Citation: | Chu Wu, Tao Hong, Xing-Wang Xu, Cheng-Xi Wang, Lian-Hui Dong, 2022. A-type granites induced by a breaking-off and delamination of the subducted Junggar oceanic plate, West Junggar, Northwest China, China Geology, 5, 457-474. doi: 10.31035/cg2021033 |
The A-type granites with highly positive εNd(t) values in the West Junggar, Central Asian Orogenic Belt (CAOB), have long been perceived as a group formed under the same tectonic and geodynamic setting, magmatic sourceq and petrogenetic model. Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate: the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc; whereas the Akebasitao and Miaoergou granites formed in the accretionary prism. Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes, zircon U-Pb ages and Hf-O isotopes data on these granites. The granites in the Baogutu continental arc and accretionary prism contain similar zircon εHf(t) values (+10.9 to +16.2) and bulk-rock geochemical characteristics (high SiO2 and K2O contents, enriched LILEs (except Sr), depleted Sr, Ta and Ti, and negative anomalies in Ce and Eu). The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages (315–305 Ma) and moderate 18O enrichments (δ18Ozircon=+6.41‰–+7.96‰); whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages (305–301 Ma) with higher 18O enrichments (δ18Ozircon=+8.72‰–+9.89‰). The authors deduce that the elevated 18O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts. The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism. The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt (induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc). On the other hand, the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism, consisting of the low-temperature altered oceanic crust, juvenile oceanic sediments, and mantle basaltic melt. These granites could be related to the asthenosphere's counterflow and upwelling, caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.
Beard JS, Lofgren GE. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2), 365–401. doi: 10.1093/petrology/32.2.365. |
Boynton WV. 1984. Geochemistry of the rare earth elements. Meteorite studies. In: Henderson (Ed.), Rare Earth Element Geochemistry. Elsevier, 63-114. |
Cao MJ, Qin KZ, Li GM, Evans NJ, Hollings P, Jin LY. 2016. Genesis of ilmenite series I-type granitoids at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China. Lithos, 246-247, 13–30. doi: 10.1016/j.lithos.2015.12.019. |
Chauvel C, Lewin E, Carpentier M, Arndt N, Marini J. 2008. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nature Geoscience, 1, 64–67. doi: 10.1038/ngeo.2007.51. |
Chen B, Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar fold belt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta, 69(5), 1307–1320. doi: 10.1016/j.gca.2004.09.019. |
Chen B, Jahn BM. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences, 23(5), 691–703. doi: 10.1016/s1367-9120(03)00118-4. |
Chen XJ, Zhang KH, Zhang GL, Zhou J. 2016. Characteristics, Petrogenesis and Tectonic Implications of the Permian Omoertage Alkaline Granites in Harlik area, Xinjiang. Acta Petrologica et Mineralogica, 35(6), 929–946 (in Chinese with English abstract). |
Choulet F, Faure M, Cluzel D, Chen Y, Lin W, Wang B, Jahn BM. 2013. Architecture and evolution of accretionary orogens in the Altaids collage: The early Paleozoic West Junggar (NW China). American Journal of Science, 312, 1098–1145. doi: 10.2475/10.2012.02. |
Christiansen EH, Haapala I, Hart GL. 2007. Are Cenozoic topaz rhyolites the erupted equivalents of Proterozoic rapakivi granites? Examples from the western United States and Finland Lithos, 97(1-2), 219–246. doi: 10.1016/j.lithos.2007.01.010. |
Collins WJ, Beams SD, White AJR, Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80, 189–200. doi: 10.1007/bf00374895. |
Corfu F, Hanchar JM, Hoskin PWO, Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1), 469–500. doi: 10.2113/0530469. |
Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7), 641–644. doi: 10.1130/0091-7613(1992)020%3C0641:csotat%3E2.3.co;2. |
Eiler JM. 2001. Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle Rocks. Reviews in Mineralogy and Geochemistry, 43(1), 319–364. doi: 10.2138/gsrmg.43.1.319. |
Eiler JM, Farley KA, Valley JW, Hauri E, Craig H, Hart SR, Stolper EM. 1997. Oxygen isotope variations in ocean island basalt phenocrysts. Geochimica et Cosmochimica Acta, 61(11), 2281–2293. doi: 10.1016/s0016-7037(97)00075-6. |
Esmaeili R, Xiao WJ, Griffin WL, Shafaii Moghadam H, Zhang Z, Ebrahimi M, Zhang J, Wan B, Ao S, Bhandari S. 2020. Reconstructing the source and growth of the Makran accretionary complex: Constraints from detrital zircon U-Pb geochronology. Tectonics, 39(2), e2019TC005963. doi: 10.1029/2019TC005963. |
Feng Y, Coleman RG, Tilton G, Xiao X. 1989. Tectonic evolution of the West Junggar Region, Xinjiang, China. Tectonics, 8(4), 729–752. doi: 10.1029/tc008i004p00729. |
Frost BR, Frost CD. 2008. On charnockites. Gondwana Research, 13(1), 30–44. doi: 10.1016/j.gr.2007.07.006. |
Gardien V, Thompson AB, Grujic D, Ulmer P. 1995. Experimental melting of biotite+ plagioclase+ quartz±muscovite. assemblages and implications for crustal melting. Journal of Geophysical Research, 100(B8), 15581–15591. https://doi.org/10.1029/95jb00916. |
Geng HY, Sun M, Yuan C, Xiao WJ, Xian WS, Zhao GC, Zhang LF, Wong K, Wu FY. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? Chemical Geology, 266(3-4), 364–389. doi: 10.1016/j.chemgeo.2009.07.001. |
Geng HY, Sun M, Yuan C, Zhao GC, Xiao WJ. 2011. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 42(5), 854–866. doi: 10.1016/j.jseaes.2011.01.006. |
Goodge JW, Vervoort JD. 2006. Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence. Earth and Planetary Science Letters, 243(3-4), 711–731. doi: 10.1016/j.jpgl.2006.01.040. |
Gregory RT, Taylor HP. 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. Journal of Geophysical Research, 86(B4), 2737–2755. doi: 10.1029/jb086ib04p02737. |
Guo HL, Zhu RK, Shao LY, He DB, Luo Z. 2002. Lithofacies paleogeography of the Carboniferous in Northwest China. Journal of Palaeogeography, 4(1), 25–35 (in Chinese with English abstract). |
Han BF, Ji JQ, Song B, Chen LH, Zhang L. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China Part I.: timing of postcollisional plutonism. Acta Petrologica Sinica, 22(5), 1077–1086 (in Chinese with English abstract). |
Han BF, Wang SG, Jahn BM, Hong DW, Kagami H, Sun YL. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology, 138(3-4), 135–159. doi: 10.1016/s0009-2541(97)00003-x. |
Handley HK, Turner S, Macpherson CG, Gertisser R, Davidson JP. 2011. Hf-Nd isotope and trace element constraints on subduction inputs at island arcs: Limitations of Hf anomalies as sediment input indicators. Earth and Planetary Science Letters, 304(1–2), 212–223. doi: 10.1016/j.jpgl.2011.01.034. |
Heinhorst J, Lehmann B, Ermolov P, Serykh V, Zhurutin S. 2000. Paleozoic crustal growth and metallogeny of Central Asia: evidence from magmatic-hydrothermal ore systems of Central Kazakhstan. Tectonophysics, 328(1-2), 69–87. doi: 10.1016/s0040-1951(00)00178-5. |
Hong T, Xu XW, Gao J, Peters SG, Zhang D, Jielili R, Xiang P, Li H, Wu C, You J, Liu J, Ke Q. 2018. Ore-forming adakitic porphyry produced by fractional crystallization of oxidized basaltic magmas in a subcrustal chamber (Jiamate, East Junggar, NW China). Lithos, 296-299, 96–112. doi: 10.1016/j.lithos.2017.11.004. |
Hopkinson NT, Harris NBW, Warren CJ, Spencer CJ, Roberts NMW, Horstwood MSA, Parrish RR, EI MF. 2017. The identification and significance of pure sediment-derived granites. Earth and Planetary Science Letters, 467, 57–63. doi: 10.1016/j.jpgl.2017.03.018. |
Hoskin PWO, Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4), 423–439. doi: 10.1046/j.1525-1314.2000.00266.x. |
Huang HQ, Li XH, Li WX, Li ZX. 2011. Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China. Geology, 39(10), 903–906. doi: 10.1130/g32080.1. |
Huang YQ, Jiang YD, Yu Y, Collett S, Wang S, Shu T, Xu K. 2020. Nd-Hf Isotopic decoupling of the Silurian–Devonian granitoids in the Chinese Altai: A consequence of crustal recycling of the Ordovician accretionary wedge?. Journal of Earth Science, 31(1), 102–114. https://doi.org/10.1007/s12583-019-1217-x. |
Jahn BM, Wu FY, Chen B. 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2), 82–92. doi: 10.18814/epiiugs/2000/v23i2/001. |
Jahn BM, Litvinovsky BA, Zanvilevich AN, Reichow M. 2009. Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: Evolution, petrogenesis, and tectonic significance. Lithos, 113(3-4), 521–539. doi: 10.1016/j.lithos.2009.06.015. |
Jiang N, Zhang SQ, Zhou WG, Liu YS. 2009. Origin of a Mesozoic granite with A-type characteristics from the North China craton: highly fractionated from I-type magmas? Contributions to Mineralogy and Petrology, 158(1), 113–130. doi: 10.1007/s00410-008-0373-2. |
Jiang YD, Schulmann K, Sun M, Štípská P, Guy A, Janoušek V, Lexa O, Yuan C. 2016. Anatexis of accretionary wedge, Pacific-type magmatism, and formation of vertically stratified continental crust in the Altai Orogenic Belt. Tectonics, 35(12), 3095–3118. doi: 10.1002/2016tc004271. |
Jiang YH, Ling HF, Jiang SY, Fan HH, Shen WZ, Ni P. 2005. Petrogenesis of a late Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, Southeast China. Journal of Petrology, 46(6), 1121–1154. doi: 10.1093/petrology/egi012. |
Jung S, Hoernes S, Mezger K. 2000. Geochronology and petrogenesis of Pan-African, syn-tectonic, S-type and post-tectonic A-type granite (Namibia): products of melting of crustal sources, fractional crystallization and wall rock entrainment. Lithos, 50(4), 259–287. doi: 10.1016/s0024-4937(99)00059-6. |
Kopp C, Fruehn J, Flueh ER, Reichert C, Kukowski N, Bialas J, Klaeschen D. 2000. Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics, 329(1–4), 171–191. doi: 10.1016/s0040-1951(00)00195-5. |
Landenberger B, Collins WJ. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: evidence from the Chaelundi complex, eastern Australia. Journal of Petrology, 37(1), 145–170. doi: 10.1093/petrology/37.1.145. |
Le Bas MJ, Le Maître RW, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali silica diagram. Journal of Petrology, 27(3), 745–750. doi: 10.1093/petrology/27.3.745. |
Li CF, Wang XC, Guo JH, Chu ZY, Feng LJ. 2016. Rapid separation scheme of Sr, Nd, Pb and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry. Journal of Analytical Atomic Spectrometry, 31, 1150–1159. doi: 10.1039/c5ja00477b. |
Li S, Wang T, Wilde SA, Tong Y. 2013. Evolution, source, and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Science Reviews, 126, 206–234. doi: 10.1016/j.earscirev.2013.06.001. |
Li XH, Li WX, Li QL, Wang XC, Liu Y, Yang YH. 2010. Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: evidence from in situ zircon U-Pb dating, Hf-O isotopes, and whole-rock geochemistry. Lithos, 114(1-2), 1–15. doi: 10.1016/j.lithos.2009.07.011. |
Li XH, Liu Y, Li QL, Guo CH, Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry Geophysics Geosystems, 10(4), . doi: 10.1029/2009gc002400. |
Liu J, Xia QK, Deloule E, Chen H, Feng M. 2015. Recycled oceanic crust and marine sediment in the source of alkali basalts in Shandong, eastern China: Evidence from magma water content and oxygen isotopes. Journal of Geophysical Research: Solid Earth, 120(12), 8281–8303. doi: 10.1002/2015jb012476. |
Liu W, Liu XJ, Liu LJ. 2013. Underplating generated A- and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: Insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes. Lithos, 179, 293–319. doi: 10.1016/j.lithos.2013.08.009. |
Loiselle MC, Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs, 11, 468. |
Luo Q, Zhang C, Jiang S, Liu LF, Liu DD, Kong XY, Liu XY, Wang XP. 2017. Partial melting of oceanic sediments in subduction zones and its contribution to the petrogenesis of peraluminous granites in the Chinese Altai. Geological Magazine, 156(4), 585–604. doi: 10.1017/S0016756817001029. |
Ma C, Xiao WJ, Windley BF, Zhao GP, Han CM, Zhang J, Luo J, Li C. 2012. Tracing a subducted ridge-transform system in a late Carboniferous accretionary prism of the southern Altaids; orthogonal sanukitoid dyke swarms in western Junggar, NW China. Lithos, 140–141, 152–165. doi: 10.1016/j.lithos.2012.02.005. |
Maniar PD, Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5), 635–643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2. |
Mattey D, Lowry D, MacPherson C. 1994. Oxygen isotope composition of mantle peridotite. Earth and Planetary Science Letters, 128(3–4), 231–241. doi: 10.1016/0012-821X(94)90147-3. |
Middlemost EAK. 1985. Magmas and Magmatic Rocks: an Introduction to Igneous Petrology. Longman Group United Kingdom, 1–266. doi: 10.1180/minmag.1986.050.355.34. |
Montel JM, Vielzeuf D. 1997. Partial melting of metagreywack, part II. Compositions of minerals and melts. Contributions to Mineralogy and Petrology, 128, 176–196. https://doi.org/10.1007/s004100050302. |
O’Hara KD, Yang XY, Xie GY, Li ZC. 1997. Regional δ18O gradients and fluid-rock interaction in the Altay accretionary complex, northwest China. Geology, 25(5), 443–446. doi: 10.1130/0091-7613(1997)025<0443:ROGAFR>2.3.CO;2. |
Patiño-Douce AE, Johnston AD. 1991. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 107, 202–218. https://doi.org/10.1007/BF00310707. |
Patiño-Douce AE, Beard JS. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology, 36(3), 707–738. https://doi.org/10.1093/petrology/36.3.707. |
Patiño-Douce AE, Beard JS. 1996. Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. Journal of Petrology, 37(5), 999–1024. https://doi.org/10.1093/petrology/37.5.999. |
Patiño-Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8), 743–746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2. |
Patiño-Douce AE, McCarthy TC. 1998. Melting of crustal rocks during continental collision and subduction. In: Hacker, B.R., Liou, J.G. (Eds.), When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks. Dordrecht, Kluwer Academic Publishing, pp. 27 –55. |
Patiño-Douce AE. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro, A., Fernandez, C., Vigneresse, J.L. (Eds.) Understanding Granites: Integrating New and Classical Techniques. Geological Society, London. Special Publications 168(1), 55-75. https://doi.org/10.1144/GSL.SP.1999.168.01.05 |
Peck WH, Valley JW, Graham CM. 2003. Slow oxygen diffusion rates in igneous zircons from metamorphic rocks. American Mineralogist, 88(7), 1003–1014. doi: 10.2138/am-2003-0708. |
Plank T, Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4), 325–394. doi: 10.1016/S0009-2541(97)00150-2. |
Prouteau G, Scaillet B, Pichavant M, Maury R. 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410(6825), 197–200. doi: 10.1038/35065583. |
Roberts NMW, Slagstad T, Parrish RR, Norry MJ, Marker M, Horstwood MSA. 2013. Sedimentary recycling in arc magmas: geochemical and U-Pb-Hf-O constraints on the Mesoproterozoic Suldal Arc, SW Norway. Contributions to Mineralogy and Petrology, 165, 507–523. doi: 10.1007/s00410-012-0820-y. |
Rudnick RL, Gao S. 2003. Composition of the continental crust. In: Heinrich, D.H., Karl, K.T. (Eds.), Treatise on Geochemistry. Pergamon, Oxford, 1-64. |
Santosh M. 1985. Fluid evolution characteristics and piezothermic array of South Indian charnockites. Geology, 13(5), 361–363. doi: 10.1130/0091-7613(1985)13<361:FECAPA>2.0.CO;2. |
Sengör AMC, Natal'in BA. 1996. Paleotectonics of Asia: fragments of a synthesis. In: Yin, A., Harrison, M. (Eds.), The Tectonic Evolution of Asia. Rubey Colloquium. Cambridge University Press, Cambridge, 486-640. |
Seghinsara RB, Karizaki HS, Moazzen M, Pourkermani M, Ardalan AA. 2017. Whole rock geochemistry and tectonic setting of Jurrassic aged Lisar granite, Talesh Mountains, North Iran. Bulletin of the Mineral Research and Exploration, 155, 99–113. doi: 10.19111/bulletinofmre.336499. |
Shen B, Jacobsen B, Lee CTA, Yin QZ, Morton DM. 2009. The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20652–20657. doi: 10.1073/pnas.0910663106. |
Shen P, Shen YC, Pan HD, Li XH, Dong LH, Wang JB, Zhu HP, Dai HW, Guan WN. 2012. Geochronology and isotope geochemistry of the Baogutu porphyry copper deposit in the West Junggar region, Xinjiang, China. Journal of Asian Earth Sciences, 49, 99–115. doi: 10.1016/j.jseaes.2011.11.025. |
Shen XM, Zhang HX, Wang Q, Wyman DA, Yang YH. 2011. Late Devonian-Early Permian A-type granites in the southern Altay Range, Northwest China: Petrogenesis and implications for tectonic setting of ‘‘A2-type’’ granites. Journal of Asian Earth Sciences, 42(5), 986–1007. doi: 10.1016/j.jseaes.2010.10.004. |
Skjerlie KP, Johnston AD. 1992. Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites. Geology 20(3), 263–266. https://doi.org/10.1130/0091-7613(1992)020%3C0263:vamako%3E2.3.co;2. |
Streckeisen A. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12(1), 1–33. doi: 10.1016/0012-8252(76)90052-0. |
Su YP, Tang HF, Hong GS, Liu CQ. 2006. Geochemistry of aluminous A-type granites along Darabut tectonic belt in West Junggar, Xinjiang. Geochima, 35, 55–67 (in Chinese with English abstract). |
Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes. In: Saunders, AD, Norry MJ. (Eds.), Magmatism in Ocean Basins. Vol. 42. Geological Society, Special Publication, London, 313-345. |
Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1–4), 29–44. doi: 10.1016/S0024-4937(98)00024-3. |
Tang GJ, Wang Q, Wyman DA, Li ZX, Zhao ZH, Jia XH, Jiang ZQ. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (West China). Chemical Geology, 277(3–4), 281–300. doi: 10.1016/j.chemgeo.2010.08.012. |
Tang GJ, Wang Q, Wyman DA, Li ZX, Xu YG, Zhao ZH. 2012a. Recycling oceanic crust for continental crustal growth: Sr-Nd-Hf isotope evidence from granitoids in the western Junggar region, NW China. Lithos, 128–131, 73–83. doi: 10.1016/j.lithos.2011.11.003. |
Tang GJ, Wyman DA, Wang Q, Li J, Li ZX, Zhao ZH, Sun WD. 2012b. Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: trace element and Sr-Nd-Hf-O isotopic evidence from Late Carboniferous tholeiites in the West Junggar area (NW China). Earth and Planetary Science Letters, 329–330, 84–96. doi: 10.1016/j.jpgl.2012.02.009. |
Tang GJ, Chun SL, Hawkesworth CJ, Cawood PA, Wang Q, Wyman DA, Xu YG, Zhao ZH. 2017. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 464, 142–154. doi: 10.1016/j.jpgl.2017.02.022. |
Tang GJ, Wang Q, Wyman DA, Dan W. 2019. Crustal maturation through chemical weathering and crustal recycling revealed by Hf-O-B isotopes. Earth and Planetary Science Letters, 524, 115709. doi: 10.1016/j.jpgl.2019.115709. |
TGSR (Three-dimensional geological survey report), 2015. Three-dimensional geological survey report of the Karamay back mountain area, West Junggar. National Geological Archives of China, Beijing, file No. 138837, 1-295(in Chinese). |
Turner SP, Sandford M, Foden JD. 1992. Some geodynamic and compositional constraints on ‘postorogenic’ magmatism. Geology, 20(10), 931–934. doi: 10.1130/0091-7613(1992)020<0931:SGACCO>2.3.CO;2. |
Valley JW, Chiarenzelli JR, McLelland JM. 1994. Oxygen isotope geochemistry of zircon. Earth and Planetary Science Letters, 126(4), 187–206. doi: 10.1016/0012-821X(94)90106-6. |
Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS. 2005. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150(6), 561–580. doi: 10.1007/s00410-005-0025-8. |
Vervoort JD, Plank T, Prytulak J. 2011. The Hf-Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta, 75(20), 5903–5926. doi: 10.1016/j.gca.2011.07.046. |
Vielzeuf D, Montel JM. 1994. Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contributions to Mineralogy and Petrology, 117, 375–393. https://doi.org/10.1007/BF00307272. |
Vielzeuf D, Holoway JR. 1988. Experimental determination of the fluid-absent melting reactions in the pelitic system: Consequences for crustal differentiation. Contributions to Mineralogy and Petrology, 98, 257–276. https://doi.org/10.1007/BF00375178. |
Watkins JM, Clemens JD, Treloar PJ. 2007. Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contributions to Mineralogy and Petrology, 154, 91–110. https://doi.org/10.1007/s00410-007-0181-0. |
Watson EB, Cherniak DJ. 1997. Oxygen diffusion in zircon. Earth and Planetary Science Letters, 148(3-4), 527–544. doi: 10.1016/S0012-821X(97)00057-5. |
Wang T, Zheng YD, Li TB, Gao YJ. 2004. Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. Journal of Asian Earth Sciences, 23(5), 715–729. doi: 10.1016/S1367-9120(03)00133-0. |
Wang T, Jahn BM, Kovach VP, Tong Y, Wilde SA, Hong DW, Li S, Salnikova EB. 2014. Mesozoic intraplate granitic magmatism in the Altai accretionary orogen, NW China: Implications for the orogenic architecture and crustal growth. American Journal of Science, 314(1), 1–42. doi: 10.2475/01.2014.01. |
Wei CS, Zheng YF, Zhao ZF, Valley JW. 2002. Oxygen and neodymium isotope evidence for recycling of juvenile crust in northeast China. Geology, 30(4), 375–378. doi: 10.1130/0091-7613(2002)030<0375:OANIEF>2.0.CO;2. |
Wei CS, Zhao ZF, Spicuzza MJ. 2008. Zircon oxygen isotopic constraint on the sources of late Mesozoic A-type granites in eastern China. Chemical Geology, 250(1–4), 1–15. doi: 10.1016/j.chemgeo.2008.01.004. |
Whalen JB, Currie KL, Chappell BW. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contribution to Mineralogy and Petrology, 95(4), 407–419. doi: 10.1007/bf00402202. |
Whalen JB, Jenner GA, Longstaffe FJ, Robert F, Gariepy C. 1996. Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite: petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. Journal of Petrology, 37(6), 1463–1489. doi: 10.1093/petrology/37.6.1463. |
Windley BF, Alexeiev D, Xiao WJ, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1), 31–47. doi: 10.1144/0016-76492006-022. |
Windley BF, Xiao WJ. 2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen. Gondwana Research, 61, 73–87. doi: 10.1016/j.gr.2018.05.003. |
Wu C, Hong T, Xu XW, Cao MJ, Li H, Ke Q, Li H, Dong LH. 2019. Constraints on the formation of the Baogutu reduced porphyry copper deposit (West Junggar, NW China): Assessing the role of mafic magmas in mineralization. Lithos, 336–337, 112–124. doi: 10.1016/j.lithos.2019.03.034. |
Wu C, Hong T, Xu XW, Cao MJ, Li H, Zhang GL, You J, Ke Q, Dong LH. 2018. Tectonic evolution of the Paleozoic Barluk continental arc, West Junggar, NW China. Journal of Asian Earth Sciences, 160, 48–66. doi: 10.1016/j.jseaes.2018.04.008. |
Wu C, Hong T, Xu XW, Li H, Ke Q, Li H, Dong LH. 2020. Constraints on the nature of the basement of the Junggar terrane indicated by the Laba Ordovician Continental Arc. International Geology Review, 62(1), 29–52. doi: 10.1080/00206814.2019.1590868. |
Wu FY, Sun DY, Li HM, Jahn BM, Wilde S. 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1–2), 143–173. doi: 10.1016/S0009-2541(02)00018-9. |
Wu FY, Yang YH, Xie LW, Yang JH, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1–2), 105–126. doi: 10.1016/j.chemgeo.2006.05.003. |
Xiao WJ, Huang BC, Han CM, Sun S, Li JL. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2–3), 253–273. doi: 10.1016/j.gr.2010.01.007. |
Xiao WJ, Windley BF, Allen MB, Han CM. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Research, 23(4), 1316–1341. doi: 10.1016/j.gr.2012.01.012. |
Xu X, Zhou KF, Wang Y. 2010. Study on extinction of the remnant oceanic basin and tectonic setting of West Junggar during Late Paleozoic. Acta Petrologica Sinica, 26, 3206–3214 (in Chinese with English abstract). |
Xu XW, Jiang N, Li XH, Wu C, Qu X, Zhou G, Dong LH. 2015. Spatial-temporal framework for the closure of the Junggar Ocean in Central Asia: New SIMS zircon U-Pb ages of the ophiolitic mélange and collisional igneous rocks in the Zhifang area, East Junggar. Journal of Asian Earth Science, 111, 470–491. doi: 10.1016/j.jseaes.2015.06.017. |
Yang GX, Li YJ, Gu PY, Yang BK, Tong LL, Zhang HW. 2012. Geochronological and geochemical study of the Darbut Ophiolitic Complex in the West Junggar (NW China): Implications for petrogenesis and tectonic evolution. Gondwana Research, 21(4), 1037–1049. doi: 10.1016/j.gr.2011.07.029. |
Yang GX, Li YJ, Yan J, Tong LL, Han X, Wang YB. 2014. Geochronological and geochemical constraints on the origin of the 304±5 Ma Karamay A-type granites from West Junggar, Northwest China: implications for understanding the Central Asian Orogenic Belt. International Geology Review, 56(4), 393–407. doi: 10.1080/00206814.2013.847608. |
Yang GX, Li YJ, Tong LL, Wang ZP, Duan FH, Xu Q, Li H. 2019. An overview of oceanic island basalts in accretionary complexes and seamounts accretion in the western Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 179, 385–398. doi: 10.1016/j.jseaes.2019.04.011. |
Yuan LL, Zhang XH, Xue FH, Liu FL. 2016. Juvenile crustal recycling in an accretionary orogen: Insights from contrasting Early Permian granites from central Inner Mongolia, North China. Lithos, 264, 524–539. doi: 10.1016/j.lithos.2016.09.017. |
Zhao L, He GQ. 2013. Tectonic entities connection between West Junggar (NW China) and East Kazakhstan. Journal of Asian Earth Sciences, 72, 25–32. doi: 10.1016/j.jseaes.2012.08.004. |
Zhao L, Li Z, Li JY, Guo F. 2019. Generation of Triassic post-collisional granitoids in the Linxi region (Inner Mongolia, NE China) and crustal growth in the eastern Central Asian Orogenic Belt through melting of relict oceanic crust. Journal of Asian Earth Sciences, 171, 348–362. doi: 10.1016/j.jseaes.2018.08.032. |
Zhao XF, Zhou MF, Li JW, Wu FY. 2008. Association of Neoproterozoic A- and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment. Chemical Geology, 257(1–2), 1–15. doi: 10.1016/j.chemgeo.2008.07.018. |
Zheng B, Han BF, Liu B, Wang ZZ. 2019. Ediacaran to Paleozoic magmatism in West Junggar Orogenic Belt, NW China, and implications for evolution of Central Asian Orogenic Belt. Lithos, 338-339, 111–127. doi: 10.1016/j.lithos.2019.04.017. |
Zheng RG, Zhao L, Yang YQ. 2019. Geochronology, geochemistry and tectonic implications of a new ophiolitic mélange in the northern West Junggar, NW China. Gondwana Research, 74, 237–250. doi: 10.1016/j.gr.2019.01.008. |
Zhu YF, Chen B, Xu X, Qiu T, An F. 2013. A new geological map of the western Junggar, north Xinjiang (NW China): Implications for Paleoenvironmental reconstruction. Episodes, 36(3), 205–220. doi: 10.18814/epiiugs/2013/v36i3/003. |
Zhu YF, Xu X, Wei SN, Song B, Guo X. 2007. Geochemistry and tectonic significance of OIB-type pillow basalts in western mountains of Keramay city (western Junggar), NW China. Acta Petrologica Sinica, 23(7), 1739–1748 (in Chinese with English abstract). |
Zhu YS, Yang JH, Sun JF, Wang H. 2017. Zircon Hf-O isotope evidence for recycled oceanic and continental crust in the sources of alkaline rocks. Geology, 45(5), 407–410. doi: 10.1130/g38872.1. |
Zong RW, Wang ZZ, Jiang T, Gong YM. 2016. Late Devonian radiolarian-bearing siliceous rocks from the Karamay ophiolitic mélange in western Junggar: Implications for the evolution of the Paleo-Asian Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 448, 266–278. doi: 10.1016/j.palaeo.2015.10.006. |
Distribution (a) and (87Sr/86Sr)i versus εNd(bulk-rock) diagram (b) of A-type granitoids in the Central Asian Orogenic Belt (CAOB, revised from Sengör AMC and Natal'in BA, 1996; Jahn BM et al., 2000, Windley BF et al., 2007 and Li S et al., 2013). Location (a) and tectonic units (c) of the West Junggar (revised from Wu C et al., 2018, 2019).
Geological map of massive A-type granite plutons in the West Junggar, CAOB (revised from Wu C et al., 2018, 2019). Abbreviation: CA–continental arc.
Field images and geological section of contact zones among the A-type granite plutons, Carboniferous volcanic-sedimentary sequences, and Darbut ophiolitic complex in the West Junggar, CAOB.
Photomicrographs of representative samples. Hongshan granite (HG, a), Karamay northern granite (KNG, b), Karamay southern granite (KSG, c), Akebasitao granite (AG, d), Miaoergou granite (MG, e), and Miaoergou charnockite (MC, f). Abbreviation: Hy–hypersthene; Hbl–hornblende; Kfs–K-feldspar; Pl–plagioclase; Qtz–quartz.
TAS diagram (a modified from Le Bas MJ et al., 1986), QAP diagram (b modified after Streckeisen A, 1976), SiO2 versus K2O diagram (c modified from Middlemost EAK, 1985), A/CNK versus A/NK diagram (d modified from Maniar PD and Piccoli PM, 1989), and 10000×Ga/Al versus Nb diagram (e modified from Whalen JB et al., 1987) of the representative samples of West Junggar A-type granite plutons (and Miaoergou charnockite).
N-MORB normalized incompatible trace element patterns (a normalized values after Sun SS and McDonough WF, 1989), Chondrite-normalized REE patterns (b normalized values after Boynton WV, 1984) and Sm/Nd versus Lu/Hf diagram (c modified from Plank T and Langmuir CH, 1998) of the representative samples of West Junggar A-type granite plutons (and Miaoergou charnockite).
SIMS U-Pb Concordia age diagrams with representative CL photos of zircons of Hongshan granite (HG, a), Karamay northern granite (KNG, b), Karamay southern granite (KSG, c), Akebasitao granite (AG, d), Miaoergou granite (MG, e), and Miaoergou charnockite (MC, f) in the West Junggar, CAOB. The solid red ellipses, white dotted ellipses, and yellow dash-dotted circles in CL photos of zircons represent the analytical location of U-Pb ages, O isotopes, and Hf isotopes, respectively.
εHf(zircon) versus δ18Ozircon/‰VSMOW diagram (a modified after Cao MJ et al., 2016; Zhu YS et al., 2017) and εHf(zircon) versus εNd(bulk-rock) diagram (b modified after Handley HK et al., 2011) of the representative samples of West Junggar A-type granite plutons (and Miaoergou charnockite).
Zircon U-Pb age versus bulk-rock T2DM(Nd) age diagram (a) and zircon U-Pb age versus zircon T2DM(Hf) age diagram (b) of the representative samples of West Junggar A-type granite plutons (and Miaoergou charnockite).
Al2O3 versus K2O diagram (a) and SiO2 versus TiO2+FeOt+MgO diagram (b, modified after Sylvester PJ, 1998) of the representative samples of West Junggar A-type granite plutons (and Miaoergou charnockite).
SiO2 versus TiO2 diagram (a, modified from Geng HY et al., 2009) and Al2O3+FeOt+MgO+TiO2 versus Al2O3/(FeOt+MgO+TiO2) diagram (b, modified from Patiño-Douce AE, 1999 and Geng HY et al., 2009) of the representative samples of West Junggar A-type granite plutons (and Miaoergou charnockite). The published data of the West Junggar A-type granite plutons (and Miaoergou charnockite) are from Chen B and Arakawa Y (2005), Geng HY et al. (2009), Tang GJ et al. (2012a) and Yang GX et al. (2014) and are summarized in Table DR6.
A simplified model to show the tectonic environment (a, modified from Xiao WJ et al., 2010, 2013; Wu C et al., 2019) and petrogenesis (b, modified after Christiansen EH et al., 2007) of the A-type granite plutons (and Miaoergou charnockite) in the West Junggar. The arcs in fig. 12a were all formed in Paleozoic. They have respectively amalgamated into composites arcs in the west (Northern Ili, Issyk Kul, and Chatkal) and north (Zhama and Chingiz) and formed multiple accretionary prisms in the late Paleozoic. Abbreviation: PMR–partially melting region.