2022 Vol. 5, No. 1
Article Contents

Bang-jun Liu, Guang-chen Chu, Cun-liang Zhao, Yu-zhuang Sun, 2022. Leaching behavior of Li and Ga from granitic rocks and sorption on kaolinite: Implications for their enrichment in the Jungar Coalfield, Ordos Basin, China Geology, 5, 34-45. doi: 10.31035/cg2021024
Citation: Bang-jun Liu, Guang-chen Chu, Cun-liang Zhao, Yu-zhuang Sun, 2022. Leaching behavior of Li and Ga from granitic rocks and sorption on kaolinite: Implications for their enrichment in the Jungar Coalfield, Ordos Basin, China Geology, 5, 34-45. doi: 10.31035/cg2021024

Leaching behavior of Li and Ga from granitic rocks and sorption on kaolinite: Implications for their enrichment in the Jungar Coalfield, Ordos Basin

More Information
  • The granite collected from the Yinshan Mountain and kaolinite has been selected for the leaching and adsorption experiment, respectively, aiming to clarify the enrichment processes of Li and Ga during the deposition. Results suggest both Li and Ga could be leached out from granite by using different acid solutions of different pH and kaolinite can adsorb Li and Ga with varying degrees. Lithium and Ga had the highest leaching ratio when pH = 1. Special geological events (e.g. volcanic eruptions and wildfires), which could result in very low pH values of water in peatland, may have accelerated the release of Li and Ga from the source rocks. Kaolinite has the highest adsorption fraction was obtained at pH = 8. The different characteristics of Li and Ga displayed in the leaching and adsorption experiments probably result from the different occurrences and enrichment processes of Li and Ga in the coals. Lithium was probably enriched before the Li carriers (e.g. kaolinite) had been transported into paleomires because of its high leaching ratio and high adsorption fraction under neutral and alkaline conditions, whereas Ga was more likely concentrated by kaolinite and other carriers after it had been transported into the peat mires.

  • 加载中
  • Arroyo F, Font O, Chimenos JM, Fernández-Pereira C, Querol X, Coca P. 2014. IGCC fly ash valorisation. Optimisation of Ge and Ga recovery for an industrial application. Fuel Processing Technology, 124, 222–227. doi: 10.1016/j.fuproc.2014.03.004.

    CrossRef Google Scholar

    Bajo C, Rybach L, Weibel M. 1983. Extraction of uranium and thorium from Swiss granites and their microdistribution: 1. Extraction of uranium and thorium. Chemical Geology, 39(3–4), 281–297. doi: 10.1016/0009-2541(83)90020-7.

    CrossRef Google Scholar

    Banfield JF, Eggleton RA. 1988. Transmission electron microscope study of biotite weathering. Clays and Clay Minerals, 36(1), 47–60. doi: 10.1346/ccmn.1988.0360107.

    CrossRef Google Scholar

    Bennett R, Czechowski F. 1980. Gallium porphyrins in bituminous coal. Nature, 283(5746), 465–467. doi: 10.1038/283465a0.

    CrossRef Google Scholar

    Bisdom EBA, Stoops G, Delvigne J, Curmi P, Altemuller HJ. 1982. Micromorphology of weathering biotite and its secondary products. Pedologie, 32(2), 225–252.

    Google Scholar

    Bonnett R. 1996. Porphyrins in coal. International Journal of Coal Geology, 32(1–4), 137–149. doi: 10.1016/s0166-5162(96)00034–1.

    CrossRef Google Scholar

    Bonnett R, Cousins RPC. 1987. On the metal content and metal ion uptake of botanically specific peats and the derived humic acids. Organic Geochemistry, 11(6), 497–503. doi: 10.1016/0146-6380(87)90005-2.

    CrossRef Google Scholar

    Carvalho MS, Neto KCM, Nobrega AW, Medeiros JA. 2000. Recovery of gallium from aluminum industry residues. Separation Science and Technology, 35(1), 57–67. doi: 10.1081/ss-100100143.

    CrossRef Google Scholar

    Chen F, Wang, ZG, Zhu XQ. 1997. Formation of acidic solutions in nature and mechanism of their evolution toward ore-forming solutions–II: A study on the mechanism of transformation of hypergene cycling water into ore fluids. Acta Mineralogica Sinica, 17(4), 399–411. doi: 10.16461/j.cnki.1000-4734.1997.04.006.

    CrossRef Google Scholar

    Chi QH, Yan MC. 2007. Applied Geochemical Elemental Abundance Data Sheet. Beijing, Geological Publishing House, 1–148 (in Chinese).

    Google Scholar

    Dai SF, Graham IT, Ward CR. 2016. A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 159, 82–95. doi: 10.1016/j.coal.2016.04.005.

    CrossRef Google Scholar

    Dai SF, Jiang YF, Ward CR, Gu LD, Seredin VV, Liu HD, Zhou D, Wang XB, Sun YZ, Zou JH, Ren DY. 2012. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. International Journal of Coal Geology, 98, 10–40. doi: 10.1016/j.coal.2012.03.003.

    CrossRef Google Scholar

    Dai SF, Li D, Chou CL, Zhao L, Zhang Y, Ren DY, Ma YW, Sun YY. 2008. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. International Journal of Coal Geology, 74(3–4), 185–202. doi: 10.1016/j.coal.2008.01.001.

    CrossRef Google Scholar

    Dai SF, Ren DY, Chou CL, Li SS. Jiang YF. 2006. Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. International Journal of Coal Geology, 66(4), 253–270. doi: 10.1016/j.coal.2005.08.003.

    CrossRef Google Scholar

    Dai SF, Ren DY, Li SS. 2006. Discovery of the superlarge gallium ore deposit in Jungar, Inner Mongolia, North China. Chinese Science Bulletin, 51, 2243–2252. doi: 10.1007/s11434-006-2113-1.

    CrossRef Google Scholar

    Dai SF, Ren DY, Zhou YP, Seredin VV, Li DH, Zhang MQ, Hower JC, Ward CR, Wang XB, Zhao L, Song XL. 2014. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation. Journal of China Coal Society, 39(8), 1707–1715. doi: 10.13225/j.cnki.jccs.2014.9001.

    CrossRef Google Scholar

    Dai SF, Xie PP, Jia SH, Ward CR, Hower JC, Yan XY, French D. 2017. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geology Review, 80, 1–17. doi: 10.1016/j.oregeorev.2016.06.015.

    CrossRef Google Scholar

    Diakonov II, Pokrovski GS, Bénézeth P, Schott J, Dandurand JL, Escalier J. 1997. Gallium speciation in aqueous solution. Experimental study and modelling: Part 1. Thermodynamic properties of Ga (OH $)^-_4 $ to 300°C. Geochimica Cosmochimica Acta, 61(7), 1333–1343. doi: 10.1016/s0016-7037(97)00011-2.

    CrossRef $)^-_4 $ to 300°C" target="_blank">Google Scholar

    Fahlquist H, Noréus D, Callear S, David WIF, Hauback BC. 2011. Two new cluster ions, Ga[GaH3]5−4with a neopentane structure in Rb8Ga5H15and [GaH2]n−nwith a polyethylene structure in Rbn(GaH2)n, represent a new class of compounds with direct Ga-Ga bonds mimicking common hydrocarbons. Journal of Amemrican Chemical Society, 133(37), 14574–14577. doi: 10.1021/ja2067687.

    CrossRef Google Scholar

    Fang Z, Gesser HD. 1996. Recovery of gallium from coal fly ash. Hydrometallurgy, 41(2–3), 187–200.

    Google Scholar

    Feng BH. 1989. Carboniferous-Permian tonsteins formed by hydrolytic reformation of volcanic ash sediments in Northern China. Acta Sedimentoloica Sinica, 7(1), 101–108. doi: 10.14027/j.cnki.cjxb.1989.01.011.

    CrossRef Google Scholar

    Finkelman RB, Palmer CA, Krasnow MR, Aruscavage PJ, Sellers GA, Dulong FT. 1990. Combustion and leaching behavior of elements in the Argonne Premium coal samples. Energy Fuels, 4, 755–766. doi: 10.1021/ef00024a024.

    CrossRef Google Scholar

    Font O, Querol X, Juan R, Casado R, Ruiz CR, López-Soler, Á, Coca P, Peña FG. 2007. Recovery of gallium and vanadium from gasification fly ash. Jounal of Hazardous Materials, 139(3), 413–423. doi: 10.1016/j.jhazmat.2006.02.041.

    CrossRef Google Scholar

    Frick C. 1986. The behaviour of uranium, thorium and tin during leaching from a coarse-grained porphyritic granite in an arid environment. Journal of Geochemical Exploration, 25(3), 261–282. doi: 10.1016/0375-6742(86)90080-4.

    CrossRef Google Scholar

    Ge JY, Dai Y, Zhang ZS, Zhao DA, Li Q, Zhang Y, Yi L, Wu HB, Oldfield F, Guo ZT. 2013. Major changes in East Asian climate in the mid-Pliocene: Triggered by the uplift of the Tibetan Plateau or global cooling. Journal of Asian Earth Sciences, 69, 48–59. doi: 10.1016/j.jseaes.2012.10.009.

    CrossRef Google Scholar

    Georgakopoulos A, Filippidis A, Kassoli-Fournaraki A, Fernández-Turiel JL, Llorens JF, Mousty F. 2002. Leachability of major and trace elements of fly ash from Ptolemais power station, Northern Greece. Energy Sources, 24(2), 103–113. doi: 10.1080/00908310252774426.

    CrossRef Google Scholar

    Grant WH. 1963. Chemical weathering of biotite-plagioclase gneiss. Clays and Clay Minerals, 12, 455–463. doi: 10.1346/ccmn.1963.0120140.

    CrossRef Google Scholar

    Gutiérrez B, Pazos C, Coca J. 1997. Recovery of gallium from coal fly ash by a dual reactive extraction process. Waste Management & Research, 15(4), 371–382. doi: 10.1006/wmre.1996.0093.

    CrossRef Google Scholar

    Han HP, Wu CY, Bai QH, Chen P, Liu XS, Qin BP. 2014. Zircon U-Pb dating of clastic sandstone in the Upper Paleozoic from Wushenqi aea, Ordos Basin and its geological significance. Acta Sedimentologica Sinica, 32(4), 643–653. doi: 10.14027/j.cnki.cjxb.2014.04.008.

    CrossRef Google Scholar

    Hanson AD, Ritts BD, Moldowan JM. 2007. Organic geochemistry of oil and source rock strata of the Ordos Basin north-central China. American Association of Petroleum Geologist Bulletin, 91(9), 1273–1293. doi: 10.1306/05040704131.

    CrossRef Google Scholar

    He HT, Wang JX, Xing LC, Zhao SS, He MY, Zhao CL, Sun YZ. 2020. Enrichment mechanisms of lithium in the No. 6 coal seam from the Guanbanwusu Mine, Inner Mongolia, China: Explanations based on Li isotope values and density functional theory calculations. Jounal of Geochemical Exploration, 213, 1–9. doi: 10.1016/j.gexplo.2020.106510.

    CrossRef Google Scholar

    Hou YJ, Wang DD, Dong GQ. 2019. The net primary productivity of early Permian peatland and their control factors: Evidenced by the No. 6 coal seam of Jungar coalfield in North China. World Journal of Engineering, 16(5), 582–591. doi: 10.1108/wje-08-2018-0264.

    CrossRef Google Scholar

    Hower JC, Eble CF, Dai SF, Belkin HE. 2016. Distribution of rare earth elements in eastern Kentucky coals: Indicators of multiple modes of enrichment. International Journal of Coal Geology, 160–161, 73–81. doi: 10.1016/j.coal.2016.04.009.

    CrossRef Google Scholar

    Hower JC, Granite EJ, Mayfield DB, Lewis AS, Finkelman RB. 2016. Notes on contributions to the science of rare earth element enrichment in coal and coal combustion byproducts. Minerals, 6(2), 1–9. doi: 10.3390/min6020032.

    CrossRef Google Scholar

    Hu PP, Hou XJ, Zhang JB, Li SP, Wu H, Damø AJ, Li HQ, Wu QS, Xi XG. 2018. Distribution and occurrence of lithium in high-alumina-coal fly ash. International Journal of Coal Geology, 189, 27–34. doi: 10.1016/j.coal.2018.02.011.

    CrossRef Google Scholar

    Huang SQ, Ning SZ, Zhang JQ, Zhang L, Kang L. 2021. Characteristics of rare earth elements in coal in the Erlian Basin, Inner Mongolia, China, and its economic value. China Geology, 4, 256–265. doi: 10.31035/cg2021001.

    CrossRef Google Scholar

    Izquierdo M, Querol X. 2012. Leaching behaviour of elements from coal combustion fly ash: An overview. International Journal of Coal Geology, 94, 54–66. doi: 10.1016/j.coal.2011.10.006.

    CrossRef Google Scholar

    Jiang WT, Peacor DR. 1991. Transmission electron microscopic study of the kaolinitization of muscovite. Clays and Clay Minerals, 39, 1–13. doi: 10.1346/ccmn.1991.0390101.

    CrossRef Google Scholar

    Lewińska-Preis L, Fabiańska, MJ, Ćmiel S, Kita A. 2009. Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway. International Journal of Coal Geology, 80(3–4), 211–223. doi: 10.1016/j.coal.2009.09.007.

    CrossRef Google Scholar

    Li J, Wu P, Yang GH, Pan L, Zhuang XG, Querol X, Moreno N, Li BQ, Shangguan YF. 2020. Enrichment of Li-Ga-Zr-Hf and Se-Mo-Cr-V-As-Pb assemblages in the No. 11 superhigh organic sulfur coal from the sangshuping coal mine, Weibei Coalfield, Shaanxi, North China. Energies, 13(24), 1–19. doi: 10.3390/en13246660.

    CrossRef Google Scholar

    Li J, Zhuang XG, Yuan W, Liu B, Querol X, Font O, Moreno N, Li JF, Gang T, Liang GK. 2016. Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia. International Journal of Coal Geology, 167, 157–175. doi: 10.1016/j.coal.2016.09.018.

    CrossRef Google Scholar

    Li M, Gao JR. 2010. Basement faults and volcanic rock distributions in the Ordos Basin. Science China Earth Sciences, 53, 1625–1633. doi: 10.1007/s11430-010-4042-8.

    CrossRef Google Scholar

    Li SS. 2005. Elemental Geochemistry of the Late Paleozoic Coals from Ordos Basin, China. Beijing, China University of Mining and Technology, Ph.D. Thesis, 25–64 (in Chinese with English abstract).

    Google Scholar

    Liang Q, Jing H, Gregoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3), 507–513. doi: 10.1016/s0039-9140(99)00318-5.

    CrossRef Google Scholar

    Liu BJ, Wang JY, He HT, Mishra V, Li YH, Wang JX, Zhao CL. 2020. Geochemistry of Carboniferous coals from the Laoyaogou mine, Ningwu coalfield, Shanxi Province, northern China: Emphasis on the enrichment of valuable elements. Fuel, 279. doi: 10.1016/j.fuel.2020.118414.

    CrossRef Google Scholar

    Liu CL, Shi ZC. 1985. Mineralogy of high alumina clay-bauxite deposits in Shanxi and Henan Provinces. Acta Sedimentologica Sinica, 9(2), 25–33. doi: 10.14027/j.cnki.c.jxb.1991.02.003.

    CrossRef Google Scholar

    Liu GJ, Yang PY, Peng ZC, Wang GL, Cao ZH. 2002. Occurrence of trace elements in coal of Yanzhou Mining District. Geochimica, 31(1), 85–90. doi: 10.19700/j.0379-1726.2002.01.013.

    CrossRef Google Scholar

    Liu HJ, Zhang YJ, Wang HW, Jia YR, Long YZ. 1991. Study on Lithofacies Palaeogeography of Coal-bearing Formation in Jungar Coalfield. Beijing, Geological Publishing House, 1–128 (in Chinese).

    Google Scholar

    Liu XF, Wang QF, Feng YW, Li ZM, Cai SH. 2013. Genesis of the Guangou karstic bauxite deposit in western Henan, China. Ore Geology Review, 55, 162–175. doi: 10.1016/j.oregeorev.2013.06.002.

    CrossRef Google Scholar

    Liu YJ, Cao LM, Li ZL, Wang HN, Chu TQ, Zhang JR. 1984. Elemental Geochemistry. Beijing, Science Press, 1–548 (in Chinese).

    Google Scholar

    Lyons PC, Morelli JJ, Hercules DM, Lineman D, Thompson-Rizer CL, Dulong FT. 1990. The laser microprobe mass analyser for determining partitioning of minor and trace elements among intimately associated macerals: An example from the Swallow Wood coal bed, Yorkshire, UK. Fuel, 69(6), 771–775. doi: 10.1016/0016-2361(90)90044-q.

    CrossRef Google Scholar

    Mastalerz M, Drobniak A. 2012. Gallium and germanium in selected Indiana coals. International Journal of Coal Geology, 94, 302–313. doi: 10.1016/j.coal.2011.09.007.

    CrossRef Google Scholar

    Meunier A, Velde B. 1979. Weathering mineral facies in altered granites: The importance of local small-scale equilibria. Mineral. Magazine, 43, 261–268. doi: 10.1180/minmag.1979.043.326.08.

    CrossRef Google Scholar

    Moskalyk RR. 2003. Gallium: The backbone of the electronics industry. Minerals Engineering, 16(10), 921–929. doi: 10.1016/j.mineng.2003.08.003.

    CrossRef Google Scholar

    Papoulis D, Tsolis-Katagas P, Katagas C. 2004. Progressive stages in the formation of kaolin minerals of different morphologies in the weathering of plagioclase. Clays and Clay Minerals, 52, 275–286. doi: 10.1346/ccmn.2004.0520303.

    CrossRef Google Scholar

    Peiravi M, Ackah L, Guru R, Mohanty M, Liu J, Xu B, Zhu X, Chen L. 2017. Chemical extraction of rare earth elements from coal ash. Minerals & Metallurgical Processing, 34, 170–177. doi: 10.19150/mmp.7856.

    CrossRef Google Scholar

    Qin SJ, Sun, YZ, Li YH, Wang JX, Zhao CL, Gao K. 2015. Coal deposits as promising alternative sources for gallium. Earth-Science Reviews, 150, 95–101. doi: 10.1016/j.earscirev.2015.07.010.

    CrossRef Google Scholar

    Qin SJ, Zhao CL, Li YH, Zhang Y. 2015. Review of coal as a promising source of lithium. International Journal of Oil, Gas Coal Technology, 9(2), 215–229. doi: 10.1504/ijogct.2015.067490.

    CrossRef Google Scholar

    Querol X, Alastuey A, Lopez-Soler A, Plana F, Zeng RS, Zhao JH, Zhuang XG. 1999. Geological controls on the quality of coals from the West Shandong mining district, Eastern China. International Journal of Coal Geology, 42(1), 63–88. doi: 10.1016/s0166-5162(99)00030-0.

    CrossRef Google Scholar

    Robertson IDM, Eggleton RA. 1991. Weathering of granitic muscovite to kaolinite and halloysite and of plagioclase-derived kaolinite to halloysite. Clays and Clay Minerals, 39, 113–126. doi: 10.1346/ccmn.1991.0390201.

    CrossRef Google Scholar

    Sager M. 1993. Determination of arsenic, cadmium, mercury, stibium, thallium and zinc in coal and coal fly-ash. Fuel, 72(9), 1327–1330. doi: 10.1016/0016-2361(93)90132-l.

    CrossRef Google Scholar

    Sahoo PK, Kim K, Powell MA, Equeenuddin SM. 2016. Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management. International Journal of Coal Science and Technology, 3, 267–283. doi: 10.1007/s40789-016-0141-2.

    CrossRef Google Scholar

    Scrosati B, Garche J. 2010. Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419–2430. doi: 10.1016/j.jpowsour.2009.11.048.

    CrossRef Google Scholar

    Seredin VV, Dai SF, Sun YZ, Chekryzhov IY, 2013. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 31, 1–11. doi: 10.1016/j.apgeochem.2013.01.009.

    Google Scholar

    Seredin VV, Tomson IN. 2008. The West Primorye noble-rare metal zone: A new Cenozoic metallogenic taxon in the Russian Far East, in: Doklady Earth Sciences. Geology, 421(1), 745–750. doi: 10.1134/s1028334x08050073.

    CrossRef Google Scholar

    Singh B, Gilkes RJ. 1991. Weathering of a chromian muscovite to kaolinite. Clays and Clay Minerals, 39, 571–579. doi: 10.1346/ccmn.1991.0390602.

    CrossRef Google Scholar

    Sun YZ, Li YH, Zhao CL, Lin MY, Wang JX, Qin SJ. 2010. Concentrations of lithium in Chinese coals. Energy Exploration & Exploitation, 28(2), 97–104. doi: 10.1260/0144-5987.28.2.97.

    CrossRef Google Scholar

    Sun YZ, Zhao CL, Li YH, Wang JX, Liu SM. 2012. Li distribution and mode of occurrences in Li-bearing coal seam #6 from the Guanbanwusu Mine, Inner Mongolia, Northern China. Energy Exploration & Exploitation, 30(1), 109–130. doi: 10.1260/0144-5987.30.1.109.

    CrossRef Google Scholar

    Sun YZ, Zhao CL, Li YH, Wang, JX, Zhang JY, Jin Z, Lin MY, Kalkreuth W. 2013a. Further information of the associated Li deposits in the No.6 coal seam at Jungar coalfield, Inner Mongolia, Northern China. Acta Geologica Sinica, 87(4), 1097–1108. doi: 10.1111/1755-6724.12112.

    CrossRef Google Scholar

    Sun YZ, Zhao CL, Püttmann W, Kalkreuth W, Qin SJ. 2017. Evidence of widespread wildfires in a coal seam from the middle Permian of the North China Basin. Lithosphere, 9(4), 595–608. doi: 10.1130/l638.1.

    CrossRef Google Scholar

    Sun YZ, Zhao CL, Qin SJ, Xiao L, Li, Z, Lin MY. 2016. Occurrence of some valuable elements in the unique high-aluminium coals from the Jungar coalfield, China. Ore Geology Review, 72, 659–668. doi: 10.1016/j.oregeorev.2015.09.015.

    CrossRef Google Scholar

    Sun YZ, Zhao CL, Zhang JY, Yang JJ, Zhang YZ, Yuan Y, Xu J, Duan DJ. 2013b. Concentrations of valuable elements of the coals from the Pingshuo Mining District, Ningwu Coalfield, Northern China. Energy Exploration & Exploitation, 31(5), 727–744. doi: 10.1260/0144-5987.31.5.727.

    CrossRef Google Scholar

    Swaine DJ. 1990. Trace Elements in Coal. London, Butterworth-Heinemann Ltd, Oxford, 1–296.

    Google Scholar

    Taggart RK, Hower JC, Hsu-Kim H. 2018. Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash. International Journal of Coal Geology, 196, 106–114. doi: 10.1016/j.coal.2018.06.021.

    CrossRef Google Scholar

    Taylor SR, 1964. Abundance of chemical elements in the continental crust: A new table. Geochimimca Cosmochimica Acta, 28(8), 1273–1285. doi: 10.1016/0016-7037(64)90129-2.

    Google Scholar

    Tsuboi I, Kasai S, Kunugita E, Komasawa I. 1991. Recovery of gallium and vanadium from coal fly Ash. Journal of Chemical Engineering of Japan, 24(1), 15–20. doi: 10.1252/jcej.24.15.

    CrossRef Google Scholar

    Tu GC, Gao ZM, Hu RZ, Zhang Q, Li CY, Zhao ZH, Zhang BG. 2004. The Geochemistry and Ore-forming Mechanism of the Dispersed Elements. Beijing, Science Press, 1–424 (in Chinese).

    Google Scholar

    Vassilev SV, Vassileva CG. 1997. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations. Fuel Processing Technology, 51(1–2), 19–45. doi: 10.1016/s0378-3820(96)01082-x.

    CrossRef Google Scholar

    Wang JX, Fu ZH, Hu YF, Yang Z, Ma JL, Sun YZ. 2021. Geochemical characteristics of trace elements in the No. 9 coal seam of the Daheng mine, Ningwu coalfield, Shanxi Province, China. China Geology, 4, 266–273. doi: 10.31035/cg2021022.

    CrossRef Google Scholar

    Wang JX, Xiao L, Li P, Arbuzov S, Ding SL, 2018. Occurrence mode of selected elements of coal in the Ordos Basin. Energy Exploration & Exploitation, 37(6), 1680–1693. doi: 10.1177/0144598718763939.

    Google Scholar

    Wang JY, Wang WF, Li J, Qin Y. 2010. Deposit features of Ge, Ga and U elements in northern part of Datong Coalfield. Coal Science and Technology, 38(2), 117–121. doi: 10.13199/j.cst.2010.02.90.wangjy.005.

    CrossRef Google Scholar

    Wang WF, Qin Y, Liu XH, Zhao JL, Wang JY, Wu GD, Liu JT. 2011. Distribution, occurrence and enrichment causes of gallium in coals from the Jungar Coalfield, Inner Mongolia. Science China Earth Sciences, 54(7), 1053–1068. doi: 10.1007/s11430-010-4147-0.

    CrossRef Google Scholar

    Wang XM, Wang XM, Pan, ZJ, Pan WH, Yin XB, Chai PC, Pan SD, Yang Q. 2019. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui Basin, northern China, with emphasis on lithium enrichment. International Journal of Coal Geology, 214, 1–14. doi: 10.1016/j.coal.2019.103254.

    CrossRef Google Scholar

    Wang YY, Guo WY, Zhang GD. 1979. Application of some geochemical indicators in determining of sedimentary environment of the Funing Group (Paleogene), Jin-Hu Depression, Jiangsu Province. Journal of Tongji University, 7, 51–60.

    Google Scholar

    Ward CR. 2016. Analysis, origin and significance of mineral matter in coal: An updated review. International Journal of Coal Geology, 165, 1–27. doi: 10.1016/j.coal.2016.07.014.

    CrossRef Google Scholar

    Warren CJ, Dudas MJ. 1988. Leaching behaviour of selected trace elements in chemically weathered alkaline fly ash. Science of Total Environment, 76(2–3), 229–246. doi: 10.1016/0048-9697(88)90110-6.

    CrossRef Google Scholar

    Williams H, Turner FJ, Gilbert CM. 1953. Petrography: An introduction to the study of rocks in thin section. Journal of Geology, 92(4), 607. doi: 10.1086/628895.

    CrossRef Google Scholar

    Wood SA, Samson IM. 2006. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Review, 28(1), 57–102. doi: 10.1016/j.oregeorev.2003.06.002.

    CrossRef Google Scholar

    Wu YQ, Zhao ZQ. 2011. Experimental study on the adsorption of Li + on Kaolinite and Montmorillonite. Acta Mineralogica Sinica, 31(2), 291–295. doi: 10.16461/j.cnki.1000-4734.2011.02.018.

    CrossRef Google Scholar

    Xiao L, Zhao B, Duan PP, Shi ZX, Ma J, Lin MY, Xiao L. 2016. Geochemical characteristics of trace elements in the No. 6 coal seam from the Chuancaogedan Mine, Jungar Coalfield, Inner Mongolia, China. Minerals, 6(2), 1–14. doi: 10.3390/min6020028.

    CrossRef Google Scholar

    Yan ZC, Liu GJ, Sun RY, Wu D, Wu B, Zhou CC, Tang Q, Chen J. 2014. Geochemistry of trace elements in coals from the Huainan Coalfield, Anhui, China. Geochemical Journal, 48(4), 331–344. doi: 10.2343/geochemj.2.0309.

    CrossRef Google Scholar

    Yang H, Fu JH, Wei XH, Liu XS. 2008. Sulige field in the Ordos Basin: Geological setting, field discovery and tight gas reservoirs. Marine and Petroleum Geology, 25(4–5), 387–400. doi: 10.1016/j.marpetgeo.2008.01.007.

    CrossRef Google Scholar

    Yang L, Wang QQ, Bai X, Deng J, Hu YJ. 2018. Mapping of trace elements in coal and ash research based on a bibliometric analysis method spanning 1971–2017. Minerals, 8(3), 1–18. doi: 10.3390/min8030089.

    CrossRef Google Scholar

    Yang TN, Li JY, Zhang J, Hou KJ. 2011. The Altai-Mongolia terrane in the Central Asian Orogenic Belt (CAOB): A peri-Gondwana one? Evidence from zircon U-Pb, Hf isotopes and REE abundance Precambrian Research, 187(1–2), 79–98. doi: 10.1016/j.precamres.2011.02.005.

    CrossRef Google Scholar

    Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, Xi YQ. 2015. A comprehensive review on the applications of coal fly ash. Earth-Science Review, 141, 105–121. doi: 10.1016/j.earscirev.2014.11.016.

    CrossRef Google Scholar

    Yao ZT, Xia MS, Sarker PK, Chen T. 2014. A review of the alumina recovery from coal fly ash, with a focus in China. Fuel, 120, 74–85. doi: 10.1016/j.fuel.2013.12.003.

    CrossRef Google Scholar

    Yi TS, Qin Y, Wu YY, Li ZF. 2007. Gallium accumulation and geological controls in coal seam and its floor from Liangshan formation, Kaili, eastern Guizhou, China. Journal of China University Mining Technology, 36(3), 330–334.

    Google Scholar

    Yuan Y, Tang SH, Zhan SH. 2019. Concentrations and modes of occurrence of some potentially valuable and toxic elements in the No. 5 coal from the Yanzishan Mine, Datong Coalfield, Shanxi Province, China. Energy Exploration & Exploitation, 37(6), 1694–1720. doi: 10.1177/0144598719861272.

    CrossRef Google Scholar

    Zandi M, Russell NV. 2007. Design of a leaching test framework for coal fly ash accounting for environmental conditions. Environmental Monitoring Assessment, 131, 509–526. doi: 10.1007/s10661-006-9496-y.

    CrossRef Google Scholar

    Zhang JY, Yuan Y, Zhang YZ, Duan DJ, Xu J, Zhao, CL, Sun YZ, Yang JJ. 2013. Concentrations of valuable elements of the coals from the Pingshuo Mining District, Ningwu Coalfield, Northern China. Energy Exploration & Exploitation, 31, 727–744. doi: 10.1260/0144-5987.31.5.727.

    CrossRef Google Scholar

    Zhang WC, Rezaee M, Bhagavatula A, Li YG, Groppo J, Honaker R. 2015. A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by-products. International Journal of Coal Preparation and Utilization, 35(6), 395–300. doi: 10.1080/19392699.2015.1033097.

    CrossRef Google Scholar

    Zhang WC, Honaker R. 2020. Characterization and recovery of rare earth elements and other critical metals (Co, Cr, Li, Mn, Sr, and V) from the calcination products of a coal refuse sample. Fuel, 267, 1–12. doi: 10.1016/j.fuel.2020.117236.

    CrossRef Google Scholar

    Zhao CL. 2015. Distribution and Enrichment Mechanism of Multi-metallic Elements Associated with Coal in the Ordos Basin. Beijing, China University of Mining and Technology, Ph.D. Thesis, 1–133 (in Chinese with English abstract).

    Google Scholar

    Zhao CL, Liu BJ, Xiao L, Li YH, Liu SM, Li ZX, Zhao B, Ma JL, Chu GC, Gao, PP, Sun YZ. 2017. Significant enrichment of Ga, Rb, Cs, REEs and Y in the Jurassic No. 6 coal in the Iqe Coalfield, northern Qaidam Basin, China—A hidden gem. Ore Geology Review, 83, 1–13. doi: 10.1016/j.oregeorev.2016.12.012.

    CrossRef Google Scholar

    Zhao CL, Qin SJ, Yang YC, Li YH, Lin MY. 2010. Concentration of gallium in the Permo-Carboniferous coals of China. Energy Exploration & Exploitation, 27(5), 333–343. doi: 10.1260/0144-5987.27.5.333.

    CrossRef Google Scholar

    Zhao L, Dai SF, Nechaev VP, Nechaeva EV, Graham IT, French D. 2019. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. Ore Geology Review, 115, 1–16. doi: 10.1016/j.oregeorev.

    CrossRef Google Scholar

    Zhao L, Sun JH, Guo WM, Wang PP, Ji DP. 2016. Mineralogy of the Pennsylvanian coal seam in the Datanhao mine, Daqingshan Coalfield, Inner Mongolia, China: Genetic implications for mineral matter in coal deposited in an intermontane basin. International Journal of Coal Geology, 167, 201–214. doi: 10.1016/j.coal.2016.10.006.

    CrossRef Google Scholar

    Zhou AC. 2000. Late Paleozoic Basin Evolution and Basin-mountain Coupling in the Northern Margin of the North China Block. Xi’an, Northwest University, Ph.D. Thesis, 1–144 (in Chinese with English abstract).

    Google Scholar

    Zhou R. 2019. The Relationship between Late Paleozoic – Early Mesozoic Sedimentation and Tectonicism in North Central China. Taiyuan, Taiyuan University of Technology, Ph.D. Thesis, 1–163 (in Chinese with English abstract).

    Google Scholar

    Zhou YP, Ren YL. 1981. Gallium distribution in coal of late permian coal fields, southwestern China, and its geochemical characteristics in the oxidized zone of coal seams. International Journal of Coal Geology, 1(3), 235–260. doi: 10.1016/0166-5162(81)90004-5.

    CrossRef Google Scholar

    Zou GZ, Du DY, Liu JP. 1999. Adsorption model of humic acid on gallium and indium. Chinese Journal of Rare Metals, 23(5), 398–400. doi: 10.13373l.cnki.cjrm1999.05.018.

    CrossRef Google Scholar

    Zou JH, Tian HM, Wang Z. 2017. Leaching process of rare earth elements, gallium and niobium in a coal-bearing strata-hosted rare metal deposit—A case study from the Late Permian tuff in the Zhongliangshan Mine, Chongqing. Metals (Basel), 7(5), 1–10. doi: 10.3390/met7050174.

    CrossRef Google Scholar

    Zubovic P. 1976. Geochemistry of trace elements in coal. Symposium Proceedings: Environmental Aspects of Fuel Conversion Technology II, 47–63.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(6)

Article Metrics

Article views(1480) PDF downloads(14) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint