2021 Vol. 4, No. 1
Article Contents

Yuan Tang, Yu-ping Liu, Peng Wang, Wen-qing Tang, Ya-dong Qin, Xiao-dong Gong, Dong-bing Wang, Bao-di Wang, 2021. A new understanding of Demala Group complex in Chayu Area, southeastern Qinghai-Tibet Plateau: Evidence from zircon U-Pb and mica 40Ar/39Ar dating, China Geology, 4, 77-94. doi: 10.31035/cg2021021
Citation: Yuan Tang, Yu-ping Liu, Peng Wang, Wen-qing Tang, Ya-dong Qin, Xiao-dong Gong, Dong-bing Wang, Bao-di Wang, 2021. A new understanding of Demala Group complex in Chayu Area, southeastern Qinghai-Tibet Plateau: Evidence from zircon U-Pb and mica 40Ar/39Ar dating, China Geology, 4, 77-94. doi: 10.31035/cg2021021

A new understanding of Demala Group complex in Chayu Area, southeastern Qinghai-Tibet Plateau: Evidence from zircon U-Pb and mica 40Ar/39Ar dating

More Information
  • The Chayu area is located at the southeastern margin of the Qinghai-Tibet Plateau. This region was considered to be in the southeastward extension of the Lhasa Block, bounded by Nujiang suture zone in the north and Yarlung Zangbo suture zone in the south. The Demala Group complex, a set of high-grade metamorphic gneisses widely distributed in the Chayu area, is known as the Precambrian metamorphic basement of the Lhasa Block in the area. According to field-based investigations and microstructure analysis, the Demala Group complex is considered to mainly consist of banded biotite plagiogneisses, biotite quartzofeldspathic gneiss, granitic gneiss, amphibolite, mica schist, and quartz schist, with many leucogranite veins. The zircon U-Pb ages of two granitic gneiss samples are 205 ± 1 Ma and 218 ± 1 Ma, respectively, representing the ages of their protoliths. The zircons from two biotite plagiogneisses samples show core-rim structures. The U-Pb ages of the cores are mainly 644–446 Ma, 1213–865 Ma, and 1780–1400 Ma, reflecting the age characteristics of clastic zircons during sedimentation of the original rocks. The U-Pb ages of the rims are from 203 ± 2 Ma to 190 ± 1 Ma, which represent the age of metamorphism. The zircon U-Pb ages of one sample taken from the leucogranite veins that cut through granitic gneiss foliation range from 24 Ma to 22 Ma, interpreted as the age of the anatexis in the Demala Group complex. Biotite and muscovite separates were selected from the granitic gneiss, banded gneiss, and leucogranite veins for 40Ar/39Ar dating. The plateau ages of three muscovite samples are 16.56 ± 0.21 Ma, 16.90 ± 0.21 Ma, and 23.40 ± 0.31 Ma, and the plateau ages of four biotite samples are 16.70 ± 0.24 Ma, 16.14 ± 0.19 Ma, 15.88 ± 0.20 Ma, and 14.39 ± 0.20 Ma. The mica Ar-Ar ages can reveal the exhumation and cooling history of the Demala Group complex. Combined with the previous research results of the Demala Group complex, the authors refer that the Demala Group complex should be a set of metamorphic complex. The complex includes not only Precambrian basement metamorphic rock series, but also Paleozoic sedimentary rock and Mesozoic granitic rock. Based on the deformation characteristics, the authors concluded that two stages of the metamorphism and deformation can be revealed in the Demala Group complex since the Mesozoic, namely Late Triassic-Early Jurassic (203–190 Ma) and Oligocene–Miocene (24–14 Ma). The early stage of metamorphism (ranging from 203–190 Ma) was related to the Late Triassic tectono-magmatism in the area. The anatexis and uplifting-exhumation of the later stage (24–14 Ma) were related to the shearing of the Jiali strike-slip fault zone. The Miocene structures are response to the large-scale southeastward escape of crustal materials and block rotation in Southeast Tibet after India-Eurasia collision.

  • 加载中
  • BGMRXR [Bureau of Geology and Mineral Resources of Xizang Autonomous Region. Regional Geology of Xizang (Tibet) Autonomous Region]. 1993. Beijing, Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    Chen HH, Dobson J, Heller F, Hao J. 1995. Paleomagnetic evidence for clockwise rotation of the Simao region since the Cretaceous: A consequence of India-Asia collision. Earth and Planetary Science Letters, 134(l−2), 203–217. doi: 10.1016/0012-821X(95)00118-V.

    CrossRef Google Scholar

    Chen W, Zhang Y, Zhang YQ, Jin GS, Wang QL. 2006. Late Cenozoic episodic uplifting in southeastern part of the Tibetan plateau-evidence from Ar-Ar thermochronology. Acta Petrologica Sinica, 22(4), 867–872 (in Chinese with English abstract). doi: 10.1016/j.sedgeo.2005.11.021.

    CrossRef Google Scholar

    Cherniak DJ, Watson EB. 2000. Pb diffusion in zircon. Chemical Geology, 172(1−2), 5–24. doi: 10.1016/S0009-2541(00)00233-3.

    CrossRef Google Scholar

    Chiu HY, Chung SL, Wu FY, Liu DY, Liang YH, Lin IJ, Iizuka Y, Xie LW, Wang YB, Chu MF. 2009. Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the recollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1−2), 3–19. doi: 10.1016/j.tecto.2009.02.034.

    CrossRef Google Scholar

    Chu MF, Chung SL, Song B, Liu DY, O’Reilly SY, Pearson NJ, Ji JQ, Wen DJ. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9), 745–748. doi: 10.1130/G22725.1.

    CrossRef Google Scholar

    DeCelles PG, Gehrels GE, Quade J, LaReau B, Spurlin M. 2000. Tectonic implications of U-Pb zircon ages of the Himalayan Orogenic Belt in Nepal. Science, 288, 497–499. doi: 10.1126/science.288.5465.497.

    CrossRef Google Scholar

    Ding HX, Zhang ZM, Dong X, Yan R, Lin YH, Jiang HY. 2015. Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet: Evidence for Andean-type magmatism along the northern active margin of Gondwana. Gondwana Research, 27, 1616–1629. doi: 10.1016/j.gr.2014.02.003.

    CrossRef Google Scholar

    Dong HW, Xu ZQ, Li Y, Liu Z. 2014. Zircon LA-ICP-MS U-Pb dating of the triassic anatexis at Mutuo, the Eastern Himalayan Syntaxis. Geotectonica et Metallogenia, 38(2), 398–407. doi: 10.1007/s00531-014-1057-y.

    CrossRef Google Scholar

    Dong X, Zhang ZM, Santosh M. 2010. Zircon U-Pb chronology of the Nyingchi group, southern Lhasa terrane, Tibetan plateau: Implications for Grenvillian and Pan-African provenance and Mesozoic-Cenozoic metamorphism. The Journal of Geology, 118, 677–690. doi: 10.1086/656355.

    CrossRef Google Scholar

    Dong X, Zhang ZM, Wang JL, Zhao GC, Liu F, Wang W, Yu F. 2009. Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau: Petrology and zircon U-Pb geochronology. Acta Petrologica Sinica, 25(7), 1678–1694 (in Chinese with English abstract). doi: 10.1016/S1874-8651(10)60080-4.

    CrossRef Google Scholar

    Dong YS, Li C, Chen H, Chen W, Zhang Y. 2011. Study on geochronology and its geological significance of the Demala Group complex in Chayu area, Southeast Tibetan Plateau. Acta Petrologica Sinica, 27(4), 1198–1208 (in Chinese with English abstract). doi: 10.1007/s11589-011-0776-4.

    CrossRef Google Scholar

    Gehrels GE, DeCelles PG, Martin A, Ojha TP, Pinhassi G. 2003. Initiation of the Himalayan Orogen as an Early Paleozoic thin-skinned thrust belt. GSA Taday, 13, 4–9.

    Google Scholar

    Hames WE, Bowring SA. 1994. An empirical evaluation of the argon diffusion geometry in muscovite. Earth and Planetary Science Letters, 124, 161–167. doi: 10.1016/0012-821X(94)00079-4.

    Google Scholar

    Hames WE, Bowring SA. 1994. An empirical evaluation of the argon diffusion geometry in muscovite. Earth and Planetary Science Letters, 124, 161–167. doi: 10.1016/0012-821X(94)00079-4.

    CrossRef Google Scholar

    Harrison TM, Duncan I, Mcdougall I. 1985. Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49, 2461–2468. doi: 10.1016/0016-7037(85)90246-7.

    CrossRef Google Scholar

    He SP, Li RS, Wang C, Gu PY, Yu PS, Shi C, Zha XF. 2012. The determination of the age of Jiayuqiao Group in northern Gangdise of Tibetan Plateau. Geology in China, 39, 21–28 (in Chinese with English abstract).

    Google Scholar

    He ZH, Yang DM, Zheng CQ, Wang TW. 2006. Isotopic dating of the Mamba granitoid in the Gangdise tectonic belt and its constraint on the subduction time of the Neotethys. Geological Review, 52(1), 100–106 (in Chinese with English abstract). doi: 10.1007/s11442-006-0415-5.

    CrossRef Google Scholar

    Hu DG, Wu ZH, Ye PS, Jiang W. 2003. SHRIMP U-Pb ages of zircons from dioritic gneiss in the Nyainqentanglha Mountains, Tibet. Geological Bulletin of China, 22, 936–940.

    Google Scholar

    Hu DG, Wu ZH, Jiang W, Shi YR, Ye P. 2005. SHRIMP zircon U-Pb age and Nd isotopic study on the Nyainqentanglha Group in Tibet. Science in China Series D-Earth Sciences, 48, 1377–1386. doi: 10.1360/04yd0183.

    CrossRef Google Scholar

    Hu PY, Li C, Wang M, Xie CM, Wu YW. 2013. Cambrian volcanism in the Lhasa terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin. Journal of Asian Earth Sciences, 77, 91–107. doi: 10.1016/j.jseaes.2013.08.015.

    CrossRef Google Scholar

    Hu PY, Zhai QG, Tang Y, Wang J, Wang HT. 2016. Early Neoproterozoic meta-gabbro (~925 Ma) from the Lhasa terrane, Tibetan Plateau and its geological significance. Chinese Science Bulletin, 61(19), 2176–2186 (in Chinese with English abstract). doi: 10.1360/N972016-00143.

    CrossRef Google Scholar

    Hu ZC, Zhang W, Liu YS, Gao S, Li M, Zong KQ, Chen HH, Hu SH. 2015. “Wave” signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis: Application to lead isotope analysis. Analytical Chemistry, 87, 1152–1157. doi: 10.1021/ac503749k.

    CrossRef Google Scholar

    Kapp JLD, Harrison TM, Kapp P, Grove M, Lovera OM, Lin D. 2005. Nyainqentanglha Shan: A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research, 110(B08043), 1–23. doi: 10.1029/2004JB003330.

    CrossRef Google Scholar

    Keay S, Lister G, Buick I. 2001. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphism core complex, Cyclades, Aegean Sea, Greece. Tectonophysics, 342(3−4), 275–312. doi: 10.1016/S0040-1951(01)00168-8.

    CrossRef Google Scholar

    Lee HY, Chung SL, Wang JR, Wen AJ, Lo CH, Yang TF, Zhang YQ, Xie YW, Lee TY, Wu GY, Ji JQ. 2003. Miocene Jiali faulting and its implications for Tibetan tectonic evolution. Earth and Planetary Science Letters, 205(3−4), 185–194. doi: 10.1016/S0012-821X(02)01040-3.

    CrossRef Google Scholar

    Lee JK, Williams IS, Ellis DJ. 1997. Pb, U and Th diffusion in natural zircon. Nature, 390(6656), 159–162. doi: 10.1038/36554.

    CrossRef Google Scholar

    Lee TY, Lawver LA. 1994. Cenozoic plate reconstruction of the South China Sea region. Tectonophysics, 235(1−2), 149–180. doi: 10.1016/0040-1951(94)90022-1.

    CrossRef Google Scholar

    Li C, Wang TW, Li HM, Zeng QG. 2003. Discovery of Indosinian megaporphyritic granodiorite in the Gangdise area: Evidence for the existence of Paleo Gangdise. Geological Bulletin of China, 22(5), 364–366 (in Chinese with English abstract). doi: 10.1016/S0955-2219(02)00073-0.

    CrossRef Google Scholar

    Li GM, Zhang LK, Wu JY, Xie CM, Zhu LD, Han FL. 2020. Reestablishment and scientific significance of the Ocean plate geology in the Southern Tibet Plateau, China. Sedimentary Geology and Tethyan Geology, 40(1), 1–14 (in Chinese with English abstract).

    Google Scholar

    Li HQ, Cai ZH, Chen SY, Tang ZM, Yang M. 2008. The Indosinian orogenesis occurred in Lhasa terrain and the evidence from muscovite 40Ar-39Ar geochronology. Acta Petrologica Sinica, 24(7), 1595–1604 (in Chinese with English abstract). doi: 10.2113/gssajg.116.1.169.

    CrossRef Google Scholar

    Li HQ, Xu ZQ, Yang JS, Tang ZM. 2012. Indosinian orogenesis in the Lhasa Terrane, Tibet: New muscovite 40Ar-39Ar geochronology and evolutionary process. Acta Geologica Sinica, 86(5), 1116–1127. doi: 10.1111/j.1755-6724.2012.00735.x.

    CrossRef Google Scholar

    Li P. 1955. Novice understanding of the geology of eastern Tibet. Chinese Science Bulletin, 7, 62–71 (in Chinese with English abstract).

    Google Scholar

    Li YC, Zhang KX, He WH, Xu YD, Song BW, Yu Y, Ke X, Kou XH, Luo MS, Xin HT, Fu JY, Yang ZL, Zhao XM, Yin FG, Li ZP. 2018. Division of tectonic-strata superregions in China. China Geology, 2, 236–256. doi: 10.31035/cg2018028.

    CrossRef Google Scholar

    Lin TH, Lo CH, Chung SL, Hsu FJ, Yeh MW, Lee TY, Ji JQ, Wang YZ, Liu DY. 2009. 40Ar/39Ar dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 34(5), 674–685. doi: 10.1016/j.jseaes.2008.10.009.

    CrossRef Google Scholar

    Lin YH, Zhang ZM, Dong X, Shen K, Lu X. 2013. Precambrian evolution of the Lhasa terrane, Tibet: Constraint from the zircon U-Pb geochronology of the gneisses. Precambrian Research, 237, 64–77. doi: 10.1016/j.precamres.2013.09.006.

    CrossRef Google Scholar

    Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51, 537–571. doi: 10.1093/petrology/egp082.

    CrossRef Google Scholar

    Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257, 34–43. doi: 10.1016/j.chemgeo.2008.08.004.

    CrossRef Google Scholar

    Ludwig KR. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley, 39.

    Google Scholar

    Luo JN, Zhang ZG, Chen M, Li GM, Tong ZX. 1992. Sedimentary Geology and Minelalization in the Tethys of the Nujiang-Lancanganjiang-Jinshajiang area. Beijing, Geological Publishing House (in Chinese).

    Google Scholar

    Myrow PM, Hughes NC, Paulsen TS, Williams IS, Parcha SD, Thompson KR, Bowering SA, Peng SC, Ahluwalia AD. 2003. Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth and Planetary Science Letters, 212, 433–443. doi: 10.1016/S0012-821X(03)00280-2.

    CrossRef Google Scholar

    Pan FB, Zhang HF, Harris N, Xu WC, Guo L. 2012. Oligocene magmatism in the eastern margin of the East Himalayan Syntaxis and its implication for the India-Asia post-collisional process. Lithos, 154, 181–192. doi: 10.1016/j.lithos.2012.07.004.

    CrossRef Google Scholar

    Pan XP, Li RS, Wang C, Yu PS, Gu PY, Zha XF. 2012. Geochemical characteristics of the Cambrian volcanic rocks in Banglecun area on the northern margin of Gangdise, Nyima County, Tibet. Geological Bulletin of China, 31(1), 63–74 (in Chinese with English abstract).

    Google Scholar

    Peng XJ, Chen YM, Zhang SQ. 1999. Paleoproterozoic Demala Group-complex in the Chayu area, Tibet. Regional Geology of China, 18(2), 148–154 (in Chinese with English abstract).

    Google Scholar

    Qiu RZ, Ludington SD, Zhou S, Tan YJ, Yan GS, Liu ZG, Chen XF, Zhu QL, Qiu L, Ren XD, Zhao LK. 2018. Discussion on the dextral movement and its effect in continental China and adjacent areas since Cenozoic. China Geology, 4, 522–539. doi: 10.31035/cg2018056.

    CrossRef Google Scholar

    Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1−2), 123–138. doi: 10.1016/S0009-2541(01)00355-2.

    CrossRef Google Scholar

    Sato K, Liu YY, Zhu ZC, Yang ZY, Otofuji Y. 1999. Paleomagnetic study of Middle Cretaceous rocks from Yunlong, western Yunnan, China: Evidence of southward displacement of Indochina. Earth and Planetary Science Letters, 165(1), 1–15. doi: 10.1016/S0012-821X(98)00257-X.

    CrossRef Google Scholar

    Sato K, Liu YY, Zhu ZC, Yang ZY, Otofuji Y. 2001. Tertiary paleomagnetic data from northwestern Yunnan, China: Further evidence for large clockwise rotation of the Indochina block and its tectonic implications. Earth and Planetary Science Letters, 185(1−2), 185–198. doi: 10.1016/S0012-821X(00)00377-0.

    CrossRef Google Scholar

    Steiger RH, Jager E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters, 36, 359–362. doi: 10.1016/0012-821X(77)90060-7.

    CrossRef Google Scholar

    Tang Y, Wang DB, Liao SY, Wang BD, Yin FG, Wang LQ. 2016. Geochronological characterization and regional tectonic implication of the leucogranites in the southern segment of Gaoligong metamorphic zone, Western Yunnan. Acta Petrologica Sinica, 32(8), 2347–2366 (in Chinese with English abstract).

    Google Scholar

    Tang Y, Wang DB, Liao SY, Wang BD, Yin FG. 2020. Fabrics and 40Ar/39Ar ages of metamorphic rocks in the Gaoligong tectonic belt: Implications for Cenozoic metamorphism and deformation in the SE Tibetan Plateau. Journal of Asian Earth Sciences, 192. doi: 10.1016/j.jseaes.2020.104270.

    CrossRef Google Scholar

    Tapponnier P, Lacassin R, Leloup PH, Schärer U, Zhong DL, Liu XH, Ji SC, Zhang LS, Zhong JY. 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between lndochina and South China. Nature, 343, 431–437. doi: 10.1038/343431a0.

    CrossRef Google Scholar

    Tapponnier P, Peltzer G, Armijo R. 1986. On the mechanics of the collision between India and Asia. In: Coward MP, Ries AC (eds.), Collision Tectonics. Geological Society of London Special Publication, 19, 115−157.

    Google Scholar

    Wang XX, Zhang JJ, Santosh M, Liu J, Yan SY, Guo L. 2012. Andean-type orogeny in the Himalayas of south Tibet: Implication for early Paleozoic tectonics along the Indian margin of Gondwana. Lithos, 154, 248–262. doi: 10.1016/j.lithos.2012.07.011.

    CrossRef Google Scholar

    Wu YB, Zheng YF. 2004. Genesis of zircon and its constranints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15), 1554–1569. doi: 10.1007/BF03184122.

    CrossRef Google Scholar

    Xie YW, Peng XJ, Qiangbazhaxi, Xiluolangjie, Cirenyangjin. 2007. Recent progress in the study of the Neoproterozoic-Cambrian Bomi Group in the Bomi-Zayu area, eastern Tibet, China. Geological Bulletin of China, 26(1), 81–87 (in Chinese with English abstract).

    Google Scholar

    Xu WC, Zhang HF, Harris N, Gu oL, Pan FB, Wang S. 2013. Geochronology and geochemistry of Mesoproterozoic granitoids in the Lhasa terrane, south Tibet: Implications for the early evolution of Lhasa terrane. Precambrian Research, 236, 46–58. doi: 10.1016/j.precamres.2013.07.016.

    CrossRef Google Scholar

    Xu ZQ, Yang JS, Liang FH, Qi XX, Liu FL, Zeng LS, Liu DY, Li HB, Wu CL, Shi RD, Chen SY. 2005. Pan-African and Early Paleozoic orogenic events in the Himalayan terrane: Inference from SHRIMP U-Pb zircon ages. Acta Petrologica Sinica, 21(1), 1–12 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0569.2005.01.001.

    CrossRef Google Scholar

    Yang JS, Xu ZQ, Li TF, Li HQ, Li ZL, Ren YF, Xu XZ, Chen SY. 2007. Oceanic subduction-type eclogite in the Lhasa block, Tibet, China: Remains of the Paleo-Tethys ocean basin? Geological Bulletin of China, 26(10), 1277–1287 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60044-X.

    CrossRef Google Scholar

    Yin GH, Bao G, Yang SS, Hu QH. 2006. The granulites and ages of the Nyingchi Group Complex in the Nyingchi region, Xizang. Sedimentary Geology and Tethyan Geology, 26(3), 8–15 (in Chinese with English abstract).

    Google Scholar

    Zhang B, Cai FL, Chen SY, Li XR, Zhang L. 2020. Sinistral strike-slip shearing along the Jiali shear zone around the Eastern Himalaya syntaxis region: Evidences for oligocene eastward limited translation of Tibet. Journal of Structural Geology, 139. doi: 10.1016/j.jsg.2020.104136.

    CrossRef Google Scholar

    Zhang XZ, Dong YS, Li C, Xie CM, Yang HT, Wang M. 2013. Delineation of Middle Neoproterozoic ophiolite mélange in the northern Lhasa terrane, South Tibet and its significance. Acta Petrologica Sinica, 29(2), 698–722 (in Chinese with English abstract).

    Google Scholar

    Zhang Y, Chen W, Chen KL, Liu XY. 2006. Study on the Ar-Ar age spectrum of diagenetic I/S and the mechanism of 39Ar recoil loss-Examples from the clay minerals of P-T boundary in Changxing, Zhejiang Province. Geological Review, 52(4), 556–561 (in Chinese with English abstract).

    Google Scholar

    Zhang ZM, Dong X, Geng GS, Wang W, Yu F, Liu F. 2010. Precambrian metamorphism of the Northern Lhasa Terrane, South Tibet and its tectonic implications. Acta Geologica Sinica, 84(4), 449–456 (in Chinese with English abstract). doi: 10.1017/S0004972710001772.

    CrossRef Google Scholar

    Zhang ZM, Dong X, Liu F, Lin YH, Yan R, He ZY, Santosh M. 2012a. The making of Gondwana: Discovery of 650 Ma HP granulites from the North Lhasa, Tibet. Precambrian Research, 212−213, 107–116. doi: 10.1016/j.precamres.2012.04.018.

    CrossRef Google Scholar

    Zhang ZM, Dong X, Santosh M, Liu F, Wang W, Yiu F, He ZY, Shen K. 2012b. Petrology and geochronology of the NamcheBarwa Complex in the eastern Himalayan syntaxis, Tibet: Constraints on the origin and evolution of the north-eastern margin of the India Craton. Gondwana Research, 21, 123–137. doi: 10.1016/j.gr.2011.02.002.

    CrossRef Google Scholar

    Zhang ZM, Wang JL, Shen K, Shi C. 2008. Paleozoic circus-Gondwana orogens: Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet. Acta Petrologica Sinica, 24(7), 1627–1637 (in Chinese with English abstract). doi: 10.1016/j.sedgeo.2008.04.004.

    CrossRef Google Scholar

    Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY, Yang YH. 2009. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China (Series D), 52(9), 1223–1239. doi: 10.1007/s11430-009-0132-x.

    CrossRef Google Scholar

    Zhu DC, Zhao ZD, Niu YL, Dilek Y, Wang Q, Ji WH, Dong GC, Sui QL, Liu YS, Yuan HL, Mo XX. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 328, 290–308. doi: 10.1016/j.chemgeo.2011.12.024.

    CrossRef Google Scholar

    Zong KQ, Klemd R, Yuan Y, He ZY, Guo JL, Shi XL, Liu YS, Hu ZC, Zhang ZM. 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290, 32–48. doi: 10.1016/j.precamres.2016.12.010.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(1638) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint