Citation: | Yong Zhang, Quan-heng Song, Shi-jiong Han, Jian-hua Ding, 2022. Geochronology and geochemistry of the Hekoulinchang Sn-Pb-Zn-Ag polymetallic deposit (73240 t) in Heilongjiang Province, China, China Geology, 5, 46-59. doi: 10.31035/cg2021043 |
The Hekoulinchang Sn-Pb-Zn-Ag polymetallic deposit (20000 t Sn at 0.27%, 236 t Ag at 122.89 g/t, 15000 t Pb at 0.84%, and 38000 t Zn at 1.43%) is located in the Wandashan Terrane of the easternmost segment of the Central Asian Orogenic Belt. The timing of Sn-Pb-Zn-Ag polymetallic mineralization remains unclear due to a lack of precise isotope dating directly conducted on ore minerals. The authors herein report that the LA-ICP-MS U-Pb ages of cassiterite and zircon from the granite porphyry in the Hekoulinchang Sn-Pb-Zn-Ag polymetallic deposit are 101.4±7.9 Ma and 115.4±1.0 Ma, respectively, indicating that Sn mineralization and magmatism occurred during the Early Cretaceous. The granite porphyry belongs to the subalkaline series peraluminous I-type granites that are depleted in Nb, Ta, and Ti and enriched in Rb, Th, U, and Pb. The εHf(t) values of the granite porphyry range from 0.9 to 7.4, with an average of about 5.6 and two-stage model ages (TDM2) of 705–1116 Ma, with an average age of 819 Ma. The εNd(t) values of the apatites are –1.60–0.45, with an average of –0.9, and two-stage model ages (TDM2) of 872–1040 Ma, with an average age of 983 Ma. The Nd-Hf isotope data indicate that the magma may have been derived from the partial melting of juvenile crustal material.
Akinin VV, Miller EL, Gottlieb E, Polzunenkov G. 2012. Geochronology and geochemistry of Cretaceous magmatic rocks of Arctic Chukotka: An update of GEOCHRON2.0. Geophysical Research Abstract, 14, EGU2012–3876. http://adsabs.harvard.edu/abs/2012EGUGA.14.3876A. |
Amelin Y, Lee DC, Halliday AN. 2000. Early–middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64, 4205–4225. doi: 10.1016/S0016-7037(00)00493-2. |
Blichert-Toft J, Albarède F. 1997. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Science Letters, 148, 243–258. doi: 10.1016/S0012-821X(97)00198-2. |
Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.), Rare earth element geochemistry. Elsevier, New York, 63–114. |
Chen GZ. 2018. Metallogenesis of the Daolundaba Cu-polymetallic deposit in the southern Great Hinggan Range. Beijing, China University of Geosciences (Beijing), Ph.D Thesis, 1–121 (in Chinese with English abstract). |
Chen YJ, Zhang C, Wang P, Pirajno F, Li N. 2017. The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geology Reviews, 81, 602–640. doi: 10.1016/j.oregeorev.2016.04.017. |
Cheng RY, Wu FY, Ge WC, Sun DY, Liu XM, Yang JH. 2006. Emplacement age of the Raohe complex in eastern Heilongjiang province and the tectonic evolution of the eastern part of Northeastern China. Acta Petrologica Sinica, 22(2), 353–376 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2006.02.009. |
Chugaev AV, Bortnikov NS, Gonevchuk VG, Gorelikova NV, Korostelev PG, Baranova AN. 2012. Age of tin ore from the Solnechnoe quartz-tourmaline-cassiterite deposit, the Khabarovsk krai, Russia from the results of Rb-Sr dating of quartz and adularia. Geology Ore Deposits, 54, 233–240. doi: 10.1134/S1075701512030038. |
Cui YR, Zhou HY, Geng JZ, Li HM, Li HK. 2012. In situ LA-ICP-MS U-Pb isotopic dating of monazite. Acta Geoscientica Sinica, 33(6), 865–876 (in Chinese with English abstract). doi: 10.3975/cagsb.2012.06.04. |
Feng J, Liang YH, Liu XS, Li M, Qin Y. 2012. Evolvement of the metallic mineralizion in the Sikhote-Alin metallogenic province. Geology and Resources, 21(3), 266–270 (in Chinese with English abstract). doi: 10.13686/j.cnki.dzyzy.2012.03.001. |
Gonevchuk VG, Gonevchuk GA, Korostelev PG, Semenyak BI, Seltmann R. 2010. Tin deposits of the Sikhote-Alin and adjacent areas (Russian Far East) and their magmatic association. Australian Journal of Earth Sciences, 57, 777–802. doi: 10.1080/08120099.2010.503993. |
Griffin WL, Pearson NJ, Belousova EA, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR. 2000. The Hf isotope composition of cratonic mantle, LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64, 133–147. doi: 10.1016/S0016-7037(99)00343-9. |
Guo S, He P, Zhang XB, Cui YR, Zhang TF, Zhang K, Lai L, Liu CB. 2019. Geochronology and geochemistry of Maodeng-Xiaogushan tin-polymetallic ore-field in southern Da Hinggan Mountains and their geological significances. Mineral Deposits, 38(3), 509–525 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2019.03.004. |
Hao YJ, Ren YS, Shi YF, Shang QQ, Sun ZM, Gao Y, Wang CY, Yang Q. 2020. Geochronology, petrogenesis and tectonic setting of the granite porphyry related to Hekoulinchang tin polymetallic deposit in Wandashan area, Heilongjiang Province. Acta Petrologica Sinica, 36(3), 837–855 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.03.12. |
Hong DW, Wang SG, Xie XL, Zhang JS. 2000. Genesis of positive (Nd, t) granitoids in the Da Hinggan MTS: Mongolia orogenic belt and growth continental crust. Earth Science Frontiers, 7(2), 441–456 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2000.02.012. |
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR, Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10), 2595–2604 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.025. |
Hu RZ, Wei WF, Bi XW, Peng JT, Qi YQ, Wu LY, Chen YW. 2012. Molybdenite Re-Os and muscovite 40Ar/39Ar dating of the Xihuashan tungsten deposit, central Nanling district, South China. Lithos, 150, 111–118. doi: 10.1016/j.lithos.2012.05.015. |
Hu ZC, Zhang W, Liu YS, Gao S, Li M, Zong KQ, Chen HH, Hu SH. 2015. “Wave” signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis: Application to lead isotope analysis. Analytical Chemistry, 87, 1152–1157. doi: 10.1021/ac503749k. |
Ishihara S, Gonevchuk GV, Gonevchuk GA, Korostelev PG, Saydayn GR, Semenjak BI, Ratkin VV. 1997. Mineralization age of granitoid-related ore deposits in the Southern, Russian Far East. Resource Geology, 47(5), 255–261. |
Ivashov PV. 2011. Average tin contents in the plants of the Southern Russian Far East. Geochemistry International, 49(10), 1048–1050. doi: 10.1134/S0016702911080039. |
Jahn BM, Valui G, Kruk N, Gonevchuk V, Usuki M, Wu JT. 2015. Emplacement ages, geochemical and Sr–Nd–Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: crustal growth and regional tectonic evolution. Journal of Asian Earth Sciences, 111, 872–918. doi: 10.1016/j.jseaes.2015.08.012. |
King PL, White AJR, Chappell BW, Allen CM. 1997. Characterization and origin of aluminous A–type granites from the Lachlan fold belt, Southeastern Australia. Journal of Petrology, 38, 371–391. doi: 10.1093/petrology/38.3.371. |
Korostelev PG, Semenyak BI, Gonevchuk VG. 2004. Stages of the Meso-Cenozoic ore formation of the Sikhote-Alin tin-bearing system. Metallogeny of the Pacific Northwest: Tectonics, magmatism and metallogeny of active continental margins, 112–114. Dalnauka, Vladivostok (in Russian). |
Lehmann B. 1990. Metallogeny of Tin. Berlin: Springer, 1–210. |
Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Pale-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3), 207–224. doi: 10.1016/j.jseaes.2005.09.001. |
Liao Z, Wang YW, Wang JB, Li HM, Long LL. 2014. In-situ LA-MC-ICPMS U-Pb geochronology of cassiterite from Dajing tin—polymetallic deposits. Mineral Deposits, 33(S1), 421–422 (in Chinese with English abstract). doi: CNKI:SUN:KCDZ.0.2014-S1-213. |
Liu LJ, Zhou TF, Zhang DY, Yuan F, Liu GX, Zhao ZC, Sun JD, Noel W. 2018. S isotopic geochemistry, zircon and cassiterite U-Pb geochronology of the Haobugao Sn polymetallic deposit, southern Great Hinggan Range, NE China. Ore Geology Reviews, 93, 168–180. doi: 10.1016/j.oregeorev.2017.12.008. |
Ludwig KR. 2003. Isoplot 3.0–a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 1–70. |
Maniar PD, Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635–643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2. |
Mao JW, Cheng YB, Chen MH, Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48, 267–294. doi: 10.1007/s00126-012-0446-z. |
Mao JW, Lehmann B, Schneider HJ. 1991. Preliminary enrichment of tin in the Earth and its relationship to metallogenesis of tin deposits. Journal of Hebei College of Geology, 14(1), 46–60 (in Chinese with English abstract). doi: CNKI:SUN:HBDX.0.1991-01-004. |
Mao JW, Ouyang HG, Song SW, Santosh M, Yuan SD, Zhou ZH, Zheng W, Liu H, Liu P, Cheng YB, Chen MH. 2019. Geology and metallogeny of tungsten and tin deposits in China. SEG Special Publications, 22, 411–482. doi: 10.5382/SP.22.10;72p. |
Mei W, Lü XB, Liu Z, Tang RK, Ai ZL, Wang XD, Mamady C. 2015. Geochronological and geochemical constraints on the ore-related granites in Huanggang deposit, Southern Great Hinggan Range, NE China and its tectonic significance. Geosciences Journal, 19, 53–67. doi: 10.1007/s12303-014-0021-y. |
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4), 215–224. doi: 10.1016/0012-8252(94)90029-9. |
Neymark LA, Holm-Denoma CS, Moscati RJ. 2018. In situ LA-ICPMS U-Pb dating of cassiterite without a known-age matrixmatched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary. Chemical Geology, 483, 410–425. doi: 10.1016/j.chemgeo.2018.03.008. |
Nokleberg WJ. 2010. Metallogenesis and tectonics of Northeast Asia. U.S. Geological Survey Professional Paper, 1765. doi: org/10.3133/pp17651. |
Nowell GM, Kempton PD, Noble SR, Fitton JG, Saunders AD, Mahoney JJ, Taylor RN. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: Insights into the depleted mantle. Chemical Geology, 149(3–4), 211–233. doi: 10.1016/S0009-2541(98)00036-9. |
Ognyanov NV. 1986. Geology of tin districts and deposits in the Khingan-Okhotsk tin region. In: Geology of the USSR tin deposits. Moscow: Nedra, book 1, 340–399 (in Russian). |
Romer RL, Kroner U. 2016. Phanerozoic tin and tungsten mineralization: Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, 31, 60–95. doi: 10.1016/j.gr.2015.11.002. |
Sato K, Vrublevsky AA, Rodionov SM, Romanovsky NP, Nedachi M. 2002. Mid-cretaceous episodic Magmatism and tin mineralization in Khingan-Okhotsk volcano-plutonic belt, Far East Russia. Resource Geology, 52, 1–14. doi: 10.1111/j.1751-3928.2002.tb00112.x. |
Scherer EE, Munker C, Mezger K. 2001. Calibration of the Lutetium-Hafnium clock. Science, 293, 683–687. doi: 10.1126/science.1061372. |
Sun MD, Xu YG, Wilde SA, Chen HL. 2015. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for determining ancient drainage systems and tectonics of the Paleo-Pacific, Tectonics, 34, 1269–1289. doi: 10.1002/2015TC003870. |
Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: AD Saunders and MJ Norry (Eds), Magmatism in the Ocean Basins, Geological Society of London, London, Special Publication, 42, 313–345. |
Wang CN, Wang QM, Yu XF, Han ZZ. 2016. Metallognetic characteristics of tin and ore-search prospect in the southern part of Da Hinggan Mountains. Geology and Exploration, 52(2), 220–227 (in Chinese with English abstract). doi: 10.13712/j.cnki.dzykt.2016.02.003. |
Wang FX, Leon Bagas, Jiang SH, Liu YF. 2017. Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China. Ore Geology Reviews, 80, 1206–1229. doi: 10.1016/j.oregeorev.2016.09.021. |
Wang GZ. 1997. Geological characteristics and genesis of the Anle tin copper deposit, Inner Mongolia. Mineral deposits, 16(3), 260–271 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.1997.03.008. |
Wang S, Sun FY, Wang G, Liu K, Li RH, Guo HL. 2017. Geological characteristics and genesis of the Hekoulinchang tin-polymetallic deposit in Baoqing, Heilongjiang Province. Acta Petrologica et Mineralogica, 36(3), 312–328 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2017.03.003. |
Whalen JB, Currie KL, Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and perogenesis. Contributions to Mineralogy and Petrology, 95, 407–419. doi: 10.1007/BF00402202. |
Wilde SA. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction: A review of the evidence. Tectonophysics, 662, 345–362. doi: 10.1016/j.tecto.2015.05.006. |
Wu FY, Jahn BM, Wilde S, Sun DY. 2000. Phanerozoic crustal growth: U-Pb and Sr–Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1–2), 89–113. doi: 10.1016/S0040-1951(00)00179-7. |
Wu FY, Jahn BM, Wilder SA, Lo CH, Lin Q, Ge WC, Sun DY. 2003. Highly fractionated I–type granites in NE China (I): geochronology and petrogenesis. Lithos, 66(3-4), 241–273. doi: 10.1016/S0024-4937(02)00222-0. |
Xia QL, Wang XQ, Chang LH, Liu ZZ, Gan XT. 2018. Spatio-temporal distribution features and mineral resource potential assessment of tin deposits in China. Earth Science Frontiers, 25(3), 59–66 (in Chinese with English abstract). doi: 10.13745/j.esf.2018.03.005. |
Xu L, Hu ZC, Zhang W, Yang L, Liu YS, Gao S, Luo T, Hu SH. 2015. In situ Nd isotope analyses in geological materials with signal enhancement and non-linear mass dependent fractionation reduction using laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30, 232–244. doi: 10.1039/C4JA00243A. |
Yang F, Sun JG, Wang Y, Fu JY, Na FC, Fan ZY, Hu ZZ. 2019. Geology, geochronology and geochemistry of Weilasituo Sn-polymetallic deposit in Inner Mongolia, China. Minerals, 9, 104. doi: 10.3390/min9020104. |
Yang JH, Wu FY, Shao J, Wilde S, Xie LW, Liu XM. 2006. Constraints on the timing of uplift of the Yanshan fold and thrust belt, North China. Earth and Planetary Science Letters, 246, 336–352. doi: 10.1016/j.jpgl.2006.04.029. |
Yao L, Lü ZC, Ye TZ, Peng ZS, Jia HX, Zhang ZH, Wu YF, Li RH. 2017. Zircon U-Pb, geochemical and Nd-Hf isotopic characteristics of quartz porphyry in the Baiyinchagan Sn polymetallic deposit, Inner Mongolia, southern Great Hinggan Range, China. Acta Petrologica Sinica, 33(10), 3183–3199 (in Chinese with English abstract). |
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ, Zhang DL. 2011. In situ LA–MC–ICP–MS and ID–TIMS U–Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin–polymetallic mineralization. Ore Geology Reviews, 43, 235–242. doi: 10.1016/j.oregeorev.2011.08.002. |
Yuan SD, Williams-Jones A E, Mao JW, Zhao PL, Yan Chen, Zhang DL. 2018. The origin of the Zhangjialong tungsten deposit, South China: implications for W-Sn mineralization in large granite batholiths. Economic Geology, 113(5), 1193–1208. doi: 10.5382/econgeo.2018.4587. |
Zhai DG, Liu JJ, Zhang AL, Sun YQ. 2017. U-Pb, Re-Os and 40Ar/39Ar geochronology of porphyry Sn ± Cu ± Mo and polymetallic (Ag-Pb-Zn-Cu) vein mineralization at Bianjiadayuan, Inner Mongolia, NE China: Implications for discrete mineralization events. Economic Geology, 112, 2041–2059. doi: 10.5382/econgeo.2017.4540. |
Zhai DG, Liu JJ, Zhang HY, Yao MJ, Wang JP, Yang YQ. 2014. S–Pb isotopic geochemistry, U–Pb and Re–Os geochronology of the Huanggangliang Fe–Sn deposit, Inner Mongolia, NE China. Ore Geology Reviews, 59, 109–122. doi: 10.1016/j.oregeorev.2013.12.005. |
Zhao YM, Zhang DQ. 1997. Metallogeny and prospective evolution of copper–polymetallic deposits in the Great Hinggan Range and its adjacent regions: Beijing, Seismological Press (in Chinese with English abstract). 1–318. |
Zhou HY, Geng JZ, Cui YR, Li HK, Li HM. 2012. In situ U-Pb dating of apatite using LA-MC-ICP-MS. Acta Geoscientica Sinica, 33(6), 857–864 (in Chinese with English abstract). doi: 10.3975/cagsb.2012.06.03. |
Zhou JB, Cao JL, Wilde SA, Zhao GC, Zhang JJ, Wang B. 2014. Paleo-Pacific subduction–accretion: Evidence from geochemical and U–Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33(12), 2444–2466. doi: 10.1002/2014TC003637. |
Zhou YH, Chai L, Bao QZ. 2017. Mineralization and prospect of tungsten and tin in central Sikhote-Alin. Geological Review, 63(Suppl), 35–36 (in Chinese with English abstract). doi: 10.16509/j.georeview.2017.s1.018. |
a–Schematic diagram showing main tectonic subdivisions of central and eastern Asia ( after Li JY, 2006). b–distribution of Sn-Pb-Zn-Ag polymetallic deposits in Northeast China. 1–Dajing; 2–Huanggang; 3–Bianjiadayuan; 4–Anle; 5–Daolundaba; 6–Weilasituo; 7–Maodeng-Xiaogushan; 8–Baiyinchagan; 9–Haobugao; 10–Hekoulinchang.
a–Geological map of the Hekoulinchang Sn-Pb-Zn-Ag polymetallic deposit; b–prospecting line profile map (after Hao YJ et al., 2020).
Representative photographs of rock and ore samples from the Hekoulinchang Sn-Pb-Zn-Ag polymetallic deposit.
a, c–Cathodoluminescence images, b–U-Pb concordia diagram of zircons, d–U-Pb Tera-Wasserburg concordia age of cassiterite.
a, b– εHf(t) vs. crystallization ages of the zircons for the Hekoulinchang granite porphyry. The Hf isotopic evolution line of the Archean average crust with 176Lu/177Hf =0.015 is after Griffin WL et al. (2000). The fields for the East Xing-Meng (Xing’an-Mongolian Orogenic Belt) and Yanshan are from Yang JH et al. (2006). The Great Hinggan Range is from multiple sources (after Mei W et al., 2015; Wang FX et al., 2017; Yao L et al., 2017; Chen GZ, 2018; Guo S et al., 2019, Yang F et al., 2019).
a–SiO2 vs. (Na2O + K2O) plot (after Middlemost EAK, 1994); and b–A/NK vs. A/CNK diagram of granites (after Maniar PD et al., 1989). The Great Hinggan Range is from multiple sources (Mei W et al., 2015; Wang FX et al., 2017; Chen GZ, 2018; Guo S et al., 2019, Yang F et al., 2019); Sikhote-Alin and adjacent areas are from Gonevchuk VG et al. (2010).
a–Chondrite-normalized REE patterns (normalized values are from Boynton WV, 1984); b–primitive mantle-normalized trace element patterns (normalized values are from Sun SS et al., 1989) of the granite porphyry. The data sources are the same as for Fig. 6.
a–(K2O +Na2O)/CaO vs. Zr+Nb+Ce+Y (10−6), b–10000×Ga/Al vs. Zr (10−6) (after Whalen JB et al., 1987) discrimination diagrams for the granite porphyry. The data sources are the same as for Fig. 6. FG–fractionated felsic granites, OGT–unfractionated I-, S- and M-type granites.
a–Plots of 147Sm/144Nd–144Nd/143Nd; b–147Sm/144Nd–εNd(t); c–143Nd/144Nd–εNd(t); and d–εNd(t)–ages (after Hong DW et al., 2000) for the apatite in the granite porphyry from the Hekoulinchang Sn-Pb-Zn-Ag deposit. Data for Phanerozoic granites in NE China are from Wu FY et al. (2000). Whole rock Sr-Nd data are indicated by the yellow circles (after Hao YJ et al., 2020).