2023 Vol. 6, No. 3
Article Contents

Xiao-yin Tang, Shu-chun Yang, Sheng-biao Hu, 2023. Tectonic-thermal history and hydrocarbon potential of the Pearl River Mouth Basin, northern South China Sea: Insights from borehole apatite fission-track thermochronology, China Geology, 6, 429-442. doi: 10.31035/cg2022055
Citation: Xiao-yin Tang, Shu-chun Yang, Sheng-biao Hu, 2023. Tectonic-thermal history and hydrocarbon potential of the Pearl River Mouth Basin, northern South China Sea: Insights from borehole apatite fission-track thermochronology, China Geology, 6, 429-442. doi: 10.31035/cg2022055

Tectonic-thermal history and hydrocarbon potential of the Pearl River Mouth Basin, northern South China Sea: Insights from borehole apatite fission-track thermochronology

More Information
  • The Pearl River Mouth Basin (PRMB) is one of the most petroliferous basins on the northern margin of the South China Sea. Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history. Our investigations in this study are based on apatite fission-track (AFT) thermochronology analysis of 12 cutting samples from 4 boreholes. Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution. Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene. The cooling events occurred approximately in the Late Eocene, early Oligocene, and the Late Miocene, possibly attributed to the Zhuqiong II Event, Nanhai Event, and Dongsha Event, respectively. The erosion amount during the first cooling stage is roughly estimated to be about 455–712 m, with an erosion rate of 0.08–0.12 mm/a. The second erosion-driven cooling is stronger than the first one, with an erosion amount of about 747–814 m and an erosion rate between about 0.13–0.21 mm/a. The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m, which is speculative due to the possible influence of the magmatic activity.

  • 加载中
  • Carminati E, Cavazza D, Scrocca D, Fantoni R, Scotti P, Doglioni C. 2010. Thermal and tectonic evolution of the southern Alps (northern Italy) rifting: Coupled organic matter maturity analysis and thermokinematic modeling. AAPG Bulletin, 94(3), 369–397. doi: 10.1306/08240909069.

    CrossRef Google Scholar

    Clift P, Lin J. 2001. Preferential mantle lithospheric extension under the South China margin. Marine and Petroleum Geology, 18(8), 929–945. doi: 10.1016/S0264-8172(01)00037-X.

    CrossRef Google Scholar

    Donelick RA, O'Sullivan PB, Ketcham RA. 2005. Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry, 58(1), 49–94. doi: 10.2138/rmg.2005.58.3.

    CrossRef Google Scholar

    Dong DD, Wu SG, Zhang GG, Yuan SQ. 2008. Rifting process and formation mechanisms of syn-rift stage prolongation in the deepwater basin, northern South China Sea. Chinese Science Bulletin, 53(23), 3715–3725. doi: 10.1360/csb2008-53-19-2342.

    CrossRef Google Scholar

    Dong DD, Zhang GC, Zhong K, Yuan SQ, Wu SG. 2009. Tectonic Evolution and Dynamics of Deepwater Area of Pearl River Mouth Basin, Northern South China Sea. Journal of Earth Science, 20(1), 147–159. doi: 10.1007/s12583-009-0016-1.

    CrossRef Google Scholar

    Galbraith RF. 1990. The radial plot: graphical assessment of spread in ages. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17(3), 207–214. doi: 10.1016/1359-0189(90)90036-W.

    CrossRef Google Scholar

    Gallagher K. 1995. Evolving temperature histories from apatite fission-track data. Earth and Planetary Science Letters, 136(3–4), 421–435. doi: 10.1016/0012-821X(95)00197-K.

    Google Scholar

    Gallagher K, Brown R, Johnson C. 1998. Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences, 26, 519–572. doi: 10.1146/annurev.earth.26.1.519.

    CrossRef Google Scholar

    Gleadow A, Duddy IR, Green PF, Hegarty KA. 1986. Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth and Planetary Science Letters, 78(2–3), 245–254. doi: 10.1016/0012-821X(86)90065-8.

    Google Scholar

    He LJ, Wang KL, Xiong LP, Wang JY. 2001. Heat flow and thermal history of the South China Sea. Physics of the Earth and Planetary Interiors, 126(3–4), 211–220. doi: 10.1016/S0031-9201(01)00256-4.

    Google Scholar

    Huang CY, Xia KY, Yuan PB, Chen PG. 2001. Structural evolution from Paleogene extension to Latest Miocene-Recent arc-continent collision offshore Taiwan: comparison with on land geology. Journal of Asian Earth Sciences, 19(5), 619–638. doi: 10.1016/s1367-9120(00)00065-1.

    CrossRef Google Scholar

    Jiang S, Zuo YH, Yang MH, Feng RP. 2021. Reconstruction of the Cenozoic tectono-thermal history of the Dongpu Depression, Bohai Bay Basin, China: Constraints from apatite fission track and vitrinite reflectance data. Journal of Petroleum Science and Engineering, 205, 108809. doi: 10.1016/j.petrol.2021.108809.

    CrossRef Google Scholar

    Jiang ZL, Zhu JZ, Deng HW, Hou DJ. 2012. Petroleum system and hydrocarbon accumulation characteristics in the wenchang and enping formations in the Huizhou Sag, Pearl River Mouth Basin, China. Energy Exploration and Exploitation, 30(3), 351–371. doi: 10.1260/0144-5987.30.3.351.

    CrossRef Google Scholar

    Ketcham RA. 2005. Forward and inverse modeling of low-temperature thermochronometry data. Reviews in Mineralogy and Geochemistry, 58, 275–314. doi: 10.2138/rmg.2005.58.11.

    CrossRef Google Scholar

    Ketcham RA, Mora A, Parra M. 2018. Deciphering exhumation and burial history with multi-sample down-well thermochronometric inverse modelling. Basin Research, 30(S1), 48–64. doi: 10.1111/bre.12207.

    CrossRef Google Scholar

    Kohn BP, Gleadow AJW, Brown RW, Gallagher K, Lorencak M, Noble WP. 2005. Visualizing thermotectonic and denudation histories using apatite fission track thermochronology. Reviews in Mineralogy and Geochemistry, 58(1), 527–565. doi: 10.2138/rmg.2005.58.20.

    CrossRef Google Scholar

    Lüdmann T, Wong HK. 1999. Neotectonic regime on the passive continental margin of the northern South China Sea. Tectonophysics, 311(1–4), 113–138. doi: 10.1016/S0040-1951(99)00155-9.

    Google Scholar

    Lüdmann T, Wong HK, Wang P. 2001. Plio–Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea. Marine Geology, 172(3–4), 331–358. doi: 10.1016/S0025-3227(00)00129-8.

    Google Scholar

    Lee T, Lawver LA. 1995. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics, 251(1–4), 85–138. doi: 10.1016/0040-1951(95)00023-2.

    Google Scholar

    Li ST, Lin CS, Zhang QM, Yang SG, Wu PK. 1999. Episodic rifting of continental marginal basins and tectonic events since 10 Ma in the South China Sea. Chinese Science Bulletin-English edition, 44(1), 10–23. doi: 10.1007/BF03182877.

    CrossRef Google Scholar

    Li YJ, Jiang ZL, Jiang S, Liu H, Wang BG. 2019. Heat flow and thermal evolution of a passive continental margin from shelf to slope – A case study on the Pearl River Mouth Basin, northern South China Sea. Journal of Asian Earth Sciences, 171, 88–102. doi: 10.1016/j.jseaes.2017.12.011.

    CrossRef Google Scholar

    Li XJ, Wang Z, Yao YJ, Gao HF, Zhu S, Xu ZY, 2022. Formation and evolution of the South China Sea since the Late Mesozoic: A review. China Geology. doi: 10.31035/cg2022021.

    Google Scholar

    Lin CS, Gao JY, Yu XJ, Ye F, Tan YJ. 2006. Characteristics of tectonic movement in the northern part of South China Sea during the Cenozoic. Acta Oceanologica Sinica, 28(4), 81–86 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-4193.2006.04.010.

    CrossRef Google Scholar

    Liu C, Clift PD, Carter A, Böning P, Hu Z, Sun Z, Pahnke K. 2017. Controls on modern erosion and the development of the Pearl River drainage in the late Paleogene. Marine Geology, 394, 52–68. doi: 10.1016/j.margeo.2017.07.011.

    CrossRef Google Scholar

    Maruyama S, Send T. 1986. Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics, 127(3–4), 305–329. doi: 10.1016/0040-1951(86)90067-3.

    Google Scholar

    Northrup CJ, Royden LH, Burchfiel BC. 1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 23(8), 719–722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2.

    CrossRef Google Scholar

    Pashin JC, 2014. Geology of North American coalbed methane reservoirs, Coal Bed Methane. Elsevier, 31–61. doi: 10.1016/B978-0-12-800880-5.00003-6.

    Google Scholar

    Qiu NS, Chang J, Zuo YH, Wang JY, Li HL. 2012. Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim Basin, northwest China. AAPG Bulletin, 96(5), 789–821. doi: 10.1306/09071111029.

    CrossRef Google Scholar

    Qiu NS, Zuo YH, Chang J, Li WZ. 2014. Geothermal evidence of Meso-Cenozoic lithosphere thinning in the Jiyang sub-basin, Bohai Bay Basin, eastern North China Craton. Gondwana Research, 26(3–4), 1079–1092. doi: 10.1016/j.gr.2013.08.011.

    Google Scholar

    Rao CT, Li PL. 1991. Heat flow of Pearl River Mouth Basin. China Offshore Oil and Gas (Geology), 5(6), 7–18.

    Google Scholar

    Ru K, Zhou D, Chen HZ, 1994. Basin evolution and hydrocarbon potential of the northern South China Sea. Netherlands, Kluwer Academic Publishers, 361–372.

    Google Scholar

    Rudnick RL, McDonough WF, O'Connell RJ. 1998. Thermal structure, thickness and composition of continental lithosphere. Chemical Geology, 145(3–4), 395–411. doi: 10.1016/s0009-2541(97)00151-4.

    Google Scholar

    Shao L, Cao LC, Pang X, Jiang T, Qiao PJ, Zhao M. 2016. Detrital zircon provenance of the Paleogene synrift sediments in the northern South China Sea. Geochemistry, Geophysics, Geosystems, 17(2), 255–269. doi: 10.1002/2015GC006113.

    Google Scholar

    Shao L, Meng AH, Li QY, Qiao PJ, Cui YC, Cao LC, Chen SH. 2017. Detrital zircon ages and elemental characteristics of the Eocene sequence in IODP Hole U1435A: Implications for rifting and environmental changes before the opening of the South China Sea. Marine Geology, 394, 39–51. doi: 10.1016/j.margeo.2017.08.002.

    CrossRef Google Scholar

    Shi XB, Qiu XL, Xia KY, Zhou D. 2003. Characteristics of surface heat flow in the South China Sea. Journal of Asian Earth Sciences, 22(3), 265–277. doi: 10.1016/S1367-9120(03)00059-2.

    CrossRef Google Scholar

    Song Y, Zhao CY, Zhang GC, Song HB, Shan JN, Chen L. 2011. Research on tectono-thermal modeling for Qiongdongnan Basin and Pearl River Mouth Basin in the northern South China Sea. Chinese Journal of Geophysics, 54(12), 3057–3069 (in Chinese with English abstract). doi: 10.1002/cjg2.1675.

    CrossRef Google Scholar

    Tang XY, Hu SB, Zhang GC, Yang SC, Shen HL, Rao S, Li WW. 2014. Characteristic of surface heat flow in the Pearl River Mouth Basin and its relationship with thermal lithosphere thickness. Chinese Journal of Geophysics, 57(6), 1857–1867 (in Chinese with English abstract). doi: 10.6038/cjg20140617.

    CrossRef Google Scholar

    Tang XY, Huang SP, Yang SC, Jiang GZ, Hu SB. 2016. Correcting on Logging-derived temperatures of the Pearl River Mouth Basin and characteristics of its present temperature field. Chinese Journal of Geophysics, 59(8), 2911–2921 (in Chinese with English abstract). doi: 10.6038/cjg20160816.

    CrossRef Google Scholar

    Tang XY, Huang SP, Yang SC, Jiang GZ, Ji M, Hu SB. 2018a. Tectono-thermal evolution of the Liwan Sag, deepwater area in the Zhujiang River Mouth Basin, northern South China Sea. Acta Oceanologica Sinica, 37(2), 66–75. doi: 10.1007/s13131-017-1125-9.

    CrossRef Google Scholar

    Tang XY, Yang SC, Hu SB. 2018b. Thermal-history reconstruction of the Baiyun Sag in the deep-water area of the Pearl River Mouth Basin, northern South China Sea. Frontiers of Earth Science, 12(3), 532–544. doi: 10.1007/s11707-017-0675-7.

    CrossRef Google Scholar

    Tang XY, Yang SC, Zhu JZ, Long ZL, Jiang GZ, Huang SP, Hu SB. 2017. Tectonic subsidence of the Zhu 1 Sub-basin in the Pearl River Mouth Basin, northern South China Sea. Frontiers of Earth Science, 11(4), 729–739. doi: 10.1007/s11707-016-0610-3.

    CrossRef Google Scholar

    Tang XY, Zuo YH, Kohn B, Li Y, Huang SP. 2019. Cenozoic thermal history reconstruction of the Dongpu Sag, Bohai Bay Basin: insights from apatite fission-track thermochronology. Terra Nova, 31(3), 159–168. doi: 10.1111/ter.12379.

    CrossRef Google Scholar

    Tian ZH, Xiao WJ, Zhang ZY, Lin X. 2016. Fisson-track constrains on superposed folding in the Beishan orogenic belt, southernmost Altaids. Geoscience Frontiers, 7(2), 181–196. doi: 10.1016/j.gsf.2015.11.007.

    CrossRef Google Scholar

    Torsvik TH, Müller R, Rob V, Steinberger B, Gaina C. 2008. Global plate motion frames: Toward a unified model. Reviews of Geophysics, 46(RG3004). doi: 10.1029/2007RG000227.

    Google Scholar

    Vermeesch P. 2009. RadialPlotter: A Java application for fission track, luminescence and other radial plots. Radiation Measurements, 44(4), 409–410. doi: 10.1016/j.radmeas.2009.05.003.

    CrossRef Google Scholar

    Wang PC, Li SZ, Suo YH, Guo LL, Santosh M, Li XY, Wang GZ, Jiang ZX, Liu B, Zhou J, Jiang SH, Cao XZ, Liu Z. 2021. Structural and kinematic analysis of Cenozoic rift basins in South China Sea: A synthesis. Earth-Science Reviews, 216(2), 103522. doi: 10.1016/j.earscirev.2021.103522.

    CrossRef Google Scholar

    Wang PC, Li SZ, Suo YH, Guo LL, Wang GZ, Hui GG, Santosh M, Somerville ID, Cao XZ, Li Y. 2020. Plate tectonic control on the formation and tectonic migration of Cenozoic basins in northern margin of the South China Sea. Geoscience Frontiers, 11(4), 1231–1251. doi: 10.1016/j.gsf.2019.10.009.

    CrossRef Google Scholar

    Wang W, Ye JR, Bidgoli T, Yang XH, Shi HS, Shu Y. 2017. Using detrital zircon geochronology to constrain Paleogene provenance and its relationship to rifting in the Zhu 1 Depression, Pearl River Mouth Basin, South China Sea. Geochemistry, Geophysics, Geosystems, 18(11), 3976–3999. doi: 10.1002/2017GC007110.

    Google Scholar

    White N, Thompson M, Barwise T. 2003. Understanding the thermal evolution of deep-water continental margins. Nature, 426(6964), 334–343. doi: 10.1038/nature02133.

    CrossRef Google Scholar

    Wu SG, Gao JW, Zhao SJ, Lüdmann T, Chen DX, Spence G. 2014. Post-rift uplift and focused fluid flow in the passive margin of northern South China Sea. Tectonophysics, 615-616(1), 27–39. doi: 10.1016/j.tecto.2013.12.013.

    CrossRef Google Scholar

    Wu XJ, Pang X, Shi HS, He M, Shen J, Zhang XT, Hu DK. 2009. Deep structure and dynamics of passive continental margin from shelf to ocean of the northern South China Sea. Journal of Earth Science, 20(1), 38–48. doi: 10.1007/s12583-009-0004-5.

    CrossRef Google Scholar

    Xiang CF, Pang X, Danišík M. 2013. Post-Triassic thermal history of the Tazhong Uplift Zone in the Tarim Basin, Northwest China: Evidence from apatite fission-track thermochronology. Geoscience Frontiers, 4(6), 743–754. doi: 10.1016/j.gsf.2012.11.010.

    CrossRef Google Scholar

    Xia SH, Fan CY, Sun JL, Cao JH, Zhao F, Wan KY. 2017. Characteristics of late Cenozoic magmatic activities on the northern margin of South China Sea and their tectonic implications. Marine Geology & Quaternary Geology, 37(6), 25–33 (in Chinese with English abstract). doi: 10.16562/j.cnki.0256-1492.2017.06.003.

    CrossRef Google Scholar

    Xie H, Zhou D, Pang X, Li YP, Wu XJ, Qiu N, Li PC, Chen GH. 2013. Cenozoic sedimentary evolution of deepwater sags in the Pearl River Mouth Basin, northern South China Sea. Marine Geophysical Research, 34(3), 159–173. doi: 10.1007/s11001-013-9183-7.

    CrossRef Google Scholar

    Xie XN, Müller RD, Li ST, Gong ZS, Steinberger B. 2006. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23(7), 745–765. doi: 10.1016/j.marpetgeo.2006.03.004.

    CrossRef Google Scholar

    Yan P, Deng H, Liu HL, Zhang ZR, Jiang YK. 2006. The temporal and spatial distribution of volcanism in the South China Sea region. Journal of Asian Earth Sciences, 27(5), 647–659. doi: 10.1016/j.jseaes.2005.06.005.

    CrossRef Google Scholar

    Yan P, Zhou D, Liu ZS. 2001. A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 338(1), 1–21. doi: 10.1016/S0040-1951(01)00062-2.

    CrossRef Google Scholar

    Yan Y, Andy C, Bin X, Lin G, Stephanie B, Hu XQ. 2009. A fission-track and (U-Th)/He thermochronometric study of the northern margin of the South China Sea: An example of a complex passive margin. Tectonophysics, 474(3–4), 584–594. doi: 10.1016/j.tecto.2009.04.030.

    Google Scholar

    Ye Q, Mei LF, Shi HS, Camanni G, Shu Y, Wu J, Yu L, Deng P, Li G. 2018. The Late Cretaceous tectonic evolution of the South China Sea area: An overview, and new perspectives from 3D seismic reflection data. Earth-Science Reviews, 187, 186–204. doi: 10.1016/j.earscirev.2018.09.013.

    CrossRef Google Scholar

    Yuan YS, Zhu WL, Mi LJ, Zhang GC, Hu SB, He LJ. 2009. “Uniform geothermal gradient” and heat flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea. Marine and Petroleum Geology, 26(7), 1152–1162. doi: 10.1016/j.marpetgeo.2008.08.008.

    CrossRef Google Scholar

    Zhang CM, Li ST, Yang JM, Yang SK, Wang H. 2004. Petroleum migration and mixing in the Pearl River Mouth Basin, South China Sea. Marine and Petroleum Geology, 21(2), 215–224. doi: 10.1016/j.marpetgeo.2003.11.010.

    CrossRef Google Scholar

    Zhang SC, Liang DG, Gong ZS, Wu KQ, Li MW, Song FQ, Song ZG, Zhang DJ, Wang PR. 2003. Geochemistry of petroleum systems in the eastern Pearl River Mouth Basin: evidence for mixed oils. Organic Geochemistry, 34(7), 971–991. doi: 10.1016/S0146-6380(03)00034-2.

    CrossRef Google Scholar

    Zhang ZY, Zhu WB, Zheng DW, Zheng BH, Yang W. 2016. Apatite fission track thermochronology in the Kuluketage and Aksu areas, NW China: Implication for tectonic evolution of the northern Tarim. Geoscience Frontiers, 7(2), 171–180. doi: 10.1016/j.gsf.2015.08.007.

    CrossRef Google Scholar

    Zhao SJ, Wu SG, Shi HS, Dong DD, Chen DX, Wang Y. 2012. Structures and dynamic mechanism related to the Dongsha movement at the northern margin of South China Sea. Progress in Geophysics, 27(3), 1008–1019 (in Chinese with English abstract). doi: 10.6038/j.issn.1004-2903.2012.03.022.

    CrossRef Google Scholar

    Zhou D, Ru K, Chen HZ. 1995. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region. Tectonophysics, 251(1–4), 161–177. doi: 10.1016/0040-1951(95)00018-6.

    Google Scholar

    Zhu JZ, Shi HS, Shu Y, Du JY, Wu JY, Luo JL. 2007. Organic maceral characteristics and hydrocarbon-generating potentials of source rocks in the Pearl River Mouth Basin. Petroleum Geology and Experiment, 29(3), 301–306 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2007.03.015.

    CrossRef Google Scholar

    Zhu WL, Li MB, Wu PK. 1999. Petroleum systems of the Zhu III subbasin, Pearl River Mouth Basin, South China Sea. AAPG Bulletin, 83(6), 990–1003. doi: 10.1306/e4fd2e47-1732-11d7-8645000102c1865d.

    CrossRef Google Scholar

    Zhu WL, Zhong K, Li YC, Xu Q, Fang DY. 2012. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deepwater basins. Chinese Science Bulletin-English edition, 57(24), 3121–3129. doi: 10.1007/s11434-011-4940-y.

    CrossRef Google Scholar

    Zhu WL, Huang BJ, Mi LJ, Wilkins RWT, Fu N, Xiao XM. 2009. Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan basins, South China Sea. AAPG Bulletin, 93(6), 741–761. doi: 10.1306/02170908099.

    CrossRef Google Scholar

    Zuo YH, Ye B, Wu WT, Zhang YX, Ma WX, Tang SL, Zhou YS. 2017. Present temperature field and Cenozoic thermal history in the Dongpu depression, Bohai Bay Basin, North China. Marine and Petroleum Geology, 88(Supplement C), 696–711. doi: 10.1016/j.marpetgeo.2017.08.037.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(664) PDF downloads(2) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint