Citation: | Xian-yin An, Yu-jie Zhang, Li Tian, Shi-lei Liu, Qi-yu Wang, Yong Du, Hu-yue Song, Jun Hu, 2023. δ13Corg perturbations preserved by the interglacial Datangpo Formation in South China with implications for stratigraphic correlation and carbon cycle, China Geology, 6, 420-428. doi: 10.31035/cg2022069 |
Palaeoclimatic and palaeoenvironmental reconstructions of the Cryogenian Period have attracted attention in relation to the debated “Snowball Earth” hypothesis and the early evolution of metazoan life. The carbon cycle and redox conditions of the Sturtian-Marinoan non-glacial interval have been subjected to much controversy in the past decades because of the lack of a high-resolution stratigraphic correlation scheme. As one of the typical Sturtian-Marinoan interglacial deposits, the Datangpo Formation was widely distributed in South China with shales continuously deposited. The previous zircon dating data of the Datangpo Formation provide important ages for global constrain of the Sturtian-Marinoan non-glacial interval. Here we present a high-resolution straitigraphic study of the organic carbon isotopes of the Datangpo Formation from a drill core section in northern Guizhou Province. Based on measured episodic δ13Corg perturbations, three positive shifts and three negative excursions are identified. A δ13Corg-based chemostratigraphic correlation scheme is proposed herein that works well for the Datangpo Formation regionally. Meanwhile, the δ13Corg vertical gradients changed dynamically throughout the formation. This discovery implies that a significant ocean circulation overturn might have occurred in the upper Datangpo Formation, coinciding with the potential oxygenation.
Ai JY, Zhong NN, Zhang TG, Zhang Y, Wang TG, George SC. 2021. Oceanic water chemistry evolution and its implications for post-glacial black shale formation: Insights from the Cryogenian Datangpo Formation, South China. Chemical Geology, 566, 120083. doi: 10.1016/j.chemgeo.2021.120083. |
Allen PA, Etienne JL. 2008. Sedimentary challenge to Snowball Earth. Nature Geoscience, 1, 817–825. doi: 10.1038/ngeo355. |
Bao XJ, Zhang SH, Jiang GQ, Wu HC, Li HY, Wang XQ, An ZZ, Yang TS. 2018. Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan) glaciation in South China. Earth and Planetary Science Letters, 483, 52–63. doi: 10.1016/j.jpgl.2017.12.001. |
Benner R, Biddanda B, Black B, McCarthy M. 1997. Abundance, size distribution, and stable carbon and nitrogen isotopic compositions of marine organic matter isolated by tangential-flow ultrafiltration. Marine Chemistry, 57, 243–263. doi: 10.1016/S0304-4203(97)00013-3. |
Chen ZQ, Fang YH, Wignall PB, Guo Z, Wu SQ, Liu ZL, Wang RQ, Huang YG, Feng XQ. 2022. Microbial blooms triggered pyrite framboid enrichment and oxygen depletion in carbonate platforms immediately after the latest Permian extinction. Geophysical Research Letters, doi: 10.1029/2021GL096998. |
Cheng M, Zhang ZH, Algeo TJ, Liu SL, Liu XD, Wang HY, Chang B, Jin CS, Pan W, Cao MC, Li C. 2021. Hydroological controls on marine chemistry in the Cryogenian Nanhua Basin (South China). Earth-Science Reviews, 218, 103678. doi: 10.1016/j.earscirev.2021.103678. |
Condon D, Zhu MY, Bowring S, Wang W, Yang AH, Jin YG. 2005. U-Pb ages from the Neoproterozic Doushantuo Formation, China. Science, 308, 95–98. doi: 10.1126/science.1107765. |
Corsetti FA, Olcott AN, Bakermans C. 2006. The biotic response to Neoproterozoic snowball Earth. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 114‒130. doi: 10.1016/j.Palaeo.2005.10.030. |
Feng LJ, Chu XL, Huang J, Zhang QR, Chang HJ. 2010. Reconstruction of paleo-redox conditions and early sulfur cycling during deposition of the Cryogenian Datangpo Formation in South China. Gondwana Research, 18, 632–637. doi: 10.1016/j.gr.2010.02.011. |
Halverson GP, Hoffman PF, Schrag DP, Maloof AC, Rice AH. 2005. Toward a Neoproterozoic composite carbon-isotope record. Geological Society of America Bulletin, 117, 1181–1207. doi: 10.1130/B25630.1. |
He L, Wang YB, Woods A, Li GS, Yang H, Liao W. 2013. An oxygenation event occurred in deep shelf settings immediately after the end-Permian mass extinction in South China. Global and Planetary Change, 101, 72–81. doi: 10.1016/j.gloplacha.2012.12.008. |
Hernes PJ, Benner R. 2002. Transport and diagenesis of dissolved and particulate terrigenous organic matter in the North Pacific Ocean. Deep Sea Research Part I:Oceanographic Research Papers, 49, 2119–2132. doi: 10.1016/S0967-0637(02)00128-0. |
Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP. 1998. A Neoproterozoic Snowball Earth. Science, 281, 1342–1346. doi: 10.1126/science.281.5381.1342. |
Hoffman PF, Schrag DP. 2002. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova, 14, 129–155. doi: 10.1046/j.1365-3121.2002.00408.x. |
Hoffman PF, Li ZX. 2009. A palaeogeographic context for Neoproterozoic glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 277 (2009), 158–172. doi: 10.1016/j.palaeo.2009.03.013. |
Hoffman PF, Abbot DS, Ashkenazy Y, Benn DI, Brocks JJ, Cohen PA, Cox GM, Creveling JR, Donnadieu Y, Erwin DH, Fairchild IJ, Ferreira D, Goodman JC, Halverson GP, Jansen MF, Le Hir G, Love GD, Macdonald FA, Maloof AC, Partin CA, Ramstein G, Rose BEJ, Rose CV, Sadler PM, Tziperman E, Voigt A, Warrem SG. 2017. Snowball Earth Climate dynamics and Cryogenian geology-geobiology. Science Advances, 3, e1600983. doi: 10.1126/sciadv.1600983. |
Hyde WT, Crowley TJ, Baum SK, Peltier WR. 2000. Neoproterozoic “snowball Earth” simulations with a coupled climate/ice-sheet model. Nature, 405, 425–429. doi: 10.1038/35013005. |
Jiang GQ, Kaufman AJ, Christie-Blick N, Zhang SH, Wu HC. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters, 261, 303–320. doi: 10.1016/j.jpgl.2007.07.009. |
Johnston DT, Macdonald FA, Gill BC, Hoffman PF, Schrag DP. 2012. Uncovering the Neoprogerozoic carbon cycle. Nature, 483, 320–323. doi: 10.1038/nature10854. |
Kaufman AJ, Knoll AH, Narbonne GM. 1997. Isotopes, ice ages, and terminal Proterozoic earth history. Proceeding of the National Academic of Sciences, 94, 6600–6605. doi: 10.1073/pnas.94.13.6600. |
Klaebe R, Kennedy M. 2019. The palaeoenvironmental context of the Trezona anomaly in South Australia: do carbon isotope values record a global or regional signal? The depositional Record, 5, 131‒146. doi:10.1002/dep2.60 |
Knoll AH, Bambach RK, Canfield DE, Grotzinger JP. 1996. Comparative Earth history and Late Permian mass extinction. Science, 273, 452–457. doi: 10.1126/science.273.5274.452. |
Li C, Love GD, Lyons TW, Scott CT, Feng LJ, Huang J, Chang HJ, Zhang QR, Chu XL. 2012. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth and Planetary Science Letter, 331/332, 246–256. doi: 10.1016/j.jpgl.2012.03.018. |
Luo GM, Algeo TJ, Huang JH, Zhou WF, Wang YB, Yang H, Richoz S, Xie SC. 2014. Vertical δ13Corg gradients record changes in planktonic microbial community composition during the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 396, 119‒131. doi: 10.1016/j.palaeo.2014.01.006. |
Macdonald FA, Schmitz MD, Crowley JL, Roots CF, Jones DS, Maloof AC, Strauss JV, Cohen PA, Johnston DT, Schrag DP. 2010. Clibrating the Cryogenian. Science, 327, 1241–1243. doi: 10.1126/science.1183325. |
McKirdy DM, Burgess JM, Lemon NM, Yu XK, Cooper AM, Gostin VA, Jenkins RJF, Both RA. 2001. A chemostratigraphic overview of the late Cryogenian interglacial sequence in the Adelaide Fold-Thrust Belt, South Australia. Precambrian Research, 106, 149–186. doi: 10.1016/S0301-9268(00)00130-3. |
Meyer KM, Yu M, Jost AB, Kelley BM, Payne JL. 2011. δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth and Planetary Science Letters, 302, 378–384. doi: 10.1016/j.jpgl.2010.12.033. |
Peng X, Zhu XK, Shi FQ, Yan B, Zhang FF, Zhao NN, Peng PA, Li J, Wang D, Shields GA. 2019. A deep marine organic carbon reservoir in the non-glacial Cryogenian ocean (Nanhua Basin, South China) revealed by organic carbon isotopes. Precambrian Research, 321, 212–220. doi: 10.1016/j.precamres.2018.12.013. |
Song HY, Tong JN, Algeo TJ, Horacek M, Qiu HO, Song HJ, Tian L, Chen ZQ. 2013. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism. Global and Planetary Change, 105, 7‒20. doi: 10.1016/j.gloplacha.2012.10.023. |
Swanson-Hysell NL, Rose CV, Calmet CC, Halverson GP, Hurtgen MT, Maloof AC. 2010. Cryogenian glaciation and the onset of carbon-isotope decoupling. Science, 328, 608–611. doi: 10.1126/science.1184508. |
Verdel C, Campbell M. 2017. Neoproterozoic carbon isotope stratigraphy of the Amadeus Basin, central Australia. Geological Society of America Bulletin, 129, 1280–1299. doi: 10.1130/B31562.1. |
Wang J, Li ZX. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinian breakup. Precambrian Research, 122, 141‒158. doi: 10.1016/S0301-9268(02)00209-7. |
Wei GY, Wei W, Wang D, Li T, Yang XP, Shields GA, Zhang FF, Li GJ, Chen TY, Yang T, Ling HF. 2020. Enhanced chemical weathering triggered an expansion of euxinic seawater in the aftermath of the Sturtian glaciation. Earth and Planetary Science Letters, 539, 116244. doi: 10.1016/j.jpgl.2020.116244. |
Xiao YF, Wu K, Tian L, Benton MJ, Du Y, Yang H, Tong JN. 2018. Framboidal pyrite evidence for persistent low oxygen levels in shallow-marine facies of the Nanpangjiang Basin during the Permian-Triassic transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 511, 243‒255. doi: 10.1016/j.palaeo.2018.08.012. |
Ye Q, Tong JN, Xiao SH, Zhu SX, An ZH, Tian L, Hu J. 2015. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth. Geology, 43, 507–510. doi: 10.1130/G36640.1. |
Ye YT, Wang HJ, Zhai LN, Wang XM, Wu CD, Zhang SC. 2018. Contrasting Mo-U enrichments of the basal Datangpo Formation in South China: implications for the Cryogenian interglacial ocean redox. Precambrian Research, 315, 66–74. doi: 10.1016/j.precamres.2018.07.013. |
Yu WC, Algeo TJ, Du YS, Maynard B, Guo H, Zhou Q, Peng TP, Wang P, Yuan LJ. 2016. Genesis of Cryogenian Datangpo manganese deposit: Hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 459, 321‒337. doi: 10.1016/j.palaeo.2016.05.023. |
Yu WC, Algeo TJ, Du YS, Zhou Q, Wang P, Xu Y, Yuan LJ, Pan W. 2017. Newly discovered Sturtian cap carbonate in the Nanhua Basin, South China. Precambrian Research, 293, 112–130. doi: 10.1016/j.precamres.2017.03.011. |
Yu WC, Polgári M, Gyollai I, Fintor K, Szabó M, Kovács I, Fekete J, Du YS, Zhou Q. 2019. Microbial metallogenesis of Cryogenian manganese ore deposits in South China. Precambrian Research, 322, 122–135. doi: 10.1016/j.precamres.2019.01.004. |
Zhang SH, Jiang GQ, Han YG. 2008. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 20(4), 289–294. doi: 10.1111/j.1365-3121.2008.00819.x. |
Zhang YJ, An XY, Liu SL, Gao YJ, Zheng J, Sang YH. 2020. The lithofaces, Mn- bearing sedimentary filling and palaeogeographic pattern of Early Datangpo Stage and implied for manganese in the northeastern Guizhou Province. Geology in China, 47(3), 607–626 (in Chinese with English abstract). |
Zhou CM. 2016. Neoproterozoic lithostratigraphy and correlation across the Yangtze Block, South China. Journal of Stratigraphy, 40(2), 120–135 (in Chinese with English abstract). |
Zhou CM, Huyskens MH, Lang XG, Xiao SH, Yin QZ. 2019. Calibrating the terminations of Cryogenian global glaciations. Geology, 47, 251–254. doi: 10.1130/G45719.1. |
Palaeogeographic location of the studied area and the regional Neoproterozoic lithological successions. (a) is modified from Ai JY (2021); (b) shows the general stratigraphic successions of the Hubei-Hunan-Chongqing-Guizhou area, modified from Hoffman PF and Li ZX (2009) while the dating data are from Condon D et al. (2005) and Zhou CM et al. (2019). DTP‒Datangpo; TSA‒Tiesi’ao; GC‒Gucheng.
Field photographs of the drilled core samples. a‒uppermost Datangpo with the basal Nantuo Formations. The breccias of mixtite are shown with arrows. b‒basal Datangpo cap carbonates, as the bottom of the drilled core section.
Carbon isotopes and TOC contents profiles of the Datangpo Formation in the studied TZK section. Note: the thickness scales are varied in three members.
Cross-plots of organic carbon isotopes and TOC contents of the studied Datangpo Formation in the TZK section.
Organic carbon isotope-based regional stratigraphic correlation of the Datangpo Formation. The raw data of TZK are from this study. Note that the open circles are averaged measurements with 10 m sampling bins. The original data of Daotuo and Minle are after Peng X et al. (2019).
Carbon isotope-based global stratigraphic correlations of the Sturtian-Marinoan interglacial interval. Following the correlation scheme proposed by Verdel C and Campbell M (2017), the three negative δ13Ccarb excursions are highlighted in gray: the N1 corresponds to the Rasthof excursion, N2 to the Taishir excursion and N3 to the Trezona excursion. The left composited Neoproterozoic δ13Ccarb curves are from Macdonald FA et al. (2010). The high precision dating data are from Macdonald FA et al. (2010) and Zhou CM et al. (2019). The right global correlations are simplified after Verdel C and Campbell M (2017) with additional data (δ13Ccarb and δ13Corg of Mongolia) from Johnston DT et al. (2012).
Composited and correlated δ13Corg of the Datangpo Formation from South China. ∆N/P = Max δ13Corg − Min δ13Corg. The data sources and correlations are following Fig. 6.