2021 Vol. 4, No. 1
Article Contents

Xu-xuan Ma, Li-E Gao, Zhong-bao Zhao, Xi-jie Chen, Hai-bing Li, 2021. Early Eocene leucocratic sill/dike swarms in the Gangdese belt, southern Tibet: Tectonic implications for Indo-Asian collision, China Geology, 4, 56-66. doi: 10.31035/cg2021019
Citation: Xu-xuan Ma, Li-E Gao, Zhong-bao Zhao, Xi-jie Chen, Hai-bing Li, 2021. Early Eocene leucocratic sill/dike swarms in the Gangdese belt, southern Tibet: Tectonic implications for Indo-Asian collision, China Geology, 4, 56-66. doi: 10.31035/cg2021019

Early Eocene leucocratic sill/dike swarms in the Gangdese belt, southern Tibet: Tectonic implications for Indo-Asian collision

More Information
  • The timing of the initial Indo-Asian collision is a subject of debate for a long time. Besides, the magmatic trace of the collisional process is also unclear. In the present study, the authors report Early Eocene leucocratic sill/dike swarms in the northern edge of the Nymo intrusive complex of the Gangdese belt, southern Tibet. The Nymo intrusive complex was emplaced at ca. 50–47 Ma and surrounded by the metamorphosed Jurassic-aged Bima Formation volcano-sedimentary sequence along its northern side. At outcrops, the leucocratic sills/dikes intruded along or truncated the deformed foliations of the host Bima Formation, which has been subject to high-temperature amphibolite-facies metamorphism at ca. 50–47 Ma. Detailed cathodoluminescence image analyses reveal that the zircon grains of the leucocratic sills/dikes have core-mantle textures. The cores yield the Jurassic ages comparable to the protolith ages of the Bima Formation. In contrast, the mantles of zircon grains yield weighted mean ages of ca. 49–47 Ma, representing the crystallization timing of these leucocratic sills/dikes. The coeval ages for the Nymo intrusive complex, the high-temperature metamorphism, and the leucocratic sills/dikes indicate that a close relationship exists among them. The authors tentatively suggest that these leucocratic sills/dikes were generated from partial melting of the Jurassic-aged Bima Formation volcanic rocks, triggered by the high heat from the magma chamber of the Nymo intrusive complex. This Early Eocene tectono-thermal event of coeval magmatism, metamorphism and partial melting was most likely formed during the Indo-Asian collisional setting.

  • 加载中
  • Aikman AB, Harrison TM, Ding L. 2008. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet. Earth and Planetary Science Letters, 274, 14–23. doi: 10.1016/j.jpgl.2008.06.038.

    CrossRef Google Scholar

    Aitchison JC, Ali JR, Davis AM. 2007. When and where did India and Asia collide? Journal of Geophysical Research, 112, B05423. doi: 10.1029/2006jb004706.

    CrossRef Google Scholar

    Ao SJ, Xiao WJ, Windley BF, Zhang JE, Zhang ZY, Yang L. 2018. Components and structures of the eastern Tethyan Himalayan Sequence in SW China: Not a passive margin shelf but a mélange accretionary prism. Geological Journal, 53, 2665–2689. doi: 10.1002/gj.3103.

    Google Scholar

    Carosi R, Montomoli C, Rubatto D, Visonà D. 2013. Leucogranite intruding the South Tibetan Detachment in western Nepal: implications for exhumation models in the Himalayas. Terra Nova, 25, 478–489. doi: 10.1111/ter.12062.

    CrossRef Google Scholar

    Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q, Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68, 173–196. doi: 10.1016/j.earscirev.2004.05.001.

    CrossRef Google Scholar

    Cottle JM, Jessup MJ, Newell DL, Horstwood MSA, Noble SR, Parrish RR, Waters DJ, Searle MP. 2009. Geochronology of granulitized eclogite from the Ama Drime Massif: Implications for the tectonic evolution of the South Tibetan Himalaya. Tectonics, 28, TC1002. doi: 10.1029/2008tc002256.

    CrossRef Google Scholar

    Coulon C, Maluski H, Bollinger C, Wang S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79, 281–302. doi: 10.1016/0012-821X(86)90186-X.

    CrossRef Google Scholar

    de Sigoyer J, Guillot S, Dick P. 2004. Exhumation of the ultrahigh-pressure Tso Morari unit in eastern Ladakh (NW Himalaya): A case study. Tectonics, 23, TC3003. doi: 10.1029/2002tc001492.

    CrossRef Google Scholar

    Ding HX, Zhang ZM, Dong X, Tian ZL, Xiang H, Mu HC, Gou ZB, Shui XF, Li WC, Mao LJ. 2016. Early Eocene (ca. 50 Ma) collision of the Indian and Asian continents: Constraints from the North Himalayan metamorphic rocks, southeastern Tibet. Earth and Planetary Science Letters, 435, 64–73. doi: 10.1016/j.jpgl.2015.12.006.

    CrossRef Google Scholar

    Donaldson DG, Webb AAG, Menold CA, Kylander-Clark ARC, Hacker BR. 2013. Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology, 41, 835–838. doi: 10.1130/g33699.1.

    CrossRef Google Scholar

    Dong X, Zhang ZM, Klemd R, He ZY, Tian ZL. 2018. Late Cretaceous tectonothermal evolution of the southern Lhasa terrane, South Tibet: Consequence of a Mesozoic Andean-type orogeny. Tectonophysics, 730, 100–113. doi: 10.1016/j.tecto.2018.03.001.

    CrossRef Google Scholar

    Dong X, Zhang ZM, Niu YL, Tian ZL, Zhang LL. 2020. Reworked Precambrian metamorphic basement of the Lhasa terrane, southern Tibet: Zircon/titanite U-Pb geochronology, Hf isotope and geochemistry. Precambrian Research, 336, 105496. doi: 10.1016/j.precamres.2019.105496.

    CrossRef Google Scholar

    Gao LE, Zeng LS, Asimow PD. 2016. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45, 39–42. doi: 10.1130/G38336.1.

    CrossRef Google Scholar

    Gao LE, Zeng LS, Xie KJ. 2012. Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 57, 639–650. doi: 10.1007/s11434-011-4805-4.

    CrossRef Google Scholar

    Guillot S, Mahéo G, de Sigoyer J, Hattori KH, Pêcher A. 2008. Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks. Tectonophysics, 451, 225–241. doi: 10.1016/j.tecto.2007.11.059.

    CrossRef Google Scholar

    Hu XM, Garzanti E, Moore T, Raffi I. 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ±1 Ma). Geology, 43, 859–862. doi: 10.1130/g36872.1.

    CrossRef Google Scholar

    Iaccarino S, Montomoli C, Carosi R, Massonne HJ, Langone A, Visonà D. 2015. Pressure-temperature-time-deformation path of kyanite-bearing migmatitic paragneiss in the Kali Gandaki valley (Central Nepal): Investigation of Late Eocene-Early Oligocene melting processes. Lithos, 231, 103–121. doi: 10.1016/j.lithos.2015.06.005.

    CrossRef Google Scholar

    Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262, 229–245. doi: 10.1016/j.chemgeo.2009.01.020.

    CrossRef Google Scholar

    Ji WQ, Wu FY, Chung SL, Wang XC, Liu CZ, Li QL, Liu ZC, Liu XC, Wang JG. 2016. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt–type magmatism in southern Tibet. Geology, 44, 283–286. doi: 10.1130/g37612.1.

    CrossRef Google Scholar

    Kaneko Y, Katayama I, Yamamoto H, Misawa K, Rehman HU, Kausar AB, Shiraishi K. 2003. Timing of Himalayan ultrahigh-pressure metamorphism: Sinking rate and subduction angle of the Indian continental crust beneath Asia. Journal of Metamorphic Geology, 21, 589–599. doi: 10.1046/j.1525-1314.2003.00466.x.

    CrossRef Google Scholar

    Kang ZQ, Xu JF, Wilde SA, Feng ZH, Chen JL, Wang BD, Fu WC, Pan HB. 2014. Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 200–201, 157–168. doi: 10.1016/j.lithos.2014.04.019.

    CrossRef Google Scholar

    Kohn MJ, Corrie SL. 2011. Preserved Zr-temperatures and U-Pb ages in high-grade metamorphic titanite: Evidence for a static hot channel in the Himalayan orogen. Earth and Planetary Science Letters, 311, 136–143. doi: 10.1016/j.jpgl.2011.09.008.

    CrossRef Google Scholar

    Laskowski AK, Kapp P, Vervoort JD, Ding L. 2016. High-pressure Tethyan Himalaya rocks along the India-Asia suture zone in southern Tibet. Lithosphere, 8, 574–582. doi: 10.1130/l544.1.

    CrossRef Google Scholar

    Lee HY, Chung SL, Lo CH, Ji JQ, Lee TY, Qian Q, Zhang Q. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477, 20–35. doi: 10.1016/j.tecto.2009.02.031.

    CrossRef Google Scholar

    Lee J, Whitehouse MJ. 2007. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages. Geology, 35, 45–48. doi: 10.1130/g22842a.1.

    CrossRef Google Scholar

    Leech ML, Singh S, Jain AK, Klemperer SL, Manickavasagam RM. 2005. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth and Planetary Science Letters, 234, 83–97. doi: 10.1016/j.jpgl.2005.02.038.

    CrossRef Google Scholar

    Liu XC, Wu FY, Yu LJ, Liu ZC, Ji WQ, Wang JG. 2016. Emplacement age of leucogranite in the Kampa Dome, southern Tibet. Tectonophysics, 667, 163–175. doi: 10.1016/j.tecto.2015.12.001.

    CrossRef Google Scholar

    Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257, 34–43. doi: 10.1016/j.chemgeo.2008.08.004.

    CrossRef Google Scholar

    Ludwig KR. 2003. User's Manual for Isoplot 3.0: A Geochronological, Toolkit for Microsoft Excel Berkeley Geochronology Center. Berkeley Geochronology Center (special publication), 4, 1–71.

    Google Scholar

    Ma XX, Xu ZQ, Meert JG. 2016. Eocene slab breakoff of Neotethys as suggested by dioritic dykes in the Gangdese magmatic belt, southern Tibet. Lithos, 248–251, 55–65. doi: 10.1016/j.lithos.2016.01.008.

    CrossRef Google Scholar

    Ma XX, Xu ZQ, Meert JG, Santosh M. 2017a. Early Jurassic intra-oceanic arc system of the Neotethys Ocean: Constraints from andesites in the Gangdese magmatic belt, south Tibet. Island Arc, e12202. doi: 10.1111/iar.12202.

    CrossRef Google Scholar

    Ma XX, Meert JG, Xu ZQ, Zhao ZB. 2017b. Evidence of magma mixing identified in the Early Eocene Caina pluton from the Gangdese Batholith, southern Tibet. Lithos, 278–281, 126–139. doi: 10.1016/j.lithos.2017.01.020.

    CrossRef Google Scholar

    Ma XX, Meert JG, Xu ZQ, Zhao ZB. 2018. The Jurassic Yeba Formation in the Gangdese arc of S. Tibet: Implications for upper plate extension in the Lhasa terranebet. International Geology Review, 1–23. doi: 10.1080/00206814.2018.1434835.

    CrossRef Google Scholar

    Ma XX, Xu ZQ, Zhao ZB, Yi ZY. 2020a. Identification of a new source for the Triassic Langjiexue Group: Evidence from a gabbro-diorite complex in the Gangdese magmatic belt and zircon microstructures from sandstones in the Tethyan Himalaya, southern Tibet. Geosphere, 16, 407–434. doi: 10.1130/ges02154.1.

    CrossRef Google Scholar

    Ma XX, Shi B, Xiong FH, Li HB. 2020b. Magma mixing of the Quxu batholith in the Gangdese belt, southern Tibet: Evidence from microstructure of hornblende in microgranular enclaves. Acta Petrologica Sinica, 36(10), 3063–3080 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.10.08.

    CrossRef Google Scholar

    Ma XX, Xu ZQ, Meert JG, Tian ZL, Li HB. 2020c. Early Eocene high-flux magmatism and concurrent high-temperature metamorphism in the Gangdese belt, southern Tibet. GSA Bulletin. doi: 10.1130/B35770.1.

    Google Scholar

    Ma XX, Xu ZQ, Liu F, Zhao ZB, Li HB. 2021. Continental arc tempos and crustal thickening: A case study in the Gangdese arc, southern Tibet. Acta Geologica Sinica, 95, 107–123 (in Chinese with English abstract).

    Google Scholar

    Meng J, Wang CS, Zhao XX, Coe R, Li YL, Finn D. 2012. India-Asia collision was at 24 degrees N and 50 Ma: Palaeomagnetic proof from southernmost Asia. Scientific Reports, 2, 925. doi: 10.1038/srep00925.

    CrossRef Google Scholar

    Meng YK, Xiong FH, Xu ZQ, Ma XX. 2019. Petrogenesis of Late Cretaceous mafic enclaves and their host granites in the Nyemo region of southern Tibet: Implications for the tectonic-magmatic evolution of the Central Gangdese Belt. Journal of Asian Earth Sciences, 176, 27–41. doi: 10.1016/j.jseaes.2019.01.041.

    CrossRef Google Scholar

    Meng YK, Xu ZQ, Xu Y, Ma SW. 2018. Late Triassic granites from the Quxu batholith shedding a new light on the evolution of the Gangdese belt in Southern Tibet. Acta Geologica Sinica (English Edition), 92, 462–481. doi: 10.1111/1755-6724.13537.

    CrossRef Google Scholar

    Mo XX, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang SQ, Wang LL. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10, 135–148 (in Chinese with English abstract).

    Google Scholar

    Mo XX, Dong GC, Zhao ZD, Guo TY, Wang LL, Chen T. 2005a. Timing of magma mixing in the Gangdise magmatic belt during the India-Asia collision: Zircon SHRIMP U-Pb dating. Acta Geologica Sinica (English Edition), 79, 66–76. doi: 10.1111/j.1755-6724.2005.tb00868.x.

    CrossRef Google Scholar

    Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ, Zhang FQ. 2005b. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11, 281–290 (in Chinese with English abstract).

    Google Scholar

    Mo XX, Zhao ZD, Zhou S, Dong GC, Liao ZL. 2007. On the timing of India-Asia continental collision. Geological Bulletin of China, 26, 1240–1244 (in Chinese with English abstract).

    Google Scholar

    Regis D, Warren CJ, Young D, Roberts NMW. 2014. Tectono-metamorphic evolution of the Jomolhari massif: Variations in timing of syn-collisional metamorphism across western Bhutan. Lithos, 190–191. doi: 10.1016/j.lithos.2014.01.001.

    CrossRef Google Scholar

    Rubatto D, Chakraborty S, Dasgupta S. 2013. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology, 165, 349–372. doi: 10.1007/s00410-012-0812-y.

    CrossRef Google Scholar

    Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang JS. 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294, 1671–1677. doi: 10.1126/science.105978.

    CrossRef Google Scholar

    van Hinsbergen DJJ, Lippert PG, Li SH, Huang WT, Advokaat EL, Spakman W. 2019. Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics, 760, 69–94. doi: 10.1016/j.tecto.2018.04.006.

    CrossRef Google Scholar

    van Hinsbergen DJJ, Steinberger B, Doubrovine PV, Gassmöller R. 2011. Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. Journal of Geophysical Research, 116(B06101). doi:10.1029/2010JB008051.

    Google Scholar

    Wang C, Ding L, Zhang LY, Ding XL, Yue YH. 2019. Early Jurassic high-Mg andesites in the Quxu area, southern Lhasa terrane: Implications for magma evolution related to a slab rollback of the Neo-Tethyan Ocean. Geological Journal, 54, 2508–2524. doi: 10.1002/gj.3309.

    CrossRef Google Scholar

    Wang Q, Zhu DC, Cawood PA, Zhao ZD, Liu SA, Chung SL, Zhang LL, Liu D, Zheng YC, Dai JG. 2015. Eocene magmatic processes and crustal thickening in southern Tibet: Insights from strongly fractionated ca. 43 Ma granites in the western Gangdese Batholith. Lithos, 239, 128–141. doi: 10.1016/j.lithos.2015.10.003.

    CrossRef Google Scholar

    Wang YF, Zeng LS, Gao JH, Zhao LH, Gao LE, Shang Z. 2019. Along-arc variations in isotope and trace element compositions of Paleogene gabbroic rocks in the Gangdese batholith, southern Tibet. Lithos, 324–325, 877–892. doi: 10.1016/j.lithos.2018.11.036.

    CrossRef Google Scholar

    Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW, Lo CH. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252, 191–201. doi: 10.1016/j.chemgeo.2008.03.003.

    CrossRef Google Scholar

    Xu WC, Zhang HF, Luo BJ, Guo L, Yang H. 2015. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: An example from the Late Cretaceous magmatism in Gangdese belt, south Tibet. Lithos, 232, 197–210. doi: 10.1016/j.lithos.2015.07.001.

    CrossRef Google Scholar

    Xu ZQ, Wang Q, Pêcher A, Liang FH, Qi XX, Cai ZH, Li HQ, Zeng LS, Cao H. 2013. Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene. Tectonics, 32, 191–215. doi: 10.1002/tect.20021.

    CrossRef Google Scholar

    Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280. doi: 10.1146/annurev.earth.28.1.211.

    CrossRef Google Scholar

    Zeng LS, Gao LE, Xie KJ, Jing LZ. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth and Planetary Science Letters, 303, 251–266. doi: 10.1016/j.jpgl.2011.01.005.

    CrossRef Google Scholar

    Zhang HF, Xu WC, Guo JQ, Zong KQ, Cai HM, Yuan HL. 2007. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet: Evidence for early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrologica Sinica, 23, 1347–1353 (in Chinese with English abstract).

    Google Scholar

    Zhang ZM, Dong X, Xiang H, He ZY, Liou JG. 2014. Metagabbros of the Gangdese arc root, south Tibet: Implications for the growth of continental crust. Geochimica et Cosmochimica Acta, 143, 268–284. doi: 10.1016/j.gca.2014.01.045.

    CrossRef Google Scholar

    Zhang ZM, Xiang H, Dong X, Ding HX, He ZY. 2015. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet. Lithos, 212–215, 1–15. doi: 10.1016/j.lithos.2014.10.009.

    CrossRef Google Scholar

    Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X, Liou JG. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet: Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28, 719–733. doi: 10.1111/j.1525-1314.2010.00885.x.

    CrossRef Google Scholar

    Zhou LM, Wang R, Hou ZQ, Li C, Zhao H, Li XW, Qu WJ. 2018. Hot Paleocene-Eocene Gangdese arc: Growth of continental crust in southern Tibet. Gondwana Research, 62, 178–197. doi: 10.1016/j.gr.2017.12.011.

    CrossRef Google Scholar

    Zhu DC, Wang Q, Cawood PA, Zhao ZD, Mo XX. 2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122, 214–223. doi: 10.1002/2016jb013508.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(1846) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint