Citation: | Qian-ning Tian, Shu-qing Yao, Ming-juan Shao, Wei Zhang, Hai-hua Wang, 2022. Origin, discovery, exploration and development status and prospect of global natural hydrogen under the background of “carbon neutrality”, China Geology, 5, 722-733. doi: 10.31035/cg2022046 |
Global energy structure is experiencing the third transition from fossil energy to non-fossil energy, to solve future energy problems, cope with climate change, and achieve net-zero emissions targets by 2050. Hydrogen is considered to be the most potential clean energy in this century under the background of carbon neutrality. At present, the industrial methods for producing hydrogen are mainly by steam-hydrocarbon (such as coal and natural gas) reforming and by electrolysis of water, while the exploration and development of natural hydrogen had just started. According to this literature review: (1) Natural hydrogen can be divided into three categories, including free hydrogen, hydrogen in inclusions and dissolved hydrogen; (2) natural hydrogen could be mainly from abiotic origins such as by deep-seated hydrogen generation, water-rock reaction or water radiolysis; (3) natural hydrogen is widely distributed and presents great potential, and the potential natural hydrogen sources excluding deep source of hydrogen is about (254±91)×109 m3/a according to a latest estimate; (4) at present, natural hydrogen has been mined in Mali, and the exploration and development of natural hydrogen has also been carried out in Australia, Brazil, the United States and some European countries, to find many favorable areas and test some technical methods for natural hydrogen exploration. Natural hydrogen is expected to be an important part of hydrogen energy production in the future energy pattern. Based on a thorough literature review, this study introduced the origin, classification, and global discovery of natural hydrogen, as well as summarized the current global status and discussed the possibility of natural hydrogen exploration and development, aiming to provide reference for the future natural hydrogen exploration and development.
45-8 Energy. 2022. Our projects [EB/OL]. (2022-9-21)[2022-9-21]. https://458energy.com/index.php/en/projects. |
Andreani M, Mével C, Boullier AM, Escartin J. 2007. Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites. Geochemistry Geophysics Geosystems, 8(2), 1–24. doi: 10.1029/2006GC001373. |
Angino EE, Coveney RMJ, Goebel ED, Zeller EJ, Dreschhoff G. 1984. Hydrogen and nitrogen–origin, distribution, and abundance, a followup. Oil & Gas Journal, 82(49), 142–146. |
Bindi L, Cámara F, Griffin WL, Huang JX, Gain SEM, Toledo V, O’Reilly SY. 2019. Discovery of the first natural hydride. American Mineralogist, 104(4), 611–614. doi: 10.2138/am-2019-6949. |
Boreham CJ, Edwards DS, Czado K, Rollet N. 2021. Hydrogen in Australian natural gas: Occurrences, sources and resources. The APPEA Journal, 61(1), 163–191. doi: 10.1071/AJ20044. |
Briere D , Jerzykiewicz T, Śliwiński W. 2016. On Generating a Geological Model for Hydrogen Gas in the Southern Taoudenni Megabasin (Bourakebougou Area, Mali). Barcelona, AAPG/SEG International Conference & Exhibition. doi: 10.1190/ice2016-6312821.1. |
Chen XJ, Jia LQ, Jia T, Hao Z. 2022. An carbon neutrality industrial chain of “desert-photovoltaic power generation-ecological agriculture”: Practice from the Ulan Buh Desert, Dengkou, Inner Mongolia. China Geology, 5, 549–552. doi: 10.31035/cg2022053. |
Conrad R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological reviews, 60(4), 609–640. doi: 10.1128/mr.60.4.609-640.1996. |
Constant P, Chowdhury SP, Pratscher J, Conrad R. 2010. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environmental Microbiology, 12(3), 821–829. doi: 10.1111/j.1462-2920.2009.02130.x. |
Coveney Jr RM, Goebel ED, Zeller EJ, Dreschhoff GAM, Angino EE. 1987. Serpentinization and the origin of hydrogen gas in Kansas. AAPG Bulletin, 71(1), 39–48. |
CVA. 2022. Data acquisition, calibration and processing, plus map interpretation: A comprehensive, innovative service [EB/OL]. (2022-9-21)[2022-9-21]. https://group-cva.com/en/multi-physics-acquisition-and-geological-mapping/. |
Dai SX, Dong YJ, Feng Wang, Xing ZH, Hu P, Yang F. 2022. A sensitivity analysis of factors affecting in geologic CO2 storage in the Ordos Basin and its contribution to carbon neutrality. China Geology, 5, 359–371. doi: 10.31035/cg2022019. |
Deloule E, Albarède F, Sheppard S MF. 1991. Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks. Earth and Planet Science Letters, 105(4), 543–553. doi: 10.1016/0012-821X(91)90191-J. |
Ding K. 1989. Geochemical dynamics of water-rock interaction. Geology-Geochemistry, 17(6), 29–38. |
Donze FV, Truche L, Sheraki NP, Lefeuvre N, Bazarkina EF. 2020. Migration of natural hydrogen from deep-seated sources in the Sao Francisco Basin, Brazil. Preprints, 10(9), 1–16. |
Dubessy J, Pagel M, Beny JM, Christensen H, Hickel B, Kosztolanyi C, Poty B. 1988. Radiolysis evidenced by H2-O2 and H2-bearing fluid inclusions in three uranium deposits. Geochimica et Cosmochimica Acta, 52(5), 1155–1167. doi: 10.1016/0016-7037(88)90269-4. |
Durham University. 2021. Gold Hydrogen [EB/OL]. [2022-2-9]. https://www.durham.ac.uk/research/institutes-and-centres/durham-energy-institute/research-profile/current-projects/gold-hydrogen/. |
Frery E, Langhi L, Maison M, Moretti I. 2021. Natural hydrogen seeps identified in the North Perth Basin, Western Australia. International Journal of Hydrogen Energy, 46(61), 31158–31173. doi: 10.1016/j.ijhydene.2021.07.023. |
Fuelcellsworks. 2020. Ascent Hydrogen Fund Signs New Dealwith Spain’s Helios Aragon to Exploreand Produce ‘Gold Hydrogen’[EB/OL], (2020-12-15)[2022-2-9]. https://fuelcellsworks.com/news/ascent-hydrogen-fund-signs-new-deal-with-spains-helios-aragon-to-explore-and-produce-gold-hydrogen. |
Gaucher E. 2020. New perspectives in the industrial exploration for native hydrogen. Elements, 6(1), 8–9. doi: 10.2138/gselements.16.1.8. |
Giardini AA, Subbarayudu GV. Melton CE. 1976. The emission of occluded gas from rocks as a function of stress: Its possible use as a tool for predicting earthquakes. Geophysical Research Letters, 3(6), 355–358. doi: 10.1029/GL003i006p00355. |
Gilat AL, Mavrodiev SC, Vol A. 2012. Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes. Geoscience Frontiers, 3(6), 911–921. doi: 10.1016/j.gsf.2012.03.009. |
Goebel ED, Coveney Jr RM, Angino EE, Zeller E. 1983. Naturally occurring hydrogen gas from a borehole on the western flank of Nemaha anticline in Kansas. AAPG Bulletin, 67(8), 1324–1324. |
Gregory SP, Barnett MJ, Field LP, Milodowski AE. 2019. Subsurface microbial hydrogen cycling: Natural occurrence and implications for industry. Microorganisms, 7(2), 53. doi: 10.3390/microorganisms7020053. |
Guélard J, Beaumont V, Rouchon V, Guyot F, Pillot D, Jézéquel D, Ader M, Newell KD, Deville E. 2017. Natural H2 in Kansas: Deep or shallow origin? Geochemistry, Geophysics, Geosystems, 18(5), 1841‒1865. doi: 10.1002/2016GC006544. |
Halas P, Dupuy A, Franceschi M, BordmannV, Fleury JM, Ducler D. 2021. Hydrogen gas in circular depressions in South Gironde, France: Flux, stock, or artifact? Applied Geochemistry, 127, 104928. doi: 10.1016/j.apgeochem.2021.104928. |
Hallenbeck PC, Benemann JR. 2002. Biological hydrogen production: Fundamentals and limiting processes. International Journal of Hydrogen Energy, 27(11‒12), 1185‒1193. doi: 10.1016/S0360-3199(02)00131-3. |
Han SB, Tang ZY, Yang CL, Xie LF, Xiang CH, Horsfield B, Wang CS. 2021. Genesis and energy significance of hydrogen in natural gas. Natural Gas Geoscience, 32(9), 1270–1284. doi: 10.11764/j.issn.1672-1926.2021.04.005. |
Hao Y, Pang Z, Tian J, Wang YC, Li ZP, Li LW, Xing LT. 2020. Origin and evolution of hydrogen-rich gas discharges from a hot spring in the eastern coastal area of China. Chemical Geology, 538, 1–16. doi: 10.1016/j.chemgeo.2020.119477. |
Hoehler TM. 2005. Biogeochemistry of dihydrogen (H2). Metal ions in biological systems, 43, 9–48. |
Hosgörmez H, Etiope G, Yalçin MN. 2008. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): A large onshore seepage of abiogenic gas. Geofluids, 8(4), 263–273. doi: 10.1111/j.1468-8123.2008.00226.x. |
Hunt JM. 1996. Petroleum Geochemistry and Geology. New York, W. H. Freeman and Co, 1‒743. |
Hydrogeit. 2021. Natural hydrogen [EB/OL]. Oberkraemer: H2-international (2021-3-16) [2022-2-9]. https://www.h2-international.com/2021/03/16/natural-hydrogen/. |
Hydrogen Council. 2021. Hydrogen Decarbonization Pathways a Life-Cycle Assessment. Belgium, Hydrogen Council, 1‒22. |
IEA. 2021. Global Hydrogen Review 2021 Report extract Executive summary [EB/OL]. (2021-10-01) [2022-02-10]. https://www.iea.org/reports/global-hydrogen-review-2021/executive-summary. |
IEA. 2021. Global Hydrogen Review 2021. Paris, International Energy Agency, 1‒221. |
Jiang FL J, Li GR. 1981. Experimental studies of the mechanisms of seismo-geochemical precursors. Geophysical Research Letters, 8(5), 473–476. doi: 10.1029/GL008i005p00473. |
Kang J, Xu YR, Jiang YS, Du TR, Ma YL, Li JY. 2020. Analysis of geochemical characteristics of hydrogen in fault gases in the north section of Yilan-Yitong fault. Seismological and Geomagnetic Observation and Research, 41(4), 111–120. doi: 10.3969/j.issn.1003-3246.2020.04.016. |
Larin N, Zgonnik V, Rodina S, Deville E, Prinzhofer A, Larin VN. 2015. Natural molecular hydrogen seepage associated with surficial, rounded depressions on the European craton in Russia. Natural Resources Research, 24(3), 369–383. doi: 10.1007/s11053-014-9257-5. |
Laurent T, Thomas MM, Isabelle M. 2020. Hydrogen and abiotic hydrocarbons: Molecules that change the world. Elements, 16, 13–18. doi: 10.2138/gselements.16.1.13. |
Lefeuvre1 N, Truche L, Donzé FV, Ducoux M, Barré G, Fakoury RA, Calassou S, Gaucher EC. 2021. Native H2 exploration in the Western Pyrenean Foothills. AGU Geochemistry Geophysics Geosystems, 22(8), 1–29. doi: 10.1029/2021GC009917. |
Li JY, Zhao Y, Ren JH, Kang J, Shi W, Qin LY, Ma LC. 2019. Preliminary analysis of hydrogen in cross-fault in central west Heilongjiang Province. Seismological and Geomagnetic Observation and Research, 40(4), 108–113. doi: 10.3969/j.issn.1003-3246.2019.04.016. |
Li YH, Wei XY, Lu JC, Jiang T, Hang J. 2007. Origin of Cenozoic hydrogen in Shangdu basin, Inner Mongolia Autonomous Region. Natural Gas Industry, 27(9), 28–31. |
Lin LH, Hall J, Lippmann-Pipke J, Ward JA, Lollar BS, DeFlaun M, Rothmel R, Moser D, Gihring TM, Mislowack B, Onstott TC. 2005. Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochemistry, Geophysics, Geosystems, 6(7), 1‒13. doi: 10.1029/2004GC000907. |
Mao HK, Hu Q, Yang L, Liu J, Kim DY, Meng Y, Zhang L, Prakapenka VB, Yang W, Mao WL. 2017. When water meets iron at Earth’s core-mantle boundary. National Science Review, 4(6), 870–878. doi: 10.1093/nsr/nwx109. |
McCollom TM, Donaldson C. 2016. Generation of hydrogen and methane during experimental low-temperature reaction of ultramafic rocks with water. Astrobiology, 16(6), 389–406. doi: 10.1089/ast.2015.1382. |
McCollom TM, Seewald JS. 2013. Serpentinites, hydrogen and life. Elements, 9(2), 129–134. doi: 10.1098/rsta.2018.0421. |
McCollom TM, Bach W. 2009. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochimica et Cosmochimica Acta, 73(3), 856–875. doi: 10.1016/j.gca.2008.10.032. |
Meng QQ, Jin ZJ, Liu WH, Hu WX, Zhang LP, Zhu DY. 2014. Distribution and genesis of hydrogen gas in natural gas. Petroleum Geology & Experiment, 36(6), 712–717, 724. |
Meng QQ, Jin ZJ, Sun DS, Liu QY, Zhu YD, Liu JX, Huang XW, Wang L. 2021. Geological background and exploration prospects for the occurrence of high content hydrogen. Petroleum Geology & Experiment, 43(2), 208–216. doi: 10.11781/sysydz202102208. |
Moretti I, Prinzhofer A, Frasncolin J, Pacheco C, Rosanne M, Rupin F, Mertens J. 2021. Long-term monitoring of natural hydrogen superficial emissions in a Brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions. International Journal of Hydrogen Energy, 46(5), 3615–3628. doi: 10.1016/j.ijhydene.2020.11.026. |
Moretti I, Webber ME. 2021. Natural hydrogen: A Geological Curiosity of the Primary Energy Source for a Low-carbon Future? [EB/OL]. Renewable Matter (2021-4-26)[2022-2-9]. https://www.renewablematter.eu/articles/article/natural-hydrogen-a-geological-curiosity-or-the-primary-energy-source-for-a-low-carbon-future. |
Morita RY. 1999. Is H2 the universal energy source for long-term survival? Microbial Ecology, 38(4), 307‒320. |
Murray J, Clément A, Frita B, Schmittbuhlc J, Bordmannd V, Fleury JM. 2020. Abiotic hydrogen generation from biotite-rich granite: A case study of the Soultz-sous-Forets geothermal site. Applied Geochemistry, 119, 1–15. doi: 10.1016/j.apgeochem.2020.104631. |
Nandi R, Sengupta S. 1998. Microbial production of hydrogen: An overview. Critical Reviews in Microbiology, 24(1), 61–84. doi: 10.1080/10408419891294181. |
National Grid. The hydrogen colour spectrum [EB/OL]. [2022-2-9]. https://www.nationalgrid.com/stories/energy-explained/hydrogen-colour-spectrum. |
Nguyễn AĐ, Phan NT.2021.Prospecting For Underground Natural Hydrogen - New Energy For The Future. Petrovietnam Journal, 12, 4‒14. doi: 10.47800/PVJ.2021.12-01. (in Vietnamese with English abstract) |
Nivin VA. 2009. Diffusively disseminated hydrogen-hydrocarbon gases in rocks of nepheline syenite complexes. Geochemistry International, 47(7), 672–691. doi: 10.1134/S0016702909070039. |
Orcutt B, Daniel I, Dasgupta R, (eds). 2019. Deep Carbon: Past to Present. Cambridge, Cambridge University Press, 415‒445. doi: 10.1017/9781108677950. |
Par K. 2020. L’hydrogène naturel: Une énergie verte à portée de main [EB/OL]. (2020-8-11)[2022-2-9]. https://vivredemain.fr/2020/08/11/lhydrogene-naturel-une-energie-verte-a-portee-de-main/. |
Parnell J, Blamey N. 2017. Hydrogen from radiolysis of aqueous fluid inclusions during diagenesis. Minerals, 7(8), 1–8. doi: 10.3390/min7080130. |
Prinzhofer A, Cissé CST, Diallo AB. 2018. Discovery of a largeaccumulation of natural hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy, 43(42), 19315–19326. doi: 10.1016/j.ijhydene.2018.08.193. |
Prinzhofer A, Moretti I, Françolin J, Pacheco C, D’Agostino A, Werly J, Rupin F. 2019. Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H2-emitting structure. International Journal of Hydrogen Energy, 44(12), 5676–5685. doi: 10.1016/j.ijhydene.2019.01.119. |
Reeves EP, Fiebig J. 2020. Abiotic synthesis of methane and organic compounds in Earth’s lithosphere. Elements, 16(1), 25–31. doi: 10.2138/gselements.16.1.25. |
Rohrbach A, Ballhaus C, Golla-Schindler U, Ulmer P, Kamenetsky VS, Kuzmin DV. 2007. Metal saturation in the upper mantle. Nature, 449(7161), 456–458. doi: 10.1038/nature06183. |
Schmandt B, Jacobsen SD, Becker TW, Liu ZX, Dueker KG. 2014. Dehydration melting at the top of the lower mantle. Science, 344(6189), 1265–1268. doi: 10.1126/science.1253358. |
Shangguan ZG, Huo WG. 2001. Values of escaped H2 from hot springs at the Tengchong Rehai geothermal area and its origin. Chinese Science Bulletin, 46(15), 316–1320. doi: 10.1360/02tb9034. |
Shcherbakov AV, Kozlova ND. 1986. Occurrence of hydrogen in subsurface fluids and the relationship of anomalous concentrations to deep faults in the USSR. Geotectonics, 20(2), 120–128. |
Shuai YH, Zhang SC, Su AG, Wang HT, Cai BY, Wang H. 2010. Geochemical evidence for strong ongoing methanogenesis in Sanhu region of Qaidam Basin. Science China Earth Sciences D: Earth Sciences, 53(1), 84–90. doi: 10.1007/s11430-009-0081-4. |
Smith EM, Shirey SB, Nestola F, Bullock ES, Wang JH, Richardson HR, Wang WY. 2016. Large gem diamonds from metallic liquid in Earth’s deep mantle. Science, 354(6318), 1403–1405. doi: 10.1126/science.aal1303. |
Smith NJP. 2002. It’s time for explorationists to take hydrogen more seriously. First Break, 20(4), 246–253. |
Smith NJP, Shepherd TJ, Styles MT, Williams GM. 2005. Hydrogen exploration: A review of global hydrogen accumulations and implications for prospective areas in NW Europe//Doré AG, Vining BA. Geological Society, London, Petroleum Geology Conference series. London, Geological Society of London, 6(1), 349‒358. doi: 10.1144/0060349. |
Tian QN, Zhang W, Wang HH, Shao MJ, Yao SQ. 2022. Non-negligible new energy in the energy transition context: Natural hydrogen. Geological Survey of China, 9(1), 1–15 (in Chinese with English abstrct). doi: 10.19388/j.zgdzdc.2022.01.01. |
Tissot BP, Welte DH. 1984. Petroleum Formation and Occurrence. Berlin, Springer-Verlag, 1‒702. |
Toulhoat H, Zgonnik V. 2022. Chemical Differentiation of Planets: A Core Issue. The Astrophysical Journal, 924(2), 1–18. doi: 10.3847/1538-4357/ac300b. |
Vacquand C, Deville E, Beaumont V, Guyotb F, Sissmanna O, Pillota D, Arcillac C, Prinzhofera A. 2018. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochimica et Cosmochimica Acta, 223(15), 437–461. doi: 10.1016/j.gca.2017.12.018. |
Vacquand C. 2011. Genèse et mobilité de l’hydrogène dans les roches sédimentaires: Source d’énergie naturelle ou vecteur énergétique stockable. Paris, IFP Energies nouvellesand Institut de Physique du Globe de Paris. |
Wang FM, Zhang JF, Ye SY, Liu JH. 2022. Coastal blue carbon ecosystems in China. China Geology, 5, 193–194. doi: 10.31035/cg2022007. |
Wang W, Liu C, Zhang D, Liu WH, Chen L, Liu W. 2019. Radioactive genesis of hydrogen gas under geological conditions: An experimental study. Acta Geologica Sinica (English Edition), 93(4), 1125–1134. doi: 10.1111/1755-6724.14298. |
Wang Y, Guo CH, Zhuang SR, Chen XJ, Jia LQ, Chen ZY, Xia ZL, Wu Z. 2021. Major contribution to carbon neutrality by China’s geosciences and geological technologies. China Geology, 4, 329–352. doi: 10.31035/cg2021037. |
Wang Y, Guo CH, Chen XJ, Jia LQ, Guo XN, Chen RS, Zhang MS, Chen ZY, Wang HD. 2021b. Carbon peak and carbon neutrality in China: Goals, implementation path and prospects. China Geology, 4, 720–746. doi: 10.31035/cg2021083. |
Worman SL, Pratson LF, Karson JA, Klein EM. 2016. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere. Geophysical Research Letters, 43(12), 6435–6443. doi: 10.1002/2017GL072893. |
Xu FY, Yan X, Wang FL, Ma XY, Yun J, Wang HN, Xu BR, Zhang SY, Mao DL. 2022. Development strategy and countermeasures of China’s CBM industry under the goal of ‘carbon peak and neutrality’. Journal of Earth Science. doi: 10.1007/s12583-022-1647-89. |
Yagi T, Hishinuma T. 1995. Iron hydride formed by the reaction of iron, silicate, and water: Implications for the light element of the Earth’s core. Geophysical Research Letters, 22(14), 1933–1936. doi: 10.1029/95GL01792. |
Yu HM, Xia QK, Wang RC, Chen XM. 2005. Oxygen isotope and trace element compositions of peridotite xenoliths from Panshishan volcano, SE China. Acta Petrol Sinica, 21(6), 1609–1616. |
Zgonnik V, Beaumont V, Deville E, Larin N, Pillot D, Farrell KM. 2015. Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA). Progress in Earth and Planetary Science, 2(1), 1–5. doi: 10.1186/s40645-015-0062-5. |
Zgonnik V. 2020. The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews, 203(4), 1–51. doi: 10.1016/j.earscirev.2020.103140. |
Zhou Q, Jiang HQ, Liang HD. 2007. Analysis of the hydrogen release from coalbed gas, southern Qinshui basin. Natural Gas Geoscience, 17(6), 3871–873. |
Zou CN, Xiong B, Xue HQ, Zheng DW, Ge ZX, Wang Y, Jiang LY, Pan SX, Wu ST. 2021. The role of new energy in carbon neutral. Petroleum Exploration and Development, 48(2), 411–419. doi: 10.1016/S1876-3804(21)60039-3. |
Zou CN, Zhang FD, Zheng DW, Sun FJ, Zhang JH, Xue HQ, Pan SX, Zhao Q, Zhao YM, Yang Z. 2019. Strategic role of the synthetic hydrogen production and industry in Energy Independence of China. Natural Gas Industry, 39(1), 1–10. |
Вовк И. 1979. Radiolysis of groundwater and its geochemical role. Moscow, Nedra (in Russian). |
Вовк Н.1978. Nature of hydrogen in Potassium salt deposits. Geochemistry, 122–127 (in Russian). |
Ларин В. 1973. Planetochemical consequence of modern cosmogonies. Proceedings of the USSR Academy of Sciences, 210(5), 1193–1196 (in Russian). |
Менделеев Д. 1888. Extract from the meeting minutes of the Department of Chemistry of the Russian Physical Chemistry Society. St. Petersburg, Journal of the Russian Physical-Chemistry Society, 1–536 (in Russian). |
Нечаева О. 1968. On the problem of hydrogen dissolved in the gas in the lowland waters of Western Siberia. Proceedings of the USSR Academy of Sciences, 179(4), 961–962 (in Russian). |
Перчук ЛЛ. 2000. Fluid in lower crust and upper mantle. Moscow University Bulletin, (1), 25–35 (in Russian). |
Шестопалов В М. 2020. About geological hydrogen. Journal of Geophysics, 6(42), 3–35. doi: 10.24028/gzh.0203-3100.v42i6.2020.222278. (in Russian) |
Щербаков А. 1985. The problem of hydrogen underground fluid. Degassing of the earth and geological structure. Moscow, Science, 164–165 (in Russian). |
Global discovery of natural hydrogen (modified from Zgonnik V, 2020; Nguyễn AĐ and Phan NT, 2021; Tian QN, 2022). a‒hydrogen content detected in various settings; b‒distribution of hydrogen detected according to different regions; c‒distribution of hydrogen detected according to different settings.
Estimation of hydrogen generation and hydrogen sink consumption in nature (modified from Zgonnik V, 2020; Nguyễn AĐ and Phan NT, 2021).
Circular, elliptical depressions (“fairy circles”) where natural hydrogen leaks to the surface (after Larin N et al., 2015; Zgonnik V et al., 2015; Prinzhofer A et al., 2018, 2019; Frery E et al., 2021; Halas P et al., 2021). a‒Mali; b‒North Perth Basin, Western Australia; c‒Carolina, USA; d‒São Francisco Basin, Brazil; e‒South Gironde, France; f‒The center of Russia.