2021 Vol. 4, No. 3
Article Contents

Kun Liu, Xin Luo, Jiu Jimmy Jiao, Ji-dong Gu, Ramon Aravena, 2021. Gene abundances of AOA, AOB, and anammox controlled by groundwater chemistry of the Pearl River Delta, China, China Geology, 4, 463-475. doi: 10.31035/cg2021054
Citation: Kun Liu, Xin Luo, Jiu Jimmy Jiao, Ji-dong Gu, Ramon Aravena, 2021. Gene abundances of AOA, AOB, and anammox controlled by groundwater chemistry of the Pearl River Delta, China, China Geology, 4, 463-475. doi: 10.31035/cg2021054

Gene abundances of AOA, AOB, and anammox controlled by groundwater chemistry of the Pearl River Delta, China

More Information
  • Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and anaerobic ammonia-oxidation (anammox) bacteria are very important contributors to nitrogen cycling in natural environments. Functional gene abundances of these microbes were believed to be well relevant to N-cycling in groundwater systems, especially in the Pearl River Delta (PRD) groundwater with unique high intrinsic ammonia concentrations. In this research, 20 sediment samples from two in the PRD were collected for porewater chemistry analysis and quantification of N-cycling related genes, including archaeal and bacterial amoA gene and anammox 16S ribosomal Ribonucleic Acid (rRNA) gene. Quantitative Polymerase Chain Reaction (qPCR) results showed that gene abundances of AOA, AOB, and anammox bacteria ranged from 3.13×105 to 3.21×107, 1.83×104 to 2.74×106, and 9.27×104 to 8.96×106 copies/g in the sediment of the groundwater system, respectively. Anammox bacteria and AOA dominated in aquitards and aquifers, respectively, meanwhile, the aquitard-aquifer interfaces were demonstrated as ammonium-oxidizing hotspots in the aspect of gene numbers. Gene abundances of nitrifiers were analyzed with geochemistry profiles. Correlations between gene numbers and environmental variables indicated that the gene abundances were impacted by hydrogeological conditions, and microbial-derived ammonium loss was dominated by AOA in the northwest PRD and by anammox bacteria in the southeast PRD.

  • 加载中
  • Alley WM, Healy RW, LaBaugh JW, Reilly TE. 2002. Flow and storage in groundwater systems. Science, 296(5575), 1985–1990. doi: 10.1126/science.1067123.

    CrossRef Google Scholar

    Amberger A, Schmidt H. 1987. The natural isotope content of nitrate as an indicator of its origin. Geochimica et Cosmochimica Acta, 51(10), 2699–2705. doi: 10.1016/0016-7037(87)90150-5.

    CrossRef Google Scholar

    Böttcher J, Strebel O, Voerkelius S, Schmidt HL. 1990. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. Journal of Hydrology, 114(3), 413–424. doi: 10.1016/0022-1694(90)90068-9.

    CrossRef Google Scholar

    Bøtter-Jensen L, Duller G. 1992. A new system for measuring optically stimulated luminescence from quartz samples. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 20(4), 549–553. doi: 10.1016/1359-0189(92)90003-E.

    CrossRef Google Scholar

    Beman JM, Popp BN, Francis CA. 2008. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. The ISME journal, 2(4), 429–441. doi: 10.1038/ismej.2007.118.

    CrossRef Google Scholar

    Blum MD, Roberts HH. 2009. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience, 2(7), 488–491. doi: 10.1038/ngeo553.

    CrossRef Google Scholar

    Blum MD, Törnqvist TE. 2000. Fluvial responses to climate and sea-level change: A review and look forward. Sedimentology, 47(s1), 2–48. doi: 10.1046/j.1365-3091.2000.00008.x.

    CrossRef Google Scholar

    Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. 2008. Mesophilic Crenarchaeota: Proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology, 6(3), 245–252. doi: 10.1038/nrmicro1852.

    CrossRef Google Scholar

    Caffrey JM, Bano N, Kalanetra K, Hollibaugh JT. 2007. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. The ISME journal, 1(7), 660–662. doi: 10.1038/ismej.2007.79.

    CrossRef Google Scholar

    Cao H, Auguet JC, Gu JD. 2013. Global ecological pattern of ammonia-oxidizing archaea. PloS one, 8(2), e52853. doi: 10.1371/journal.pone.0076946.

    CrossRef Google Scholar

    Clark I, Timlin R, Bourbonnais A, Jones K, Lafleur D, Wickens K. 2008. Origin and fate of industrial ammonium in anoxic ground water - (15)N evidence for anaerobic oxidation (anammox). Ground Water Monitoring and Remediation, 28(3), 73–82. doi: 10.1111/j.1745-6592.2008.00206.x.

    CrossRef Google Scholar

    Dale OR, Tobias CR, Song BK. 2009. Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environmental microbiology, 11(5), 1194–1207. doi: 10.1111/j.1462-2920.2008.01850.x.

    CrossRef Google Scholar

    Dalsgaard T, Thamdrup B. 2002. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Applied and environmental microbiology, 68(8), 3802–3808. doi: 10.1128/AEM.68.8.3802-3808.2002.

    CrossRef Google Scholar

    Dalsgaard T, Thamdrup B, Canfield DE. 2005. Anaerobic ammonium oxidation (anammox) in the marine environment. Research in Microbiology, 156(4), 457–464. doi: 10.1016/j.resmic.2005.01.011.

    CrossRef Google Scholar

    Di HJ, Cameron KC, Shen JP, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ. 2009. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2(9), 621–624. doi: 10.1038/NGEO613.

    CrossRef Google Scholar

    Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W. 2009. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS microbiology reviews, 33(5), 855–869. doi: 10.1111/j.1574-6976.2009.00179.x.

    CrossRef Google Scholar

    Füssel J, Lam P, Lavik G, Jensen MM, Holtappels M, Gunter M, Kuypers MMM. 2011. Nitrite oxidation in the Namibian oxygen minimum zone. The ISME journal, 6(6), 1200–1209. doi: 10.1038/ismej.2011.178.

    CrossRef Google Scholar

    Francis CA, Beman JM, Kuypers MM. 2007. New processes and players in the nitrogen cycle: The microbial ecology of anaerobic and archaeal ammonia oxidation. The ISME journal, 1(1), 19–27. doi: 10.1038/ismej.2007.8.

    CrossRef Google Scholar

    Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14683–14688. doi: 10.1073/pnas.0506625102.

    CrossRef Google Scholar

    GHT, 1981. Regional Hydrogeological Survey Report: Guangzhou, Guangdong Hydrogeology Team (in Chinese).

    Google Scholar

    Han P, Huang YT, Lin JG, Gu JD. 2013a. A comparison of two 16S rRNA gene-based PCR primer sets in unraveling anammox bacteria from different environmental samples. Applied microbiology and biotechnology, 97(24), 10521–10529. doi: 10.1007/s00253-013-5305-z.

    CrossRef Google Scholar

    Han P, Li M, Gu JD. 2013b. Biases in community structures of ammonia/ammonium-oxidizing microorganisms caused by insufficient DNA extractions from Baijiang soil revealed by comparative analysis of coastal wetland sediment and rice paddy soil. Applied microbiology and biotechnology, 97(19), 8741–8756. doi: 10.1007/s00253-013-5169-2.

    CrossRef Google Scholar

    Hefting MM, Bobbink R, Janssens MP. 2006. Spatial variation in denitrification and N2O emission in relation to nitrate removal efficiency in a N-stressed riparian buffer zone. Ecosystems, 9(4), 550–563. doi: 10.1007/s10021-006-0160-8.

    CrossRef Google Scholar

    Humbert S, Zopfi J, Tarnawski SE. 2012. Abundance of anammox bacteria in different wetland soils. Environmental Microbiology Reports, 4(5), 484–490. doi: 10.1111/j.1758-2229.2012.00347.x.

    CrossRef Google Scholar

    Jaeschke A, Abbas B, Zabel M, Hopmans EC, Schouten S, Damste JSS. 2010. Molecular evidence for anaerobic ammonium-oxidizing (anammox) bacteria in continental shelf and slope sediments off northwest Africa. Limnology and Oceanography, 55(1), 365–376. doi: 10.4319/lo.2010.55.1.0365.

    CrossRef Google Scholar

    Jia Z, Conrad R. 2009. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental microbiology, 11(7), 1658–1671. doi: 10.1111/j.1462-2920.2009.01891.x.

    CrossRef Google Scholar

    Jiao JJ, Wang Y, Cherry JA, Wang XS, Zhi BF, Du HY, Wen DG. 2010. Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China. Environmental Science & Technology, 44(19), 7470–7475. doi: 10.1021/es1021697.

    CrossRef Google Scholar

    Jin T, Zhang T, Ye L, Lee OO, Wong YH, Qian PY. 2011. Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary, China. Applied Microbiology and Biotechnology, 90(3), 1137–1145. doi: 10.1007/s00253-011-3107-8.

    CrossRef Google Scholar

    Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058), 543–546. doi: 10.1038/nature03911.

    CrossRef Google Scholar

    Karner MB, DeLong EF, Karl DM. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409(6819), 507–510. doi: 10.1038/35054051.

    CrossRef Google Scholar

    Kartal B, Maalcke WJ, de Almeida, NM, Cirpus I, Gloerich J, Geerts W, den Camp HJMO, Harhangi HR, Janssen-Megens EM, Francoijs KJ. 2011. Molecular mechanism of anaerobic ammonium oxidation. Nature, 479(7371), 127–159. doi: 10.1038/nature10453.

    CrossRef Google Scholar

    Koops HP, Purkhold U, Pommerening-Röser A, Timmermann G, Wagner M. 2006. The Lithoautotrophic Ammonia-Oxidizing Bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds.), The Prokaryotes. New York, Springer, 811. doi: doi.org/10.1007/0-387-30745-1_36.

    CrossRef Google Scholar

    Kowalchuk GA, Stephen JR. 2001. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annual Reviews in Microbiology, 55(1), 485–529. doi: 10.1146/annurev.micro.55.1.485.

    CrossRef Google Scholar

    Kuenen JG. 2008. Anammox bacteria: From discovery to application. Nature Reviews Microbiology, 6(4), 320–326. doi: 10.1038/nrmicro1857.

    CrossRef Google Scholar

    Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Damste JSS, Strous M, Jetten MSM. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422(6932), 608–611. doi: 10.1038/nature01472.

    CrossRef Google Scholar

    Lam P, Jensen MM, Lavik G, McGinnis DF, Muller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM. 2007. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proceedings of the National Academy of Sciences, 104(17), 7104–7109. doi: 10.1073/pnas.0611081104.

    CrossRef Google Scholar

    Lambeck K, Chappell J. 2001. Sea level change through the last glacial cycle. Science, 292(5517), 679–686. doi: 10.1126/science.1059549.

    CrossRef Google Scholar

    Lee KH. 2010. Molecular Analysis of Anammox, AOA and AOB in High Nitrogen Sediment and Wetlands. Hong Kong, The University of Hong Kong, Master thesis, 133–136.

    Google Scholar

    Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442(7104), 806–809. doi: 10.1038/nature04983.

    CrossRef Google Scholar

    Li M, Cao HL, Hong YG, Gu JD. 2011. Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Applied Microbiology and Biotechnology, 89(4), 1243–1254. doi: 10.1007/s00253-010-2929-0.

    CrossRef Google Scholar

    Li M, Cao HL, Hong YG, Gu JD. 2013. Using the variation of anammox bacteria community structures as a bio-indicator for anthropogenic/terrestrial nitrogen inputs in the Pearl River Delta (PRD). Applied Microbiology and Biotechnology, 97(22), 9875–9883. doi: 10.1007/s00253-013-4990-y.

    CrossRef Google Scholar

    Li PR, Qiao PN. 1982. The model of evolution of the Pearl River Delta during last 6,000 years. Journal of Sediment Research, 3(1), 33–41. doi: 10.16239/j.cnki.0468-155x.1982.03.004.

    CrossRef Google Scholar

    Liu K, Chunbo H, Jiao J, Jidong G. 2011. Bacterial investigation of ammonium-rich sediment in the Pearl River Delta, China. San Francisco, 1384.

    Google Scholar

    Liu K, Jiao JJ, Gu JD. 2014. Investigation on bacterial community and diversity in the multilayer aquifer-aquitard system of the Pearl River Delta, China. Ecotoxicology, 23(10), 2041–2052. doi: 10.1007/s10646-014-1311-x.

    CrossRef Google Scholar

    Liu S, Shen LD, Lou LP, Tian GM, Zheng P. 2013. Spatial distribution and factors shaping the niche segregation of ammonia-oxidizing microorganisms in the Qiantang River, China. Applied and environmental microbiology, 79(13), 4065–4071. doi: 10.1128/AEM.00543-13.

    CrossRef Google Scholar

    Liu ZH, Huang SB, Sun GP, Xu ZC, Xu MY. 2011. Diversity and abundance of ammonia-oxidizing archaea in the Dongjiang River, China. Microbiological Research, 166(5), 337–345. doi: 10.1016/j.micres.2010.08.002.

    CrossRef Google Scholar

    Mcclain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6(4), 301–312. doi: 10.1007/s10021-003-0161-9.

    CrossRef Google Scholar

    Mcmahon PB, Chapelle FH. 1991. Microbial-production of organic-acids in aquitard sediments and its role in aquifer geochemistry. Nature, 349(6306), 233–235. doi: 10.1038/349233a0.

    CrossRef Google Scholar

    Molina V, Belmar L, Ulloa O. 2010. High diversity of ammonia-oxidizing archaea in permanent and seasonal oxygen-deficient waters of the eastern South Pacific. Environmental microbiology, 12(9), 2450–2465. doi: 10.1111/j.1462-2920.2010.02218.x.

    CrossRef Google Scholar

    Moore TA, Xing YP, Lazenby B, Lynch MDJ. 2011. Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater. Environmental science & technology, 45(17), 7217–7225. doi: 10.1021/es201243t.

    CrossRef Google Scholar

    Mosier AC, Francis CA. 2008. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environmental microbiology, 10(11), 3002–3016. doi: 10.1111/j.1462-2920.2008.01764.x.

    CrossRef Google Scholar

    Mulder A, Graaf A, Robertson L, Kuenen J. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 16(3), 177–184. doi: 10.1111/j.1574-6941.1995.tb00281.x.

    CrossRef Google Scholar

    Murray AS, Olley JM. 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: A status review. Geochronometria, 21, 1–16.

    Google Scholar

    Nicol GW, Leininger S, Schleper C, Prosser JI. 2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental microbiology, 10(11), 2966–2978. doi: 10.1111/j.1462-2920.2008.01701.x.

    CrossRef Google Scholar

    Pitcher A, Villanueva L, Hopmans EC, Schouten S, Reichart GJ, Damste JSS. 2011. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. The ISME journal, 5(12), 1896–1904. doi: 10.1038/ismej.2011.60.

    CrossRef Google Scholar

    Prokopenko MG, Hirst MB, De Brabandere L, Lawrence DJP, Berelson WM, Granger J, Chang BX, Dawson S, Crane EJ. 2013. Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia. Nature, 500(7461), 194–198. doi: 10.1038/nature12365.

    CrossRef Google Scholar

    Reilly TE, Goodman AS. 1985. Quantitative analysis of saltwater-freshwater relationships in groundwater systems—A historical perspective. Journal of Hydrology, 80(1), 125–160. doi: 10.1016/0022-1694(85)90078-2.

    CrossRef Google Scholar

    Risgaard-Petersen N, Meyer RL, Schmid M, Jetten MSM, Enrich-Prast A, Rysgaard S, Revsbech NP. 2004. Anaerobic ammonium oxidation in an estuarine sediment. Aquatic Microbial Ecology, 36(3), 293–304. doi: 10.3354/ame036293.

    CrossRef Google Scholar

    Rotthauwe JH, Witzel KP, Liesack W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 63(12), 4704–4712. doi: 10.1128/AEM.63.12.4704-4712.1997.

    CrossRef Google Scholar

    Rysgaard S, Thastum P, Dalsgaard T, Christensen PB, Sloth NP. 1999. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries, 22(1), 21–30. doi: 10.2307/1352923.

    CrossRef Google Scholar

    Santoro AE. 2010. Microbial nitrogen cycling at the saltwater-freshwater interface. Hydrogeology Journal, 18(1), 187–202. doi: 10.1007/s10040-009-0526-z.

    CrossRef Google Scholar

    Santoro AE, Francis CA de, Sieyes NR, Boehm AB. 2008. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environmental Microbiology, 10(4), 1068–1079. doi: 10.1111/j.1462-2920.2007.01547.x.

    CrossRef Google Scholar

    Schleper C. 2010. Ammonia oxidation: Different niches for bacteria and archaea & quest. The ISME journal, 4(9), 1092–1094. doi: 10.1038/ismej.2010.111.

    CrossRef Google Scholar

    Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MMM. 2006. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environmental Microbiology, 8(10), 1857–1863. doi: 10.1111/j.1462-2920.2006.01074.x.

    CrossRef Google Scholar

    Shen JP, Zhang LM, Di HJ, He JZ. 2012. A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Frontiers in microbiology, 3. doi: 10.3389/fmicb.2012.00296.

    CrossRef Google Scholar

    Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C. 2010. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends in microbiology, 18(8), 331–340. doi: 10.1016/j.tim.2010.06.003.

    CrossRef Google Scholar

    Sun W, Xia CY, Xu MY, Guo J, Wang AJ, Sun GP. 2013. Distribution and abundance of Archaeal and Bacterial Ammonia Oxidizers in the sediments of the Dongjiang River, a drinking water supply for Hong Kong. Microbes and Environments, 28(4), 457–465. doi: 10.1264/jsme2.ME13066.

    CrossRef Google Scholar

    Sun W, Xia CY, Xu MY, Guo J, Wang AJ, Sun GP. 2014a. Diversity and distribution of planktonic anaerobic ammonium-oxidizing bacteria in the Dongjiang River, China. Microbiological Research, 169(12), 897–906. doi: 10.1016/j.micres.2014.05.003.

    CrossRef Google Scholar

    Sun W, Xu MY, Wu WM, Guo J, Xia CY, Sun GP, Wang AJ. 2014b. Molecular diversity and distribution of anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong. Journal of applied microbiology, 116(2), 464–476. doi: 10.1111/jam.12367.

    CrossRef Google Scholar

    Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology, 7(12), 1985–1995. doi: 10.1111/j.1462-2920.2005.00906.x.

    CrossRef Google Scholar

    Trimmer M, Nicholls JC, Deflandre B. 2003. Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom. Applied and Environmental Microbiology, 69(11), 6447–6454. doi: 10.1128/AEM.69.11.6447-6454.2003.

    CrossRef Google Scholar

    Vandegraaf AA, Mulder A, Debruijn P, Jetten MSM, Robertson LA, Kuenen JG. 1995. Anaerobic oxidation of ammonium is a biologically mediated process. Applied and environmental microbiology, 61(4), 1246–1251. doi: 10.1128/AEM.61.4.1246-1251.1995.

    CrossRef Google Scholar

    Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304(5667), 66–74. doi: 10.1126/science.1093857.

    CrossRef Google Scholar

    Wang S, Wang Y, Feng X, Zhai L, Zhu G. 2011. Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China. Applied microbiology and biotechnology, 90(2), 779–787. doi: 10.1007/s00253-011-3090-0.

    CrossRef Google Scholar

    Wang S, Zhu G, Peng Y, Jetten MS, Yin C. 2012. Anammox bacterial abundance, activity, and contribution in riparian sediments of the Pearl River estuary. Environmental science & technology, 46(16), 8834–8842. doi: 10.1021/es3017446.

    CrossRef Google Scholar

    Wang Y, Jiao JJ. 2012a. Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China. Journal of Hydrology, 438, 112–124. doi: 10.1016/j.jhydrol.2012.03.008.

    CrossRef Google Scholar

    Wang Y, Zhu G, Harhangi HR, Zhu B, Jetten MSM, Yin C, Op den Camp HJM. 2012b. Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. FEMS microbiology letters, 336(2), 79–88. doi: 10.1111/j.1574-6968.2012.02654.x.

    CrossRef Google Scholar

    Wu C, Ren J, Bao Y, Lei Y, Shi H. 2007. A long-term morphological modeling study on the evolution of the Pearl River Delta, network system, and estuarine bays since 6000 yr BP. Coastline Changes: Interrelation of Climate and Geological Processes, 426, 199–214. doi: 10.1130/2007.2426(14).

    CrossRef Google Scholar

    Yang AJ, Zhang XL, Agogué H, Dupuy C, Gong J. 2015. Contrasting spatiotemporal patterns and environmental drivers of diversity and community structure of ammonia oxidizers, denitrifiers, and anammox bacteria in sediments of estuarine tidal flats. Annals of Microbiology, 65(2), 879–890. doi: 10.1007/s13213-014-0929-5.

    CrossRef Google Scholar

    Yang L, Wang XS, Jiao JJ. 2014. Numerical modeling of slug tests with MODFLOW using equivalent well blocks. Groundwater, 53(1), 158–163. doi: 10.1111/gwat.12181.

    CrossRef Google Scholar

    Yeates C, Gillings M, Davison A, Altavilla N, Veal D. 1998. Methods for microbial DNA extraction from soil for PCR amplification. Biological procedures online, 1(1), 40–47. doi: 10.1251/bpo6.

    CrossRef Google Scholar

    Yim WWS, Hilgers A, Huang G, Radtke U. 2008. Stratigraphy and optically stimulated luminescence dating of subaerially exposed Quaternary deposits from two shallow bays in Hong Kong, China. Quaternary International, 183, 23–39. doi: 10.1016/j.quaint.2007.07.004.

    CrossRef Google Scholar

    Zhan J, Li WJ, Li ZP, Zhao GZ. 2018. Indoor experiment and numerical simulation study of ammonia-nitrogen migration rules in soil column. Journal of Groundwater Science and Engineering, 6(3), 205–219. doi: 10.19637/j.cnki.2305-7068.2018.03.006.

    CrossRef Google Scholar

    Zhou NQ, Li TS, Zhao S, Xia XM. 2019. Characteristics of the main inorganic nitrogen accumulation in surface water and groundwater of wetland succession zones. Journal of Groundwater Science and Engineering, 7(2), 173–181. doi: 10.19637/j.cnki.2305-7068.2019.02.008.

    CrossRef Google Scholar

    Zhu GB, Wang SY, Wang WD, Wang Y, Zhou LL, Jiang B, Op den Camp HJM, Risgaard-Petersen N, Schwark L, Peng YZ, Hefting MM, Jetten MSM, Yin CQ. 2013. Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nature Geoscience, 6(2), 103–107. doi: 10.1038/NGEO1683.

    CrossRef Google Scholar

    Zhu GB, Wang SY, Wang Y, Wang CX, Risgaard-Petersen N, Jetten MSM, Yin CQ. 2011. Anaerobic ammonia oxidation in a fertilized paddy soil. Isme Journal, 5(12), 1905–1912. doi: 10.1038/ismej.2011.63.

    CrossRef Google Scholar

    Zong Y, Huang G, Switzer AD, Yu F, Yim WWS. 2009a. An evolutionary model for the Holocene formation of the Pearl River delta, China. Holocene, 19(1), 129–142. doi: 10.1177/0959683608098957.

    CrossRef Google Scholar

    Zong Y, Yim WWS, Yu F, Huang G. 2009b. Late Quaternary environmental changes in the Pearl River mouth region, China. Quaternary International, 206, 35–45. doi: 10.1016/j.quaint.2008.10.012.

    CrossRef Google Scholar

    Zong YQ, Huang KY, Yu FL, Zheng Z, Switzer A, Huang GQ, Wang N, Tang M. 2012. The role of sea-level rise, monsoonal discharge and the palaeo-landscape in the early Holocene evolution of the Pearl River delta, southern China. Quaternary Science Reviews, 54(26), 77–88. doi: 10.1016/j.quascirev.2012.01.002.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(4)

Article Metrics

Article views(2949) PDF downloads(4) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint