2021 Vol. 4, No. 3
Article Contents

Huan Huang, Chang-fu Chen, Xiao-jie Mo, Ding-ding Wu, Yan-ming Liu, Ming-zhu Liu, Hong-han Chen, 2021. Mechanisms of salt rejection at the ice-liquid interface during the freezing of pore fluids in the seasonal frozen soil area, China Geology, 4, 446-454. doi: 10.31035/cg2021059
Citation: Huan Huang, Chang-fu Chen, Xiao-jie Mo, Ding-ding Wu, Yan-ming Liu, Ming-zhu Liu, Hong-han Chen, 2021. Mechanisms of salt rejection at the ice-liquid interface during the freezing of pore fluids in the seasonal frozen soil area, China Geology, 4, 446-454. doi: 10.31035/cg2021059

Mechanisms of salt rejection at the ice-liquid interface during the freezing of pore fluids in the seasonal frozen soil area

More Information
  • Seasonal frozen soil accounts for about 53.50% of the land area in China. Frozen soil is a complex multiphase system where ice, water, soil, and air coexist. The distribution and migration of salts in frozen soil during soil freezing are notably different from those in unfrozen soil areas. However, little knowledge is available about the process and mechanisms of salt migration in frozen soil. This study explores the mechanisms of salt migration at the ice-liquid interface during the freezing of pore fluids through batch experiments. The results are as follows. The solute concentrations of liquid and solid phases at the ice-liquid interface ( < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $ {C}_{L}^{*} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M5.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M3.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M1.png'/ > , < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $ {C}_{S}^{*} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M4.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M2.png'/ > ) gradually increased at the initial stage of freezing and remained approximately constant at the middle stage. As the ice-liquid interface advanced toward the system boundary, the diffusion of the liquid phase was blocked but the ice phase continued rejecting salts. As a result, < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $ {C}_{L}^{*} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M5.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M3.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M1.png'/ > and < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $ {C}_{S}^{*} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M4.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M2.png'/ > rapidly increased at the final stage of freezing. The distribution characteristics of solutes in ice and the liquid phases before < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $ {C}_{L}^{*} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M5.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M3.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M1.png'/ > and < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $ {C}_{S}^{*} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M6.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M4.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='cg2021059_M2.png'/ > became steady were mainly affected by the freezing temperature, initial concentrations, and particle-size distribution of media (quartz sand and kaolin). In detail, the lower the freezing temperature and the better the particle-size distribution of media, the higher the solute proportion in the ice phase at the initial stage of freezing. Meanwhile, the increase in concentration first promoted but then inhibited the increase of solutes in the ice phase. These results have insights and scientific significance for the tackling of climate change, the environmental protection of groundwater and soil, and infrastructure protection such as roads, among other things.

  • 加载中
  • Akyurt M, Zaki G, Habeebullah B. 2002. Freezing phenomena in ice-water systems. Energy Conversion and Management, 43(14), 1773–1789. doi: 10.1016/S0196-8904(01)00129-7.

    CrossRef Google Scholar

    Baker GC, Osterkamp TE. 1989. Salt redistribution during freezing of saline sand columns at constant rates. Water Resources Research, 25(8), 1825–1831. doi: 10.1029/WR025i008p01825.

    CrossRef Google Scholar

    Bittelli M, Flury M, Campbell GS. 2003. A thermodielectric analyzer to measure the freezing and moisture characteristic of porous media. Water Resources Research, 39(2), SBH11–1. doi: 10.1029/2001WR000930.

    CrossRef Google Scholar

    Deng Y, Jia ZD, Wei XX, Su HF, Guan ZC, Zhou J. 2012. Salt migration phenomena during phase transition in cooling water and its impact on leakage current. Proceedings of the Chinese Society for Electrical Engineering, 32(28), 184–191 (in Chinese with English abstract).

    Google Scholar

    Huang H, Liu MZ, Chen CF, Huang GX, Chen HH. 2019. Laboratory studies on nitrate redistribution during the freezing process of a water-saturated sand system. Environmental Science and Pollution Research, 26(14), 13818–13824. doi: 10.1007/s11356-018-3251-0.

    CrossRef Google Scholar

    Jie WQ. 2010. Principle and Technology of Crystal Growth. China. Beijing: Science Press. 199, 457 (in Chinese).

    Google Scholar

    Konrad JM, Mccammon AW. 1990. Solute partitioning in freezing soils. Canadian Geotechnical Journal, 27(6), 726–736. doi: 10.1016/0148-9062(91)90104-T.

    CrossRef Google Scholar

    Liu L, Xue Y, Zhang J. 1999. Brief introduction of application and research in freeze concentration technology. Chemical Indusrty and Engineering, (3), 151–156 (in Chinese with English abstract).

    Google Scholar

    Liu QS, Qiu TS. 2004. Study progress on remediation of contaminated soil and groundwater. Energy Environmental Protection, 18(005), 25–28 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-8759.2004.05.007.

    CrossRef Google Scholar

    Lorain O, Thiebaud P, Badorc E, Aurelle Y. 2001. Potential of freezing in wastewater treatment: Soluble pollutant applications. Water Research, 35(2), 541–547. doi: 10.1016/S0043-1354(00)00287-6.

    CrossRef Google Scholar

    Lü HZ, Li CY, Shi YH, Zhao SN, Yang F, Wu Y, Song S. 2015. Pollutant distribution under different conditions in lake Uliangsuhai ice-water system. Journal of Lake Science, 27(6), 1151–1158 (in Chinese with English abstract). doi: 10.18307/2015.0621.

    CrossRef Google Scholar

    Ma YP, Xu YH. 2008. Theory and Technology of Metal Solidification. China. Beijing, Metallurgical Industry Press. 61‒66 (in Chinese).

    Google Scholar

    Mtombeni T, Maree JP, Zvinowanda CM, Asante JKO, Oosthuizen FS, Louw WJ. 2013. Evaluation of the performance of a new freeze desalination technology. International Journal of Environmental Science and Technology, 10(3), 545–550. doi: 10.1007/s13762-013-0182-7.

    CrossRef Google Scholar

    Ostroumov VE, Hoover R, Ostroumova NV, Vliet-Lanoë BV, Sorokovikov V. 2001. Redistribution of soluble components during ice segregation in freezing ground. Cold Regions Science & Technology, 32(2), 175–182. doi: 10.1016/S0165-232X(01)00031-3.

    CrossRef Google Scholar

    O’Neill K, Miller RD. 1985. Exploration of a rigid ice model of frost heave. Water Resources Research, 21(3), 281–296. doi: 10.1029/WR021i003p00281.

    CrossRef Google Scholar

    Panday S, Corapcioglu MY. 1991. Solute rejection in freezing soils. Water Resources Research, 27(1), 99–108. doi: 10.1029/90WR01785.

    CrossRef Google Scholar

    Suh HS, Yun TS. 2018. Modification of capillary pressure by considering pore throat geometry with the effects of particle shape and packing features on water retention curves for uniformly graded sands. Computers and Geotechnics, 95, 129–136. doi: 10.1016/j.compgeo.2017.10.007.

    CrossRef Google Scholar

    Terwilliger JP, Dizon SF. 1970. Salt rejection phenomena in the freezing of saline solutions. Chemical Engineering Science, 25(8), 1331–1349. doi: 10.1016/0009-2509(70)80010-0.

    CrossRef Google Scholar

    Williams PM, Ahmad M, Connolly BS. 2013. Freeze desalination: An assessment of an ice maker machine for desalting brines. Desalination, 308(6), 219–224. doi: 10.1016/j.desal.2012.07.037.

    CrossRef Google Scholar

    Xu XZ, Wang JC, Zhang LX. 2010. Frozen Soil Physics. China. Beijing, Science Press, 390( in Chinese).

    Google Scholar

    Xue S, Chen J, Tie M, Hui XJ, Zhang LN, Zhang Y. 2014. Ratio of haloacetic acids precursor in water-ice system during the freezing processes of water. China Environmental Science, 33(11), 2773–2780 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2014.11.009.

    CrossRef Google Scholar

    Yang P, Diao PC, Zhang T, Yang GP. 2021, A study of the influences of freezing temperature and thawing conditions on physical properties of marine soft soil before and after freezing-thawing. Hydrogeology and Engineering Geology, 48(1), 96–104. doi: 10.16030/j.cnki.issn.1000-3665.202003010

    Google Scholar

    Yang H, Yao YX, Li HS. 2016. Experimental study on the effect of freezing seawater concentration factors. Technology of water treatment, (9), 68–72. doi: 10.16796/j.cnki.1000-3770.2016.09.014.

    CrossRef Google Scholar

    Yu T, Ma J. 2005. Study on influence factors of ice crystal purity during freeze concentration process. Journal of Harbin University of Commerce: Natural Science Edition, 21(5), 572–578. doi: 10.3969/j.issn.1672-0946.2005.05.009.

    CrossRef Google Scholar

    Zuo C. 2018. Effects of Different Freezing Conditions on the Redistribution of Benzene in Ice Water Two Phase. China. Beijing, China University of Geosciences (Beijing), Ph. D thesis. 1‒6, 42–44 (in Chinese with English abstract).

    Google Scholar

    Zhang LN. 2013. Changes of spectral characteristics of dissolved organic matter during water freezing. China. Shenyang, Liaoning University, Ph. D thesis. 46‒47 (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(7)

Article Metrics

Article views(1199) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint