2022 Vol. 5, No. 4
Article Contents

Qian-ning Tian, Shu-qing Yao, Ming-juan Shao, Wei Zhang, Hai-hua Wang, 2022. Origin, discovery, exploration and development status and prospect of global natural hydrogen under the background of “carbon neutrality”, China Geology, 5, 722-733. doi: 10.31035/cg2022046
Citation: Qian-ning Tian, Shu-qing Yao, Ming-juan Shao, Wei Zhang, Hai-hua Wang, 2022. Origin, discovery, exploration and development status and prospect of global natural hydrogen under the background of “carbon neutrality”, China Geology, 5, 722-733. doi: 10.31035/cg2022046

Origin, discovery, exploration and development status and prospect of global natural hydrogen under the background of “carbon neutrality”

More Information
  • Global energy structure is experiencing the third transition from fossil energy to non-fossil energy, to solve future energy problems, cope with climate change, and achieve net-zero emissions targets by 2050. Hydrogen is considered to be the most potential clean energy in this century under the background of carbon neutrality. At present, the industrial methods for producing hydrogen are mainly by steam-hydrocarbon (such as coal and natural gas) reforming and by electrolysis of water, while the exploration and development of natural hydrogen had just started. According to this literature review: (1) Natural hydrogen can be divided into three categories, including free hydrogen, hydrogen in inclusions and dissolved hydrogen; (2) natural hydrogen could be mainly from abiotic origins such as by deep-seated hydrogen generation, water-rock reaction or water radiolysis; (3) natural hydrogen is widely distributed and presents great potential, and the potential natural hydrogen sources excluding deep source of hydrogen is about (254±91)×109 m3/a according to a latest estimate; (4) at present, natural hydrogen has been mined in Mali, and the exploration and development of natural hydrogen has also been carried out in Australia, Brazil, the United States and some European countries, to find many favorable areas and test some technical methods for natural hydrogen exploration. Natural hydrogen is expected to be an important part of hydrogen energy production in the future energy pattern. Based on a thorough literature review, this study introduced the origin, classification, and global discovery of natural hydrogen, as well as summarized the current global status and discussed the possibility of natural hydrogen exploration and development, aiming to provide reference for the future natural hydrogen exploration and development.

  • 加载中
  • 45-8 Energy. 2022. Our projects [EB/OL]. (2022-9-21)[2022-9-21]. https://458energy.com/index.php/en/projects.

    Google Scholar

    Andreani M, Mével C, Boullier AM, Escartin J. 2007. Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites. Geochemistry Geophysics Geosystems, 8(2), 1–24. doi: 10.1029/2006GC001373.

    CrossRef Google Scholar

    Angino EE, Coveney RMJ, Goebel ED, Zeller EJ, Dreschhoff G. 1984. Hydrogen and nitrogen–origin, distribution, and abundance, a followup. Oil & Gas Journal, 82(49), 142–146.

    Google Scholar

    Bindi L, Cámara F, Griffin WL, Huang JX, Gain SEM, Toledo V, O’Reilly SY. 2019. Discovery of the first natural hydride. American Mineralogist, 104(4), 611–614. doi: 10.2138/am-2019-6949.

    CrossRef Google Scholar

    Boreham CJ, Edwards DS, Czado K, Rollet N. 2021. Hydrogen in Australian natural gas: Occurrences, sources and resources. The APPEA Journal, 61(1), 163–191. doi: 10.1071/AJ20044.

    CrossRef Google Scholar

    Briere D , Jerzykiewicz T, Śliwiński W. 2016. On Generating a Geological Model for Hydrogen Gas in the Southern Taoudenni Megabasin (Bourakebougou Area, Mali). Barcelona, AAPG/SEG International Conference & Exhibition. doi: 10.1190/ice2016-6312821.1.

    Google Scholar

    Chen XJ, Jia LQ, Jia T, Hao Z. 2022. An carbon neutrality industrial chain of “desert-photovoltaic power generation-ecological agriculture”: Practice from the Ulan Buh Desert, Dengkou, Inner Mongolia. China Geology, 5, 549–552. doi: 10.31035/cg2022053.

    CrossRef Google Scholar

    Conrad R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological reviews, 60(4), 609–640. doi: 10.1128/mr.60.4.609-640.1996.

    CrossRef Google Scholar

    Constant P, Chowdhury SP, Pratscher J, Conrad R. 2010. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environmental Microbiology, 12(3), 821–829. doi: 10.1111/j.1462-2920.2009.02130.x.

    CrossRef Google Scholar

    Coveney Jr RM, Goebel ED, Zeller EJ, Dreschhoff GAM, Angino EE. 1987. Serpentinization and the origin of hydrogen gas in Kansas. AAPG Bulletin, 71(1), 39–48.

    Google Scholar

    CVA. 2022. Data acquisition, calibration and processing, plus map interpretation: A comprehensive, innovative service [EB/OL]. (2022-9-21)[2022-9-21]. https://group-cva.com/en/multi-physics-acquisition-and-geological-mapping/.

    Google Scholar

    Dai SX, Dong YJ, Feng Wang, Xing ZH, Hu P, Yang F. 2022. A sensitivity analysis of factors affecting in geologic CO2 storage in the Ordos Basin and its contribution to carbon neutrality. China Geology, 5, 359–371. doi: 10.31035/cg2022019.

    CrossRef Google Scholar

    Deloule E, Albarède F, Sheppard S MF. 1991. Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks. Earth and Planet Science Letters, 105(4), 543–553. doi: 10.1016/0012-821X(91)90191-J.

    CrossRef Google Scholar

    Ding K. 1989. Geochemical dynamics of water-rock interaction. Geology-Geochemistry, 17(6), 29–38.

    Google Scholar

    Donze FV, Truche L, Sheraki NP, Lefeuvre N, Bazarkina EF. 2020. Migration of natural hydrogen from deep-seated sources in the Sao Francisco Basin, Brazil. Preprints, 10(9), 1–16.

    Google Scholar

    Dubessy J, Pagel M, Beny JM, Christensen H, Hickel B, Kosztolanyi C, Poty B. 1988. Radiolysis evidenced by H2-O2 and H2-bearing fluid inclusions in three uranium deposits. Geochimica et Cosmochimica Acta, 52(5), 1155–1167. doi: 10.1016/0016-7037(88)90269-4.

    CrossRef Google Scholar

    Durham University. 2021. Gold Hydrogen [EB/OL]. [2022-2-9]. https://www.durham.ac.uk/research/institutes-and-centres/durham-energy-institute/research-profile/current-projects/gold-hydrogen/.

    Google Scholar

    Frery E, Langhi L, Maison M, Moretti I. 2021. Natural hydrogen seeps identified in the North Perth Basin, Western Australia. International Journal of Hydrogen Energy, 46(61), 31158–31173. doi: 10.1016/j.ijhydene.2021.07.023.

    CrossRef Google Scholar

    Fuelcellsworks. 2020. Ascent Hydrogen Fund Signs New Dealwith Spain’s Helios Aragon to Exploreand Produce ‘Gold Hydrogen’[EB/OL], (2020-12-15)[2022-2-9]. https://fuelcellsworks.com/news/ascent-hydrogen-fund-signs-new-deal-with-spains-helios-aragon-to-explore-and-produce-gold-hydrogen.

    Google Scholar

    Gaucher E. 2020. New perspectives in the industrial exploration for native hydrogen. Elements, 6(1), 8–9. doi: 10.2138/gselements.16.1.8.

    CrossRef Google Scholar

    Giardini AA, Subbarayudu GV. Melton CE. 1976. The emission of occluded gas from rocks as a function of stress: Its possible use as a tool for predicting earthquakes. Geophysical Research Letters, 3(6), 355–358. doi: 10.1029/GL003i006p00355.

    CrossRef Google Scholar

    Gilat AL, Mavrodiev SC, Vol A. 2012. Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes. Geoscience Frontiers, 3(6), 911–921. doi: 10.1016/j.gsf.2012.03.009.

    CrossRef Google Scholar

    Goebel ED, Coveney Jr RM, Angino EE, Zeller E. 1983. Naturally occurring hydrogen gas from a borehole on the western flank of Nemaha anticline in Kansas. AAPG Bulletin, 67(8), 1324–1324.

    Google Scholar

    Gregory SP, Barnett MJ, Field LP, Milodowski AE. 2019. Subsurface microbial hydrogen cycling: Natural occurrence and implications for industry. Microorganisms, 7(2), 53. doi: 10.3390/microorganisms7020053.

    CrossRef Google Scholar

    Guélard J, Beaumont V, Rouchon V, Guyot F, Pillot D, Jézéquel D, Ader M, Newell KD, Deville E. 2017. Natural H2 in Kansas: Deep or shallow origin? Geochemistry, Geophysics, Geosystems, 18(5), 1841‒1865. doi: 10.1002/2016GC006544.

    Google Scholar

    Halas P, Dupuy A, Franceschi M, BordmannV, Fleury JM, Ducler D. 2021. Hydrogen gas in circular depressions in South Gironde, France: Flux, stock, or artifact? Applied Geochemistry, 127, 104928. doi: 10.1016/j.apgeochem.2021.104928.

    Google Scholar

    Hallenbeck PC, Benemann JR. 2002. Biological hydrogen production: Fundamentals and limiting processes. International Journal of Hydrogen Energy, 27(11‒12), 1185‒1193. doi: 10.1016/S0360-3199(02)00131-3.

    Google Scholar

    Han SB, Tang ZY, Yang CL, Xie LF, Xiang CH, Horsfield B, Wang CS. 2021. Genesis and energy significance of hydrogen in natural gas. Natural Gas Geoscience, 32(9), 1270–1284. doi: 10.11764/j.issn.1672-1926.2021.04.005.

    CrossRef Google Scholar

    Hao Y, Pang Z, Tian J, Wang YC, Li ZP, Li LW, Xing LT. 2020. Origin and evolution of hydrogen-rich gas discharges from a hot spring in the eastern coastal area of China. Chemical Geology, 538, 1–16. doi: 10.1016/j.chemgeo.2020.119477.

    CrossRef Google Scholar

    Hoehler TM. 2005. Biogeochemistry of dihydrogen (H2). Metal ions in biological systems, 43, 9–48.

    Google Scholar

    Hosgörmez H, Etiope G, Yalçin MN. 2008. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): A large onshore seepage of abiogenic gas. Geofluids, 8(4), 263–273. doi: 10.1111/j.1468-8123.2008.00226.x.

    CrossRef Google Scholar

    Hunt JM. 1996. Petroleum Geochemistry and Geology. New York, W. H. Freeman and Co, 1‒743.

    Google Scholar

    Hydrogeit. 2021. Natural hydrogen [EB/OL]. Oberkraemer: H2-international (2021-3-16) [2022-2-9]. https://www.h2-international.com/2021/03/16/natural-hydrogen/.

    Google Scholar

    Hydrogen Council. 2021. Hydrogen Decarbonization Pathways a Life-Cycle Assessment. Belgium, Hydrogen Council, 1‒22.

    Google Scholar

    IEA. 2021. Global Hydrogen Review 2021 Report extract Executive summary [EB/OL]. (2021-10-01) [2022-02-10]. https://www.iea.org/reports/global-hydrogen-review-2021/executive-summary.

    Google Scholar

    IEA. 2021. Global Hydrogen Review 2021. Paris, International Energy Agency, 1‒221.

    Google Scholar

    Jiang FL J, Li GR. 1981. Experimental studies of the mechanisms of seismo-geochemical precursors. Geophysical Research Letters, 8(5), 473–476. doi: 10.1029/GL008i005p00473.

    CrossRef Google Scholar

    Kang J, Xu YR, Jiang YS, Du TR, Ma YL, Li JY. 2020. Analysis of geochemical characteristics of hydrogen in fault gases in the north section of Yilan-Yitong fault. Seismological and Geomagnetic Observation and Research, 41(4), 111–120. doi: 10.3969/j.issn.1003-3246.2020.04.016.

    CrossRef Google Scholar

    Larin N, Zgonnik V, Rodina S, Deville E, Prinzhofer A, Larin VN. 2015. Natural molecular hydrogen seepage associated with surficial, rounded depressions on the European craton in Russia. Natural Resources Research, 24(3), 369–383. doi: 10.1007/s11053-014-9257-5.

    CrossRef Google Scholar

    Laurent T, Thomas MM, Isabelle M. 2020. Hydrogen and abiotic hydrocarbons: Molecules that change the world. Elements, 16, 13–18. doi: 10.2138/gselements.16.1.13.

    CrossRef Google Scholar

    Lefeuvre1 N, Truche L, Donzé FV, Ducoux M, Barré G, Fakoury RA, Calassou S, Gaucher EC. 2021. Native H2 exploration in the Western Pyrenean Foothills. AGU Geochemistry Geophysics Geosystems, 22(8), 1–29. doi: 10.1029/2021GC009917.

    CrossRef Google Scholar

    Li JY, Zhao Y, Ren JH, Kang J, Shi W, Qin LY, Ma LC. 2019. Preliminary analysis of hydrogen in cross-fault in central west Heilongjiang Province. Seismological and Geomagnetic Observation and Research, 40(4), 108–113. doi: 10.3969/j.issn.1003-3246.2019.04.016.

    CrossRef Google Scholar

    Li YH, Wei XY, Lu JC, Jiang T, Hang J. 2007. Origin of Cenozoic hydrogen in Shangdu basin, Inner Mongolia Autonomous Region. Natural Gas Industry, 27(9), 28–31.

    Google Scholar

    Lin LH, Hall J, Lippmann-Pipke J, Ward JA, Lollar BS, DeFlaun M, Rothmel R, Moser D, Gihring TM, Mislowack B, Onstott TC. 2005. Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochemistry, Geophysics, Geosystems, 6(7), 1‒13. doi: 10.1029/2004GC000907.

    Google Scholar

    Mao HK, Hu Q, Yang L, Liu J, Kim DY, Meng Y, Zhang L, Prakapenka VB, Yang W, Mao WL. 2017. When water meets iron at Earth’s core-mantle boundary. National Science Review, 4(6), 870–878. doi: 10.1093/nsr/nwx109.

    CrossRef Google Scholar

    McCollom TM, Donaldson C. 2016. Generation of hydrogen and methane during experimental low-temperature reaction of ultramafic rocks with water. Astrobiology, 16(6), 389–406. doi: 10.1089/ast.2015.1382.

    CrossRef Google Scholar

    McCollom TM, Seewald JS. 2013. Serpentinites, hydrogen and life. Elements, 9(2), 129–134. doi: 10.1098/rsta.2018.0421.

    CrossRef Google Scholar

    McCollom TM, Bach W. 2009. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochimica et Cosmochimica Acta, 73(3), 856–875. doi: 10.1016/j.gca.2008.10.032.

    CrossRef Google Scholar

    Meng QQ, Jin ZJ, Liu WH, Hu WX, Zhang LP, Zhu DY. 2014. Distribution and genesis of hydrogen gas in natural gas. Petroleum Geology & Experiment, 36(6), 712–717, 724.

    Google Scholar

    Meng QQ, Jin ZJ, Sun DS, Liu QY, Zhu YD, Liu JX, Huang XW, Wang L. 2021. Geological background and exploration prospects for the occurrence of high content hydrogen. Petroleum Geology & Experiment, 43(2), 208–216. doi: 10.11781/sysydz202102208.

    CrossRef Google Scholar

    Moretti I, Prinzhofer A, Frasncolin J, Pacheco C, Rosanne M, Rupin F, Mertens J. 2021. Long-term monitoring of natural hydrogen superficial emissions in a Brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions. International Journal of Hydrogen Energy, 46(5), 3615–3628. doi: 10.1016/j.ijhydene.2020.11.026.

    CrossRef Google Scholar

    Moretti I, Webber ME. 2021. Natural hydrogen: A Geological Curiosity of the Primary Energy Source for a Low-carbon Future? [EB/OL]. Renewable Matter (2021-4-26)[2022-2-9]. https://www.renewablematter.eu/articles/article/natural-hydrogen-a-geological-curiosity-or-the-primary-energy-source-for-a-low-carbon-future.

    Google Scholar

    Morita RY. 1999. Is H2 the universal energy source for long-term survival? Microbial Ecology, 38(4), 307‒320.

    Google Scholar

    Murray J, Clément A, Frita B, Schmittbuhlc J, Bordmannd V, Fleury JM. 2020. Abiotic hydrogen generation from biotite-rich granite: A case study of the Soultz-sous-Forets geothermal site. Applied Geochemistry, 119, 1–15. doi: 10.1016/j.apgeochem.2020.104631.

    CrossRef Google Scholar

    Nandi R, Sengupta S. 1998. Microbial production of hydrogen: An overview. Critical Reviews in Microbiology, 24(1), 61–84. doi: 10.1080/10408419891294181.

    CrossRef Google Scholar

    National Grid. The hydrogen colour spectrum [EB/OL]. [2022-2-9]. https://www.nationalgrid.com/stories/energy-explained/hydrogen-colour-spectrum.

    Google Scholar

    Nguyễn AĐ, Phan NT.2021.Prospecting For Underground Natural Hydrogen - New Energy For The Future. Petrovietnam Journal, 12, 4‒14. doi: 10.47800/PVJ.2021.12-01. (in Vietnamese with English abstract)

    Google Scholar

    Nivin VA. 2009. Diffusively disseminated hydrogen-hydrocarbon gases in rocks of nepheline syenite complexes. Geochemistry International, 47(7), 672–691. doi: 10.1134/S0016702909070039.

    CrossRef Google Scholar

    Orcutt B, Daniel I, Dasgupta R, (eds). 2019. Deep Carbon: Past to Present. Cambridge, Cambridge University Press, 415‒445. doi: 10.1017/9781108677950.

    Google Scholar

    Par K. 2020. L’hydrogène naturel: Une énergie verte à portée de main [EB/OL]. (2020-8-11)[2022-2-9]. https://vivredemain.fr/2020/08/11/lhydrogene-naturel-une-energie-verte-a-portee-de-main/.

    Google Scholar

    Parnell J, Blamey N. 2017. Hydrogen from radiolysis of aqueous fluid inclusions during diagenesis. Minerals, 7(8), 1–8. doi: 10.3390/min7080130.

    CrossRef Google Scholar

    Prinzhofer A, Cissé CST, Diallo AB. 2018. Discovery of a largeaccumulation of natural hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy, 43(42), 19315–19326. doi: 10.1016/j.ijhydene.2018.08.193.

    CrossRef Google Scholar

    Prinzhofer A, Moretti I, Françolin J, Pacheco C, D’Agostino A, Werly J, Rupin F. 2019. Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H2-emitting structure. International Journal of Hydrogen Energy, 44(12), 5676–5685. doi: 10.1016/j.ijhydene.2019.01.119.

    CrossRef Google Scholar

    Reeves EP, Fiebig J. 2020. Abiotic synthesis of methane and organic compounds in Earth’s lithosphere. Elements, 16(1), 25–31. doi: 10.2138/gselements.16.1.25.

    CrossRef Google Scholar

    Rohrbach A, Ballhaus C, Golla-Schindler U, Ulmer P, Kamenetsky VS, Kuzmin DV. 2007. Metal saturation in the upper mantle. Nature, 449(7161), 456–458. doi: 10.1038/nature06183.

    CrossRef Google Scholar

    Schmandt B, Jacobsen SD, Becker TW, Liu ZX, Dueker KG. 2014. Dehydration melting at the top of the lower mantle. Science, 344(6189), 1265–1268. doi: 10.1126/science.1253358.

    CrossRef Google Scholar

    Shangguan ZG, Huo WG. 2001. Values of escaped H2 from hot springs at the Tengchong Rehai geothermal area and its origin. Chinese Science Bulletin, 46(15), 316–1320. doi: 10.1360/02tb9034.

    CrossRef Google Scholar

    Shcherbakov AV, Kozlova ND. 1986. Occurrence of hydrogen in subsurface fluids and the relationship of anomalous concentrations to deep faults in the USSR. Geotectonics, 20(2), 120–128.

    Google Scholar

    Shuai YH, Zhang SC, Su AG, Wang HT, Cai BY, Wang H. 2010. Geochemical evidence for strong ongoing methanogenesis in Sanhu region of Qaidam Basin. Science China Earth Sciences D: Earth Sciences, 53(1), 84–90. doi: 10.1007/s11430-009-0081-4.

    CrossRef Google Scholar

    Smith EM, Shirey SB, Nestola F, Bullock ES, Wang JH, Richardson HR, Wang WY. 2016. Large gem diamonds from metallic liquid in Earth’s deep mantle. Science, 354(6318), 1403–1405. doi: 10.1126/science.aal1303.

    CrossRef Google Scholar

    Smith NJP. 2002. It’s time for explorationists to take hydrogen more seriously. First Break, 20(4), 246–253.

    Google Scholar

    Smith NJP, Shepherd TJ, Styles MT, Williams GM. 2005. Hydrogen exploration: A review of global hydrogen accumulations and implications for prospective areas in NW Europe//Doré AG, Vining BA. Geological Society, London, Petroleum Geology Conference series. London, Geological Society of London, 6(1), 349‒358. doi: 10.1144/0060349.

    Google Scholar

    Tian QN, Zhang W, Wang HH, Shao MJ, Yao SQ. 2022. Non-negligible new energy in the energy transition context: Natural hydrogen. Geological Survey of China, 9(1), 1–15 (in Chinese with English abstrct). doi: 10.19388/j.zgdzdc.2022.01.01.

    CrossRef Google Scholar

    Tissot BP, Welte DH. 1984. Petroleum Formation and Occurrence. Berlin, Springer-Verlag, 1‒702.

    Google Scholar

    Toulhoat H, Zgonnik V. 2022. Chemical Differentiation of Planets: A Core Issue. The Astrophysical Journal, 924(2), 1–18. doi: 10.3847/1538-4357/ac300b.

    CrossRef Google Scholar

    Vacquand C, Deville E, Beaumont V, Guyotb F, Sissmanna O, Pillota D, Arcillac C, Prinzhofera A. 2018. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochimica et Cosmochimica Acta, 223(15), 437–461. doi: 10.1016/j.gca.2017.12.018.

    CrossRef Google Scholar

    Vacquand C. 2011. Genèse et mobilité de l’hydrogène dans les roches sédimentaires: Source d’énergie naturelle ou vecteur énergétique stockable. Paris, IFP Energies nouvellesand Institut de Physique du Globe de Paris.

    Google Scholar

    Wang FM, Zhang JF, Ye SY, Liu JH. 2022. Coastal blue carbon ecosystems in China. China Geology, 5, 193–194. doi: 10.31035/cg2022007.

    CrossRef Google Scholar

    Wang W, Liu C, Zhang D, Liu WH, Chen L, Liu W. 2019. Radioactive genesis of hydrogen gas under geological conditions: An experimental study. Acta Geologica Sinica (English Edition), 93(4), 1125–1134. doi: 10.1111/1755-6724.14298.

    CrossRef Google Scholar

    Wang Y, Guo CH, Zhuang SR, Chen XJ, Jia LQ, Chen ZY, Xia ZL, Wu Z. 2021. Major contribution to carbon neutrality by China’s geosciences and geological technologies. China Geology, 4, 329–352. doi: 10.31035/cg2021037.

    CrossRef Google Scholar

    Wang Y, Guo CH, Chen XJ, Jia LQ, Guo XN, Chen RS, Zhang MS, Chen ZY, Wang HD. 2021b. Carbon peak and carbon neutrality in China: Goals, implementation path and prospects. China Geology, 4, 720–746. doi: 10.31035/cg2021083.

    CrossRef Google Scholar

    Worman SL, Pratson LF, Karson JA, Klein EM. 2016. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere. Geophysical Research Letters, 43(12), 6435–6443. doi: 10.1002/2017GL072893.

    CrossRef Google Scholar

    Xu FY, Yan X, Wang FL, Ma XY, Yun J, Wang HN, Xu BR, Zhang SY, Mao DL. 2022. Development strategy and countermeasures of China’s CBM industry under the goal of ‘carbon peak and neutrality’. Journal of Earth Science. doi: 10.1007/s12583-022-1647-89.

    Google Scholar

    Yagi T, Hishinuma T. 1995. Iron hydride formed by the reaction of iron, silicate, and water: Implications for the light element of the Earth’s core. Geophysical Research Letters, 22(14), 1933–1936. doi: 10.1029/95GL01792.

    CrossRef Google Scholar

    Yu HM, Xia QK, Wang RC, Chen XM. 2005. Oxygen isotope and trace element compositions of peridotite xenoliths from Panshishan volcano, SE China. Acta Petrol Sinica, 21(6), 1609–1616.

    Google Scholar

    Zgonnik V, Beaumont V, Deville E, Larin N, Pillot D, Farrell KM. 2015. Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA). Progress in Earth and Planetary Science, 2(1), 1–5. doi: 10.1186/s40645-015-0062-5.

    CrossRef Google Scholar

    Zgonnik V. 2020. The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews, 203(4), 1–51. doi: 10.1016/j.earscirev.2020.103140.

    CrossRef Google Scholar

    Zhou Q, Jiang HQ, Liang HD. 2007. Analysis of the hydrogen release from coalbed gas, southern Qinshui basin. Natural Gas Geoscience, 17(6), 3871–873.

    Google Scholar

    Zou CN, Xiong B, Xue HQ, Zheng DW, Ge ZX, Wang Y, Jiang LY, Pan SX, Wu ST. 2021. The role of new energy in carbon neutral. Petroleum Exploration and Development, 48(2), 411–419. doi: 10.1016/S1876-3804(21)60039-3.

    CrossRef Google Scholar

    Zou CN, Zhang FD, Zheng DW, Sun FJ, Zhang JH, Xue HQ, Pan SX, Zhao Q, Zhao YM, Yang Z. 2019. Strategic role of the synthetic hydrogen production and industry in Energy Independence of China. Natural Gas Industry, 39(1), 1–10.

    Google Scholar

    Вовк И. 1979. Radiolysis of groundwater and its geochemical role. Moscow, Nedra (in Russian).

    Google Scholar

    Вовк Н.1978. Nature of hydrogen in Potassium salt deposits. Geochemistry, 122–127 (in Russian).

    Google Scholar

    Ларин В. 1973. Planetochemical consequence of modern cosmogonies. Proceedings of the USSR Academy of Sciences, 210(5), 1193–1196 (in Russian).

    Google Scholar

    Менделеев Д. 1888. Extract from the meeting minutes of the Department of Chemistry of the Russian Physical Chemistry Society. St. Petersburg, Journal of the Russian Physical-Chemistry Society, 1–536 (in Russian).

    Google Scholar

    Нечаева О. 1968. On the problem of hydrogen dissolved in the gas in the lowland waters of Western Siberia. Proceedings of the USSR Academy of Sciences, 179(4), 961–962 (in Russian).

    Google Scholar

    Перчук ЛЛ. 2000. Fluid in lower crust and upper mantle. Moscow University Bulletin, (1), 25–35 (in Russian).

    Google Scholar

    Шестопалов В М. 2020. About geological hydrogen. Journal of Geophysics, 6(42), 3–35. doi: 10.24028/gzh.0203-3100.v42i6.2020.222278. (in Russian)

    Google Scholar

    Щербаков А. 1985. The problem of hydrogen underground fluid. Degassing of the earth and geological structure. Moscow, Science, 164–165 (in Russian).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(4032) PDF downloads(48) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint