai WW, Jiang P. 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199(2), 441–451. doi: 10.1111/nph.12252.

    CrossRef Google Scholar

    Fu G, Zhang XZ, Zhang YJ, Shi PL, Li YL, Zhou YT, Yang PW, Shen ZX. 2013. Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet. Journal of Applied Remote Sensing, 7(7), 6451–6465. doi: 10.1117/1.JRS.7.073505.

    CrossRef Google Scholar

    Grogan P, Chapin III FS. 2000. Initial effects of experimental warming on above and belowground components of net ecosystem CO2 exchange in arctic tundra. Oecologia, 125(4), 512–520. doi: 10.1007/s004420000490.

    CrossRef Google Scholar

    Hawkins E, Ortega P, Suckling E, Schurer A, Hegerl G, Jones P, Joshi M, Osborn TJ, Masson-Delmotte V, Mignot J, Thorne P, Oldenborgh GJ. 2017. Estimating changes in global temperature since the Preindustrial Period. Bulletin of the American Meteorological Society, 98(9), 1841–1856. doi: 10.1175/bams-d-16-0007.1.

    CrossRef Google Scholar

    Henry GHR, Molau U. 2010. Tundra plants and climate change: The International Tundra Experiment (ITEX). Global Change Biology, 3(S1), 1–9. doi: 10.1111/j.1365-2486.1997.gcb132.x.

    CrossRef Google Scholar

    Hobbie SE, Chapin III FS. 1998. The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology, 79(5), 1526–1544. doi: 10.1890/0012-9658(1998)079[1526:TROTPB]2.0.CO;2.

    CrossRef Google Scholar

    Hollister RD, Webber PJ, Nelson FE, Tweedie CE. 2006. Soil thaw and temperature response to air warming varies by plant community: Results from and open-top chamber experiment in northern Alaska. Arctic Antarctic and Alpine Research, 38(2), 206–215. doi: 10.1657/1523-0430(2006)38[206:STATRT]2.0.CO;2.

    CrossRef Google Scholar

    IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press, 1535.

    Google Scholar

    IPCC. 2022. Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge, Cambridge University Press. doi: 10.1017/9781009157940.

    Google Scholar

    King G, Adamsen A. 1992. Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph Methylomonas rubra. Applied and Environmental Microbiology, 58(9), 2758–2763. doi: 10.1128/aem.58.9.2758-2763.1992.

    CrossRef Google Scholar

    Körner C, Basler D. 2010. Plant science. Phenology under global warming. Science, 327(5972), 1461–1462. doi: 10.1126/science.1186473.

    CrossRef Google Scholar

    Li JW, Ziegler SE, Lane CS, Billings SA. 2015. Warming-enhanced preferential microbial mineralization of humified boreal forest soil organic matter: Interpretation of soil profiles along a climate transect using laboratory incubations. Journal of Geophysical Research Biogeosciences, 117(G2), 502–504. doi: 10.1029/2011JG001769.

    CrossRef Google Scholar

    Liu J, Ye SY, Yuan HM, Ding XG, Zhao GM, Yang SX, He L, Wang J, Pei SF, Huang XY. 2018. Metal pollution across the upper delta plain wetlands and its adjacent shallow sea wetland, northeast of China: Implications for the filtration functions of wetlands. Environmental Science and Pollution Research, 25(6), 5934–5949. doi: 10.1007/s11356-017-0912-3.

    CrossRef Google Scholar

    Liu Y, Mu J, Niklas KJ, Li G, Sun S. 2012. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau. New Phytologist, 195(2), 427–436. doi: 10.1111/j.1469-8137.2012.04178.x.

    CrossRef Google Scholar

    Liu YZ, Reich PB, Li GY, Sun SC. 2011. Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. Ecology, 92(6), 1201–1208. doi: 10.1890/10-2060.1.

    CrossRef Google Scholar

    Macdonald JA, Fowler D, Hargreaves KJ, Skiba U, Leith ID, Murray MB. 1998. Methane emission rates from a northern wetland: Response to temperature, water table and transport. Atmospheric Environment, 32(19), 3219–3227. doi: 10.1016/S1352-2310(97)00464-0.

    CrossRef Google Scholar

    Marion GM, Ghr H, Freckman DW, Johnstone J, Jones G, Jones MH, Lévesque E, Molau U, Mølgaard P, Parsons AN. 1997. Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology, 3(S1), 20–32. doi: 10.1111/j.1365-2486.1997.gcb136.x.

    CrossRef Google Scholar

    Mcelroy DJ, O’Gorman EJ, Schneider FD, Hetjens H, Merrer PL, Coleman RA, Emmerson M. 2015. Size-balanced community reorganization in response to nutrients and warming. Global Change Biology, 21(11), 3971–3981. doi: 10.1111/gcb.13019.

    CrossRef Google Scholar

    Meng L, Roulet N, Zhuang QL, Christensen TR, Frolking S. 2016. Focus on the impact of climate change on wetland ecosystems and carbon dynamics. Environmental Research Letters, 11(10), 100201. doi: 10.1088/1748-9326/11/10/100201.

    CrossRef Google Scholar

    Mozdzer TJ, Caplan JS. 2018. Complementary responses of morphology and physiology enhance the stand-scale production of a model invasive species under elevated CO2 and nitrogen. Functional Ecology, 32(7), 1784–1796. doi: 10.1111/1365-2435.13106.

    CrossRef Google Scholar

    Mu JP, Peng YH, Xi XQ, Wu XW, Li GY, Niklas KJ, Sun SC. 2015. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae. Annals of Botany, 116(6), 899–906. doi: 10.1093/aob/mcv042.

    CrossRef Google Scholar

    Perillo GME, Wolanski E, Cahoon D, Brinson M. 2009. Coastal Wetlands: An Integrated Ecosystem Approach. Elsevier, Amsterdam, 941.

    Google Scholar

    Pinthus MJ. 1974. Lodging in wheat, barley, and oats: The phenomenon, its causes, and preventive measures. Advances in Agronomy, 25, 209–263. doi: 10.1016/S0065-2113(08)60782-8.

    CrossRef Google Scholar

    Pospišilová J, Mohr H, Schopfer P. 1996. Plant physiology. Biologia Plantarum, 38, 458. doi: 10.1007/BF02896680.

    CrossRef Google Scholar

    Rätsep M, Muru R, Freiberg A. 2018. High temperature limit of photosynthetic excitons. Nature Communications, 9(1), 99. doi: 10.1038/s41467-017-02544-7.

    CrossRef Google Scholar

    Romero-Olivares AL, Allison SD, Treseder KK. 2017. Soil microbes and their response to experimental warming over time: A meta-analysis of field studies. Soil Biology and Biochemistry, 107, 32–40. doi: 10.1016/j.soilbio.2016.12.026.

    CrossRef Google Scholar

    Rouse WR, Carlson DW, Weick EJ. 1992. Impacts of summer warming on the energy and water balance of wetland tundra. Climatic Change, 22(4), 305–326. doi: 10.1007/BF00142431.

    CrossRef Google Scholar

    Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126(4), 543–562. doi: 10.1007/s004420000544.

    CrossRef Google Scholar

    Sánchez E, Scordia D, Lino G, Arias C, Cosentino SL, Nogués S, Lee DK, Shinners K, Finnan J, Tyner W. 2015. Salinity and water stress effects on biomass production in different Arundo donax L. clones. Bioenergy Research, 8(4), 1461–1479. doi: 10.1007/s12155-015-9652-8.

    CrossRef Google Scholar

    Shi B, Ma JY, Wang KY, Gong JN, Zhang C, Liu WH. 2010. Effects of atmospheric elevated temperature on the growth, reproduction and biomass allocation of reclamation Phragmites australis in east beach of Chongming Island. Resources and Environment in the Yangtze Basin, 19(4), 383–388 (in Chinese with English abstract).

    Google Scholar

    Stefano RD, Cappetta E, Guida G, Mistretta C, Caruso G, Giorio P, Albrizio R, Tucci M. 2017. Screening of giant reed (Arundo donax L) ecotypes for biomass production under salt stress. Plant Biosystems, 152(5), 1–7. doi: 10.1080/11263504.2017.1362059.

    CrossRef Google Scholar

    Sun SQ, Peng L, Wang GX, Wu YH, Zhou J, Bing HJ, Yu D, Luo J. 2013. An improved open-top chamber warming system for global change research. Silva Fennica, 47(2), 250–254. doi: 10.14214/sf.960.

    CrossRef Google Scholar

    Suseela V, Conant RT, Wallenstein MD, Dukes JS. 2015. Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology, 18(1), 336–348. doi: 10.1111/j.1365-2486.2011.02516.x.

    CrossRef Google Scholar

    Wang JF, Wu QB. 2013. Impact of experimental warming on soil temperature and moisture of the shallow active layer of wet meadows on the Qinghai-Tibet Plateau. Cold Regions Science and Technology, 90–91. doi: 10.1016/j.coldregions.2013.03.005.

    CrossRef Google Scholar

    Warwick NWM, Brock MA. 2003. Plant reproduction in temporary wetlands: The effects of seasonal timing, depth, and duration of flooding. Aquatic Botany, 77(2), 153–167. doi: 10.1016/S0304-3770(03)00102-5.

    CrossRef Google Scholar

    Wookey PA, Parsons AN, Welker JM, Potter JA, Callaghan TV, Lee JA. 1993. Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high arctic plants. Oikos, 67(3), 490–502. doi: 10.2307/3545361.

    CrossRef Google Scholar

    Wu W, Ma BL. 2018. Assessment of canola crop lodging under elevated temperatures for adaptation to climate change. Agricultural and Forest Meteorology, 248, 329–338. doi: 10.1016/j.agrformet.2017.09.017.

    CrossRef Google Scholar

    Xu YY, Ramanathan V. 2012. Latitudinally asymmetric response of global surface temperature: Implications for regional climate change. Geophysical Research Letters, 39(13), 13706. doi: 10.1029/2012GL052116.

    CrossRef Google Scholar

    Ye SY, Krauss KW, Brix H, Wei MJ, Olsson L, Yu XY, Ma XY, Wang J, Yuan HM, Zhao GM. 2016. Inter-annual variability of area-scaled gaseous carbon emissions from wetland soils in the Liaohe Delta, China. PLoS ONE, 11(8), e0160612. doi: 10.1371/journal.pone.0160612.

    CrossRef Google Scholar

    Yu JB, Li YZ, Han GX, Zhou D, Fu YQ, Guan B, Wang GM, Ning K, Wu HF, Wang JH. 2014. The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta. Environmental Earth Sciences, 72(2), 589–599. doi: 10.1007/s12665-013-2980-0.

    CrossRef Google Scholar

    Yu XY, Ye SY. 2020. The universal applicability of logistic curve in simulating ecosystem carbon dynamic. China Geology, 3(2), 292–298. doi: 10.31035/cg2020029.

    CrossRef Google Scholar

    Zhang ZS, Xue ZS, Lu XG, Jiang M, Mao DH, Huo LL. 2017. Warming in spring and summer lessens carbon accumulation over the past century in temperate wetlands of Northeast China. Wetlands, 37(5), 829–836. doi: 10.1007/s13157-017-0915-3.

    CrossRef Google Scholar

    Zhou YM, Hagedorn F, Zhou CL, Jiang XJ, Wang XX, Li MH. 2016. Experimental warming of a mountain tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai Mountain, China. Scientific Reports, 6(1), 21108. doi: 10.1038/srep21108.

    CrossRef Google Scholar

    Zhu JT, Zhang YJ, Jiang L. 2017. Experimental warming drives a seasonal shift of ecosystem carbon exchange in Tibetan alpine meadow. Agricultural and Forest Meteorology, 233, 242–249. doi: 10.1016/j.agrformet.2016.12.005.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(2)

Article Metrics

Article views(519) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint