2021 Vol. 4, No. 1
Article Contents

Zhi-hui Cai, Bi-zhu He, Guang-wei Li, Cun-li Jiao, Xiao-rui Yun, 2021. Early Cretaceous deformation in the southern Tashkorgan region: Implications for the tectonic evolution of the northeastern Pamir, China Geology, 4, 67-76. doi: 10.31035/cg2021023
Citation: Zhi-hui Cai, Bi-zhu He, Guang-wei Li, Cun-li Jiao, Xiao-rui Yun, 2021. Early Cretaceous deformation in the southern Tashkorgan region: Implications for the tectonic evolution of the northeastern Pamir, China Geology, 4, 67-76. doi: 10.31035/cg2021023

Early Cretaceous deformation in the southern Tashkorgan region: Implications for the tectonic evolution of the northeastern Pamir

More Information
  • The Pamir Plateau comprises a series of crustal fragments that successively accreted to the Eurasian margin preceded the India-Asia collision, is an ideal place to study the Mesozoic tectonics. The authors investigate the southern Tashkorgan area, northeastern Pamir Plateau, where Mesozoic metamorphic and igneous rocks are exposed. New structural and biotite 40Ar-39Ar age data are presented. Two stages of intense deformation in the metamorphic rocks are identified, which are unconformably covered by the Early Cretaceous sediment. Two high-grade metamorphic rocks yielding 128.4 ± 0.8 Ma and 144.5 ± 0.9 Ma 40Ar-39Ar ages indicate that the samples experienced an Early Cretaceous cooling event. Combined with previous studies, it is proposed that the Early Cretaceous tectonic records in the southern Tashkorgan region are associated with Andean-style orogenesis. They are the results of the flat/low-angle subduction of the Neotethyan oceanic lithosphere.

  • 加载中
  • Allégre CJ, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger JJ, Achache J, Scharer U, Marcoux J, Burg JP, Girardeau J, Armijo R, Gariepy C, Gopel C, Li TD, Xiao XC, Chang CF, Li GQ, Lin BY, Teng JW, Wang NW, Chen GM, Han TL, Wang XB, Den WM, Sheng HB, Cao YG, Zhou J, Qiu HR, Bao PS, Wang SC, Wang BX, Zhou YX, Ronghua X. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307, 17–22. doi: 10.1038/307017a0.

    CrossRef Google Scholar

    Amidon WH, Hynek SA. 2010. Exhumational history of the north central Pamir. Tectonics, 29(5), 5966–5983. doi: 10.1029/2009TC002589.

    CrossRef Google Scholar

    Brunel M, Arnaud N, Tapponnier P, Pan Y, Wang Y. 1994. Kongur Shan normal fault: Type example of mountain building assisted by extension (Karakoram fault, eastern Pamir). Geology, 22, 707–710. doi: 10.1130/0091-7613(1994)022<0707:KSNFTE>2.3.CO;2.

    CrossRef Google Scholar

    Burtman VS, Molnar P. 1993. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Speccial Paper of America Geological Society, 281, 1–76. doi: 10.1130/SPE281-p1.

    CrossRef Google Scholar

    Cai ZH, Xu ZQ, Cao H, Robinson AC, Li GW, Xu XY. 2017. Miocene exhumation of northeast Pamir: Deformation and geo/thermochronological evidence from western Muztaghata shear zone and Kuke ductile shear zone. Journal of Structural Geology, 102, 130–146. doi: 10.1016/j.jsg.2017.07.010.

    CrossRef Google Scholar

    Cao K, Bernet M, Wang GC, van der Beek P, Wang A, Zhang KX, Enkelmann E. 2013. Focused Pliocene–Quaternary exhumation of the Eastern Pamir domes, western China. Earth and Planetary Science Letters, 363(2), 16–26. doi: 10.1016/j.jpgl.2012.12.023.

    CrossRef Google Scholar

    Chapman JB, Robinson AC, Carrapa B, Villarreal D, Worthington J, DeCelles PG, Kapp P, Gadoev M, Oimahmadov I, Gehrels G. 2018a. Cretaceous shortening and exhumation history of the South Pamir terrane. Lithosphere, 10(4), 494–511. doi: 10.1130/L691.1.

    CrossRef Google Scholar

    Chapman JB, Scoggin SH, Kapp P, Carrapa B, Ducea MN, Worthington J, Oimahmadov I, Gadoev M. 2018b. Mesozoic to Cenozoic magmatic history of the Pamir. Earth and Planetary Science Letters, 482, 181–192. doi: 10.1016/j.jpgl.2017.10.041.

    CrossRef Google Scholar

    Chen W, Zhang Y, ZhangYQ, Jin GS, Wang Q. 2006. Late Cenozoic episodic uplifting in southeastern part of the Tibetan Plateu: Evidence from Ar-Ar thermochronology. Aca Petrologica Sinica, 22(4), 867–872 (in Chinese with English abstract). doi: 10.1016/j.sedgeo.2005.11.021.

    CrossRef Google Scholar

    Cowgill E. 2010. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. GSA Bulletin, 122(1/2), 145–161. doi: 10.1130/B26520.1.

    CrossRef Google Scholar

    Harrison TM, Duncan I, McDougall I. 1985. Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49, 2461–2468. doi: 10.1016/0016-7037(85)90246-7.

    CrossRef Google Scholar

    Jiang YH, Liu Z, Jia RY, Liao SY, Zhao P, Zhou Q. 2014. Origin of Early Cretaceous high-K calc-alkaline granitoids, western Tibet: Implications for the evolution of the Tethys in NW China. International Geology Review, 56, 88–103. doi: 10.1080/01431161.2013.819963.

    CrossRef Google Scholar

    Jiang YH, Jia RY, Liu Z, Liao SY, Zhao P, Zhou Q. 2013. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, northwest China: A record of the closure of Paleo-Tethys. Lithos, 156–159, 13–30. doi: 10.1016/j.lithos.2012.10.004.

    CrossRef Google Scholar

    Jiang YH, Liu Z, Jia RY, Liao SY, Zhou Q, Zhao P. 2012. Miocene potassic granite-syenite association in western Tibetan Plateau: Implications for shoshonitic and high Ba-Sr granite genesis. Lithos, 134–135, 146–162. doi: 10.1016/j.lithos.2011.12.012.

    CrossRef Google Scholar

    Jordan TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ. 1983. Andean tectonics related to geometry of subducted Nazca plate. Geological Society of America Bulletin, 94, 341–361. doi: 10.1130/0016-7606(1983)942.0.CO;2.

    CrossRef Google Scholar

    Lacassin R, Valli F, Arnaud N, Leloup PH, Paquette JL, Li HB, Tapponnier P, Chevalier ML, Guillot S, Maheo G, Xu ZQ. 2004. Large-scale geometry, offset and kinematic evolution of the karakorum fault, Tibet. Earth and Planetary Science Letters, 219(3–4), 255–269. doi: 10.1016/S0012-821X(04)00006-8.

    CrossRef Google Scholar

    Leloup PH, Boutonnet E, Davis WJ, Hattori K. 2011. Long-lasting intracontinental strike-slip faulting: New evidence from the Karakorum shear zone in the Himalayas. Terra Nova, 23(2), 92–99. doi: 10.1111/j.1365-3121.2011.00988.x.

    CrossRef Google Scholar

    Li J, Niu Y, Hu Y, Chen S, Zhang Y, Duan M, Sun P. 2016. Origin of the late Early Cretaceous granodiorite and associated dioritic dikes in the Hongqi-lafu pluton, northwestern Tibetan Plateau: A case for crust-mantle interaction. Lithos, 260, 300–314. doi: 10.1016/j.lithos.2016.05.028.

    CrossRef Google Scholar

    Liu XQ, Zhang CL, Hao XS, Zou HB, Wang Q, Hao XS, Zhao HX, Ye XT. 2020a. Triassic-Jurassic Granitoids and Pegmatites from Western Kunlun-Pamir Syntax: Implications for the Paleo-Tethys Evolution at the Northern Margin of the Tibetan Plateau. Lithosphere, 2020(1), 7282037. doi: 10.2113/2020/7282037.

    CrossRef Google Scholar

    Liu XQ, Zhang CL, Hao XS, Zou HB, Zhao HX, Ye XT. 2020b. Early Cretaceous granitoids in the Southern Pamir: Implications for the Meso-Tethys evolution of the Pamir Plateau. Lithos, 362–363, 105492. doi: 10.1016/j.lithos.2020.105492.

    CrossRef Google Scholar

    Murphy MA, Yin A, Kapp P, Harrison TM, Ding L, Guo JH. 2000. Southward propagation of the Karakoram fault system, southwest Tibet: Timing and magnitude of slip. Geology, 28, 451–454. doi: 10.1130/0091-7613(2000)28<447:ACAFTO>2.0.CO;2.

    CrossRef Google Scholar

    Pan YS, Zheng D, Zhang QS. 1992. Introduction to Integrated Scientific Investigation on Karakorum and Kunlun Mountains. Beijing, China Meteorological Press, 91. (in Chinese)

    Google Scholar

    Passchier CW, Trouw RAJ. 2005. Microtectonics. Second edition. Berlin, Springer, 352.

    Google Scholar

    Phillips RJ, Parrish RR, Searle MP. 2004. Age constraints on ductile deformation and long-term slip rates along the Karakoram fault zone, Ladakh. Earth and Planetary Science Letters, 226(3–4), 305–319. doi: 10.1016/j.jpgl.2004.07.037.

    CrossRef Google Scholar

    Renne PR, Tobisch OT, Saleeby JB. 1993. Thermochronologic record of pluton emplacement, deformation, and exhumation at Courtright shear zone, central Sierra Nevada, Renne PR, Tobisch OT, Saleeby JB. Thermochronologic record of pluton emplacement, deformation, and exhumation at Courtright shear zone, central Sierra Nevada, California. Geology, 21 (4), 331–334. https://doi.org/10.1130/0091-7613(1993)0212.3.CO;2

    Google Scholar

    Robinson AC. 2015. Mesozoic tectonics of the Gondwanan terranes of the Pamir plateau. Journal of Asian Earth Sciences, 102, 170–179. doi: 10.1016/j.jseaes.2014.09.012.

    CrossRef Google Scholar

    Robinson AC, Ducea M, Lapen TJ. 2012. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir. Tectonics, 31(2), 2016. doi: 10.1029/2011TC003013.

    CrossRef Google Scholar

    Robinson AC. 2009. Geologic offsets across the northern Karakorum fault: Implications for its role and terrane correlations in the western Himalayan-Tibetan orogen. Earth and Planetary Science Letters, 279, 123–130. doi: 10.1016/j.jpgl.2008.12.039.

    CrossRef Google Scholar

    Robinson AC, Yin A, Manning CE, Harrison TM, Zhang SH, Wang XF. 2007. Cenozoic evolution of the eastern Pamir: Implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen. Geological Society of America Bulletin, 119, 882–896. doi: 10.1130/B25981.1.

    CrossRef Google Scholar

    Robinson AC, Yin A, Manning CE, Harrison TM, Zhang SH, Wang XF. 2004. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system. Geological Society of America Bulletin, 116, 953–974. doi: 10.1130/B25375.1.

    CrossRef Google Scholar

    Rutte D, Lothar R, Schneider S, Stübner K, Stearns MA, Gulzar MA, Hacker BR. 2017a. Building the Pamir-Tibetan Plateau-Crustal stacking, extensional collapse, and lateral extrusion in the Central Pamir: 1. Geometry and kinematics. Tectonics, 36, 342–384. doi: 10.1002/2016TC004293.

    CrossRef Google Scholar

    Rutte D, Ratschbacher L, Khan J, Stübner K, Hacker BR, Stearns MA, Enkel-mann E, Jonckheere R, Pfänder JA, Sperner B, Tichomirowa M. 2017b. Building the Pamir-Tibetan Plateau- Crustal stacking, extensional collapse, and lateral extrusion in the Central Pamir: 2. Timing and rates. Tectonics, 36, 385–419. doi: 10.1002/2016TC004294.

    CrossRef Google Scholar

    Schmalholz M. 2004. The Amalgamation of the Pamirs and Their Subsequent Evolution in the Far Field of the India-Asia Collision. Germany, Univ.of Tübingen, Tübingen, 1–185. https://doi.org/10.1016/j.tet.2013.05.043

    Google Scholar

    Schmidt J, Hacker BR, Ratschbacher L, Stübner K, Stearns M, Kylander-Clark A, Cottle JM, Alexander A, Webb G, Gehrels G, Minaev V. 2011. Cenozoic deep crust in the Pamir. Earth and Planetary Science Letters, 312, 411–421. doi: 10.1016/j.jpgl.2011.10.034.

    CrossRef Google Scholar

    Schwab M, Ratschbacher L, Siebel W, McWilliams M, Minaev V, Lutkov V, Chen F, Stanek K, Nelson B, Frisch W, Wooden JL. 2004. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics, 23(4), TC4002.1–TC4002.31. doi: 10.1029/2003TC001583.

    CrossRef Google Scholar

    Searle MP, Parrish RR, Thow AV, Noble SR, Phillips RJ, Waters DJ. 2010. Anatomy, age and evolution of a collisional mountain belt: The Baltoro granite batholith and Karakoram Metamorphic Complex, Pakistani Karakoram. Journal of Geological Society, 167, 183–202. doi: 10.1144/0016-76492009-043.

    CrossRef Google Scholar

    Searle MP, Weinberg RF, Dunlap WJ. 1998. Transpressional tectonics along the Karakoram fault zone, northern Ladakh: Constraints on Tibetan extrusion. Geological Society London Special Publications, 135(1), 307–326. doi: 10.1144/GSL.SP.1998.135.01.20.

    CrossRef Google Scholar

    Searle MP, Windley BF, Coward MP, Cooper DJW, Rex AJ, Rex D, Tingdong L, Xuchang X, Jan MQ, Thakur VC, Kumar S. 1987. The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin, 98, 678–701. doi: 10.1130/0016-7606(1987)982.0.CO;2.

    CrossRef Google Scholar

    Stübner K, Ratschbacher L, Rutte D, Stanek K, Minaev V, Wiesinger M, Gloaguen R. 2013a. The giant Shakhdara migmatitic gneiss dome, Pamir, India-Asia collision zone: 1. Geometry and kinematics. Tectonics, 32, 948–979. doi: 10.1002/tect.20057.

    CrossRef Google Scholar

    Stübner K, Ratschbacher L, Weise C, Chow J, Hofmann J, Khan J, Rutte D, Sperner B, Pfänder JA, Hacker BR, Dunkl I. 2013b. The giant Shakhdara migmatitic gneiss dome, Pamir, India-Asia collision zone: 2. Timing of dome formation. Tectonics, 32, 1404–1431. doi: 10.1002/tect.20059.

    CrossRef Google Scholar

    Tapponnier P, Peltzer G, Armijo R. 1986. On the mechanics of the collision between India and Asia. Geological Society of America, 19, 115–157. doi: 10.1144/GSL.SP.1986.019.01.07.

    CrossRef Google Scholar

    Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang JS. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(23), 1671–1677. doi: 10.1126/science.105978.

    CrossRef Google Scholar

    Tullis J. 2002. Deformation of granitic rocks: Experimental studies and natural examples. In: Karato S, Wenk H (Eds.). Reviews in Mineralogy and Geochemistry, Plastic Deformation of Minerals and Rocks, vol. 51. Washington, DC, The Mineralogical Society of America, 51–95. https://doi.org/10.2138/gsrmg.51.1.51

    Google Scholar

    Valli F, Arnaud N, Leloup PH, Sobel ER, Mahéo G, Lacassin R, Guillot S, Li HB, Tapponnier P, Xu ZQ. 2007. Twenty million years of continuous defromation along the Karakorum fault, western Tibet: A thermochronological analysis. Tectonics, 26, TC4004. doi: 10.1029/2005TC001913.

    CrossRef Google Scholar

    Wang JP. 2008. Geological features and tectonic significance of melange zone in the Taxkorgan area, West Kunlun. Geological Bulletin of China, 27, 2057–2066 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2008.12.011.

    CrossRef Google Scholar

    Wang SY, Peng SM. 2014. Regional Geological reports (1∶250000) of Keketuluke Region (J43C003002) and Tashkorgan Region (J43C003003), Wuhan, CUGP.

    Google Scholar

    Xu ZQ, Hou LW, Wang ZX, Fu XF, Huang MH. 1992. Orogenic Processes of the Songpan-Garze Orogenic Belt of China. Beijing, Geological Publishing House, 190. (in Chinese)

    Google Scholar

    Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280. doi: 10.1146/annurev.earth.28.1.211.

    CrossRef Google Scholar

    Zhang Y, Chen W, Chen KL, Liu XY. 2006. Study on the Ar-Ar age spectrum of diagenetic I/S and the mechanism of 39Ar recoil loss examples from the clay minerals of P-T boundary in changxing, Zhejiang province. Geological Review, 52(4), 556–561 (in Chinese with English abstract). doi: 10.1007/s11442-006-0415-5.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(1813) PDF downloads(11) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint