2022 Vol. 5, No. 1
Article Contents

Yong Zhang, Quan-heng Song, Shi-jiong Han, Jian-hua Ding, 2022. Geochronology and geochemistry of the Hekoulinchang Sn-Pb-Zn-Ag polymetallic deposit (73240 t) in Heilongjiang Province, China, China Geology, 5, 46-59. doi: 10.31035/cg2021043
Citation: Yong Zhang, Quan-heng Song, Shi-jiong Han, Jian-hua Ding, 2022. Geochronology and geochemistry of the Hekoulinchang Sn-Pb-Zn-Ag polymetallic deposit (73240 t) in Heilongjiang Province, China, China Geology, 5, 46-59. doi: 10.31035/cg2021043

Geochronology and geochemistry of the Hekoulinchang Sn-Pb-Zn-Ag polymetallic deposit (73240 t) in Heilongjiang Province, China

More Information
  • The Hekoulinchang Sn-Pb-Zn-Ag polymetallic deposit (20000 t Sn at 0.27%, 236 t Ag at 122.89 g/t, 15000 t Pb at 0.84%, and 38000 t Zn at 1.43%) is located in the Wandashan Terrane of the easternmost segment of the Central Asian Orogenic Belt. The timing of Sn-Pb-Zn-Ag polymetallic mineralization remains unclear due to a lack of precise isotope dating directly conducted on ore minerals. The authors herein report that the LA-ICP-MS U-Pb ages of cassiterite and zircon from the granite porphyry in the Hekoulinchang Sn-Pb-Zn-Ag polymetallic deposit are 101.4±7.9 Ma and 115.4±1.0 Ma, respectively, indicating that Sn mineralization and magmatism occurred during the Early Cretaceous. The granite porphyry belongs to the subalkaline series peraluminous I-type granites that are depleted in Nb, Ta, and Ti and enriched in Rb, Th, U, and Pb. The εHf(t) values of the granite porphyry range from 0.9 to 7.4, with an average of about 5.6 and two-stage model ages (TDM2) of 705–1116 Ma, with an average age of 819 Ma. The εNd(t) values of the apatites are –1.60–0.45, with an average of –0.9, and two-stage model ages (TDM2) of 872–1040 Ma, with an average age of 983 Ma. The Nd-Hf isotope data indicate that the magma may have been derived from the partial melting of juvenile crustal material.

  • 加载中
  • Akinin VV, Miller EL, Gottlieb E, Polzunenkov G. 2012. Geochronology and geochemistry of Cretaceous magmatic rocks of Arctic Chukotka: An update of GEOCHRON2.0. Geophysical Research Abstract, 14, EGU2012–3876. http://adsabs.harvard.edu/abs/2012EGUGA.14.3876A.

    Google Scholar

    Amelin Y, Lee DC, Halliday AN. 2000. Early–middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64, 4205–4225. doi: 10.1016/S0016-7037(00)00493-2.

    CrossRef Google Scholar

    Blichert-Toft J, Albarède F. 1997. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Science Letters, 148, 243–258. doi: 10.1016/S0012-821X(97)00198-2.

    CrossRef Google Scholar

    Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.), Rare earth element geochemistry. Elsevier, New York, 63–114.

    Google Scholar

    Chen GZ. 2018. Metallogenesis of the Daolundaba Cu-polymetallic deposit in the southern Great Hinggan Range. Beijing, China University of Geosciences (Beijing), Ph.D Thesis, 1–121 (in Chinese with English abstract).

    Google Scholar

    Chen YJ, Zhang C, Wang P, Pirajno F, Li N. 2017. The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geology Reviews, 81, 602–640. doi: 10.1016/j.oregeorev.2016.04.017.

    CrossRef Google Scholar

    Cheng RY, Wu FY, Ge WC, Sun DY, Liu XM, Yang JH. 2006. Emplacement age of the Raohe complex in eastern Heilongjiang province and the tectonic evolution of the eastern part of Northeastern China. Acta Petrologica Sinica, 22(2), 353–376 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2006.02.009.

    CrossRef Google Scholar

    Chugaev AV, Bortnikov NS, Gonevchuk VG, Gorelikova NV, Korostelev PG, Baranova AN. 2012. Age of tin ore from the Solnechnoe quartz-tourmaline-cassiterite deposit, the Khabarovsk krai, Russia from the results of Rb-Sr dating of quartz and adularia. Geology Ore Deposits, 54, 233–240. doi: 10.1134/S1075701512030038.

    CrossRef Google Scholar

    Cui YR, Zhou HY, Geng JZ, Li HM, Li HK. 2012. In situ LA-ICP-MS U-Pb isotopic dating of monazite. Acta Geoscientica Sinica, 33(6), 865–876 (in Chinese with English abstract). doi: 10.3975/cagsb.2012.06.04.

    CrossRef Google Scholar

    Feng J, Liang YH, Liu XS, Li M, Qin Y. 2012. Evolvement of the metallic mineralizion in the Sikhote-Alin metallogenic province. Geology and Resources, 21(3), 266–270 (in Chinese with English abstract). doi: 10.13686/j.cnki.dzyzy.2012.03.001.

    CrossRef Google Scholar

    Gonevchuk VG, Gonevchuk GA, Korostelev PG, Semenyak BI, Seltmann R. 2010. Tin deposits of the Sikhote-Alin and adjacent areas (Russian Far East) and their magmatic association. Australian Journal of Earth Sciences, 57, 777–802. doi: 10.1080/08120099.2010.503993.

    CrossRef Google Scholar

    Griffin WL, Pearson NJ, Belousova EA, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR. 2000. The Hf isotope composition of cratonic mantle, LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64, 133–147. doi: 10.1016/S0016-7037(99)00343-9.

    CrossRef Google Scholar

    Guo S, He P, Zhang XB, Cui YR, Zhang TF, Zhang K, Lai L, Liu CB. 2019. Geochronology and geochemistry of Maodeng-Xiaogushan tin-polymetallic ore-field in southern Da Hinggan Mountains and their geological significances. Mineral Deposits, 38(3), 509–525 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2019.03.004.

    CrossRef Google Scholar

    Hao YJ, Ren YS, Shi YF, Shang QQ, Sun ZM, Gao Y, Wang CY, Yang Q. 2020. Geochronology, petrogenesis and tectonic setting of the granite porphyry related to Hekoulinchang tin polymetallic deposit in Wandashan area, Heilongjiang Province. Acta Petrologica Sinica, 36(3), 837–855 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.03.12.

    CrossRef Google Scholar

    Hong DW, Wang SG, Xie XL, Zhang JS. 2000. Genesis of positive (Nd, t) granitoids in the Da Hinggan MTS: Mongolia orogenic belt and growth continental crust. Earth Science Frontiers, 7(2), 441–456 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2000.02.012.

    CrossRef Google Scholar

    Hou KJ, Li YH, Zou TR, Qu XM, Shi YR, Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10), 2595–2604 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.025.

    CrossRef Google Scholar

    Hu RZ, Wei WF, Bi XW, Peng JT, Qi YQ, Wu LY, Chen YW. 2012. Molybdenite Re-Os and muscovite 40Ar/39Ar dating of the Xihuashan tungsten deposit, central Nanling district, South China. Lithos, 150, 111–118. doi: 10.1016/j.lithos.2012.05.015.

    CrossRef Google Scholar

    Hu ZC, Zhang W, Liu YS, Gao S, Li M, Zong KQ, Chen HH, Hu SH. 2015. “Wave” signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis: Application to lead isotope analysis. Analytical Chemistry, 87, 1152–1157. doi: 10.1021/ac503749k.

    CrossRef Google Scholar

    Ishihara S, Gonevchuk GV, Gonevchuk GA, Korostelev PG, Saydayn GR, Semenjak BI, Ratkin VV. 1997. Mineralization age of granitoid-related ore deposits in the Southern, Russian Far East. Resource Geology, 47(5), 255–261.

    Google Scholar

    Ivashov PV. 2011. Average tin contents in the plants of the Southern Russian Far East. Geochemistry International, 49(10), 1048–1050. doi: 10.1134/S0016702911080039.

    CrossRef Google Scholar

    Jahn BM, Valui G, Kruk N, Gonevchuk V, Usuki M, Wu JT. 2015. Emplacement ages, geochemical and Sr–Nd–Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: crustal growth and regional tectonic evolution. Journal of Asian Earth Sciences, 111, 872–918. doi: 10.1016/j.jseaes.2015.08.012.

    CrossRef Google Scholar

    King PL, White AJR, Chappell BW, Allen CM. 1997. Characterization and origin of aluminous A–type granites from the Lachlan fold belt, Southeastern Australia. Journal of Petrology, 38, 371–391. doi: 10.1093/petrology/38.3.371.

    CrossRef Google Scholar

    Korostelev PG, Semenyak BI, Gonevchuk VG. 2004. Stages of the Meso-Cenozoic ore formation of the Sikhote-Alin tin-bearing system. Metallogeny of the Pacific Northwest: Tectonics, magmatism and metallogeny of active continental margins, 112–114. Dalnauka, Vladivostok (in Russian).

    Google Scholar

    Lehmann B. 1990. Metallogeny of Tin. Berlin: Springer, 1–210.

    Google Scholar

    Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Pale-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3), 207–224. doi: 10.1016/j.jseaes.2005.09.001.

    CrossRef Google Scholar

    Liao Z, Wang YW, Wang JB, Li HM, Long LL. 2014. In-situ LA-MC-ICPMS U-Pb geochronology of cassiterite from Dajing tin—polymetallic deposits. Mineral Deposits, 33(S1), 421–422 (in Chinese with English abstract). doi: CNKI:SUN:KCDZ.0.2014-S1-213.

    CrossRef Google Scholar

    Liu LJ, Zhou TF, Zhang DY, Yuan F, Liu GX, Zhao ZC, Sun JD, Noel W. 2018. S isotopic geochemistry, zircon and cassiterite U-Pb geochronology of the Haobugao Sn polymetallic deposit, southern Great Hinggan Range, NE China. Ore Geology Reviews, 93, 168–180. doi: 10.1016/j.oregeorev.2017.12.008.

    CrossRef Google Scholar

    Ludwig KR. 2003. Isoplot 3.0–a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 1–70.

    Google Scholar

    Maniar PD, Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635–643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2.

    CrossRef Google Scholar

    Mao JW, Cheng YB, Chen MH, Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48, 267–294. doi: 10.1007/s00126-012-0446-z.

    CrossRef Google Scholar

    Mao JW, Lehmann B, Schneider HJ. 1991. Preliminary enrichment of tin in the Earth and its relationship to metallogenesis of tin deposits. Journal of Hebei College of Geology, 14(1), 46–60 (in Chinese with English abstract). doi: CNKI:SUN:HBDX.0.1991-01-004.

    CrossRef Google Scholar

    Mao JW, Ouyang HG, Song SW, Santosh M, Yuan SD, Zhou ZH, Zheng W, Liu H, Liu P, Cheng YB, Chen MH. 2019. Geology and metallogeny of tungsten and tin deposits in China. SEG Special Publications, 22, 411–482. doi: 10.5382/SP.22.10;72p.

    CrossRef Google Scholar

    Mei W, Lü XB, Liu Z, Tang RK, Ai ZL, Wang XD, Mamady C. 2015. Geochronological and geochemical constraints on the ore-related granites in Huanggang deposit, Southern Great Hinggan Range, NE China and its tectonic significance. Geosciences Journal, 19, 53–67. doi: 10.1007/s12303-014-0021-y.

    CrossRef Google Scholar

    Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4), 215–224. doi: 10.1016/0012-8252(94)90029-9.

    CrossRef Google Scholar

    Neymark LA, Holm-Denoma CS, Moscati RJ. 2018. In situ LA-ICPMS U-Pb dating of cassiterite without a known-age matrixmatched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary. Chemical Geology, 483, 410–425. doi: 10.1016/j.chemgeo.2018.03.008.

    CrossRef Google Scholar

    Nokleberg WJ. 2010. Metallogenesis and tectonics of Northeast Asia. U.S. Geological Survey Professional Paper, 1765. doi: org/10.3133/pp17651.

    Google Scholar

    Nowell GM, Kempton PD, Noble SR, Fitton JG, Saunders AD, Mahoney JJ, Taylor RN. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: Insights into the depleted mantle. Chemical Geology, 149(3–4), 211–233. doi: 10.1016/S0009-2541(98)00036-9.

    CrossRef Google Scholar

    Ognyanov NV. 1986. Geology of tin districts and deposits in the Khingan-Okhotsk tin region. In: Geology of the USSR tin deposits. Moscow: Nedra, book 1, 340–399 (in Russian).

    Google Scholar

    Romer RL, Kroner U. 2016. Phanerozoic tin and tungsten mineralization: Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, 31, 60–95. doi: 10.1016/j.gr.2015.11.002.

    CrossRef Google Scholar

    Sato K, Vrublevsky AA, Rodionov SM, Romanovsky NP, Nedachi M. 2002. Mid-cretaceous episodic Magmatism and tin mineralization in Khingan-Okhotsk volcano-plutonic belt, Far East Russia. Resource Geology, 52, 1–14. doi: 10.1111/j.1751-3928.2002.tb00112.x.

    CrossRef Google Scholar

    Scherer EE, Munker C, Mezger K. 2001. Calibration of the Lutetium-Hafnium clock. Science, 293, 683–687. doi: 10.1126/science.1061372.

    CrossRef Google Scholar

    Sun MD, Xu YG, Wilde SA, Chen HL. 2015. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for determining ancient drainage systems and tectonics of the Paleo-Pacific, Tectonics, 34, 1269–1289. doi: 10.1002/2015TC003870.

    Google Scholar

    Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: AD Saunders and MJ Norry (Eds), Magmatism in the Ocean Basins, Geological Society of London, London, Special Publication, 42, 313–345.

    Google Scholar

    Wang CN, Wang QM, Yu XF, Han ZZ. 2016. Metallognetic characteristics of tin and ore-search prospect in the southern part of Da Hinggan Mountains. Geology and Exploration, 52(2), 220–227 (in Chinese with English abstract). doi: 10.13712/j.cnki.dzykt.2016.02.003.

    CrossRef Google Scholar

    Wang FX, Leon Bagas, Jiang SH, Liu YF. 2017. Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China. Ore Geology Reviews, 80, 1206–1229. doi: 10.1016/j.oregeorev.2016.09.021.

    CrossRef Google Scholar

    Wang GZ. 1997. Geological characteristics and genesis of the Anle tin copper deposit, Inner Mongolia. Mineral deposits, 16(3), 260–271 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.1997.03.008.

    CrossRef Google Scholar

    Wang S, Sun FY, Wang G, Liu K, Li RH, Guo HL. 2017. Geological characteristics and genesis of the Hekoulinchang tin-polymetallic deposit in Baoqing, Heilongjiang Province. Acta Petrologica et Mineralogica, 36(3), 312–328 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2017.03.003.

    CrossRef Google Scholar

    Whalen JB, Currie KL, Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and perogenesis. Contributions to Mineralogy and Petrology, 95, 407–419. doi: 10.1007/BF00402202.

    CrossRef Google Scholar

    Wilde SA. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction: A review of the evidence. Tectonophysics, 662, 345–362. doi: 10.1016/j.tecto.2015.05.006.

    CrossRef Google Scholar

    Wu FY, Jahn BM, Wilde S, Sun DY. 2000. Phanerozoic crustal growth: U-Pb and Sr–Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1–2), 89–113. doi: 10.1016/S0040-1951(00)00179-7.

    CrossRef Google Scholar

    Wu FY, Jahn BM, Wilder SA, Lo CH, Lin Q, Ge WC, Sun DY. 2003. Highly fractionated I–type granites in NE China (I): geochronology and petrogenesis. Lithos, 66(3-4), 241–273. doi: 10.1016/S0024-4937(02)00222-0.

    CrossRef Google Scholar

    Xia QL, Wang XQ, Chang LH, Liu ZZ, Gan XT. 2018. Spatio-temporal distribution features and mineral resource potential assessment of tin deposits in China. Earth Science Frontiers, 25(3), 59–66 (in Chinese with English abstract). doi: 10.13745/j.esf.2018.03.005.

    CrossRef Google Scholar

    Xu L, Hu ZC, Zhang W, Yang L, Liu YS, Gao S, Luo T, Hu SH. 2015. In situ Nd isotope analyses in geological materials with signal enhancement and non-linear mass dependent fractionation reduction using laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30, 232–244. doi: 10.1039/C4JA00243A.

    CrossRef Google Scholar

    Yang F, Sun JG, Wang Y, Fu JY, Na FC, Fan ZY, Hu ZZ. 2019. Geology, geochronology and geochemistry of Weilasituo Sn-polymetallic deposit in Inner Mongolia, China. Minerals, 9, 104. doi: 10.3390/min9020104.

    CrossRef Google Scholar

    Yang JH, Wu FY, Shao J, Wilde S, Xie LW, Liu XM. 2006. Constraints on the timing of uplift of the Yanshan fold and thrust belt, North China. Earth and Planetary Science Letters, 246, 336–352. doi: 10.1016/j.jpgl.2006.04.029.

    CrossRef Google Scholar

    Yao L, Lü ZC, Ye TZ, Peng ZS, Jia HX, Zhang ZH, Wu YF, Li RH. 2017. Zircon U-Pb, geochemical and Nd-Hf isotopic characteristics of quartz porphyry in the Baiyinchagan Sn polymetallic deposit, Inner Mongolia, southern Great Hinggan Range, China. Acta Petrologica Sinica, 33(10), 3183–3199 (in Chinese with English abstract).

    Google Scholar

    Yuan SD, Peng JT, Hao S, Li HM, Geng JZ, Zhang DL. 2011. In situ LA–MC–ICP–MS and ID–TIMS U–Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin–polymetallic mineralization. Ore Geology Reviews, 43, 235–242. doi: 10.1016/j.oregeorev.2011.08.002.

    CrossRef Google Scholar

    Yuan SD, Williams-Jones A E, Mao JW, Zhao PL, Yan Chen, Zhang DL. 2018. The origin of the Zhangjialong tungsten deposit, South China: implications for W-Sn mineralization in large granite batholiths. Economic Geology, 113(5), 1193–1208. doi: 10.5382/econgeo.2018.4587.

    CrossRef Google Scholar

    Zhai DG, Liu JJ, Zhang AL, Sun YQ. 2017. U-Pb, Re-Os and 40Ar/39Ar geochronology of porphyry Sn ± Cu ± Mo and polymetallic (Ag-Pb-Zn-Cu) vein mineralization at Bianjiadayuan, Inner Mongolia, NE China: Implications for discrete mineralization events. Economic Geology, 112, 2041–2059. doi: 10.5382/econgeo.2017.4540.

    CrossRef Google Scholar

    Zhai DG, Liu JJ, Zhang HY, Yao MJ, Wang JP, Yang YQ. 2014. S–Pb isotopic geochemistry, U–Pb and Re–Os geochronology of the Huanggangliang Fe–Sn deposit, Inner Mongolia, NE China. Ore Geology Reviews, 59, 109–122. doi: 10.1016/j.oregeorev.2013.12.005.

    CrossRef Google Scholar

    Zhao YM, Zhang DQ. 1997. Metallogeny and prospective evolution of copper–polymetallic deposits in the Great Hinggan Range and its adjacent regions: Beijing, Seismological Press (in Chinese with English abstract). 1–318.

    Google Scholar

    Zhou HY, Geng JZ, Cui YR, Li HK, Li HM. 2012. In situ U-Pb dating of apatite using LA-MC-ICP-MS. Acta Geoscientica Sinica, 33(6), 857–864 (in Chinese with English abstract). doi: 10.3975/cagsb.2012.06.03.

    CrossRef Google Scholar

    Zhou JB, Cao JL, Wilde SA, Zhao GC, Zhang JJ, Wang B. 2014. Paleo-Pacific subduction–accretion: Evidence from geochemical and U–Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33(12), 2444–2466. doi: 10.1002/2014TC003637.

    CrossRef Google Scholar

    Zhou YH, Chai L, Bao QZ. 2017. Mineralization and prospect of tungsten and tin in central Sikhote-Alin. Geological Review, 63(Suppl), 35–36 (in Chinese with English abstract). doi: 10.16509/j.georeview.2017.s1.018.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(6)

Article Metrics

Article views(1718) PDF downloads(10) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint