2021 Vol. 4, No. 1
Article Contents

Zheng-bin Gou, Bao-di Wang, Dong-bing Wang, Zhi-min Peng, 2021. High pressure garnet amphibolites in ophiolitic mélange from the Changning-Menglian suture zone, southeast Tibetan Plateau: P-T-t path and tectonic implication, China Geology, 4, 95-110. doi: 10.31035/cg2021010
Citation: Zheng-bin Gou, Bao-di Wang, Dong-bing Wang, Zhi-min Peng, 2021. High pressure garnet amphibolites in ophiolitic mélange from the Changning-Menglian suture zone, southeast Tibetan Plateau: P-T-t path and tectonic implication, China Geology, 4, 95-110. doi: 10.31035/cg2021010

High pressure garnet amphibolites in ophiolitic mélange from the Changning-Menglian suture zone, southeast Tibetan Plateau: P-T-t path and tectonic implication

More Information
  • The garnet amphibolites from the newly identified Wanhe ophiolitic mélange in the Changning-Menglian suture zone (CMSZ) provide a probe to elucidate the evolution of the Triassic Palaeo-Tethys. An integrated petrologic, phase equilibria modeling and geochronological study of the garnet amphibolites, southeast Tibetan Plateau, shows that the garnet amphibolites have a peak mineral assemblage of garnet, glaucophane, lawsonite, chlorite, rutile, phengite and quartz, and a clockwise P-T path with a prograde segment from blueschist-facies to eclogite-facies with a peak-metamorphic P-T conditions of 2000–2100 MPa and 495–515°C, indicating a cold geothermal gradient of about 240–260°C/GPa. Theretrograde metamorphic P-T path is characterized by nearly isothermal decompression to lower amphibolite-facies and subsequent cooling to greenschist-facies. The metamorphic zircons have fractionated HREE patterns and significant negative Eu anomalies, and therefore the obtained zircon U-Pb age of 231 ± 1.5 Ma is interpreted to be the timing of the amphibolite facies metamorphism occurrence. The present study probably indicates that the garnet amphibolites in the Wanhe ophiolitic mélange was the retrograded high-pressure eclogite-facies blueschist, instead of the previously proposed eclogites, and the garnet amphibolites recorded the subduction and exhumation process of the Palaeo-Tethys Oceanic crust in the Triassic.

  • 加载中
  • Agard P, Yamato P, Jolivet L, Burov E. 2009. Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms. Earth Science Reviews, 92, 53–79. doi: 10.1016/j.earscirev.2008.11.002.

    CrossRef Google Scholar

    Bhowmik SK, Ao A. 2016. Subduction initiation in the Neo-Tethys: Constraints from counterclockwise P-T paths in amphibolite rocks of the Nagaland Ophiolite Complex, India. Journal of Metamorphic Geology, 34, 17–44. doi: 10.1111/jmg.12169.

    CrossRef Google Scholar

    Brown M. 2009. Metamorphic patterns in orogenic systems and the geological record. In: Cawood PA, Kroner A (eds.), Earth Accretionary Systems in Space and Time, 37–74. doi: 10.1144/SP318.2.

    Google Scholar

    Cawood PA, Kröner A, Collins WJ, Kusky TM, Mooney WD, Windley BF. 2009. Accretionary orogens through Earth history. London, Geological Society, Special Publications, 318, 1–36. doi: 10.1144/sp318.1.

    CrossRef Google Scholar

    Chen GY, Xu GX, Sun ZB, Tian SM, Zhang H, Huang L, Zhou K. 2017. Genetic study of amphiboles in retrograded eclogites from Mengku area, Shuangjiang County, western Yunnan Province. Acta Petrologica et Mineralogica, 36, 36–47 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2017.01.003.

    CrossRef Google Scholar

    Connolly J, Kerrick D. 1987. An algorithm and computer program for calculating composition phase diagrams. Calphad, 11, 1–55. doi: 10.1016/0364-5916(87)90018-6.

    CrossRef Google Scholar

    Connolly J, Petrini K. 2002. An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. Journal of Metamorphic Geology, 20, 697–708. doi: 10.1046/j.1525-1314.2002.00398.x.

    CrossRef Google Scholar

    Connolly JAD. 1990. Multivariable phase diagrams; an algorithm based on generalized thermodynamics. American Journal of Science, 290, 666–718. doi: 10.2475/ajs.290.6.666.

    CrossRef Google Scholar

    Connolly JAD. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Science Letters, 236, 524–541. doi: 10.1016/j.jpgl.2005.04.033.

    CrossRef Google Scholar

    Corfu F, Hanchar JM, Hoskin PWO, Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53, 469–500. doi: 10.2113/0530469.

    CrossRef Google Scholar

    Dan W, Wang Q, White WM, Zhang XZ, Tang GJ, Jiang ZQ, Hao LL, Ou Q. 2018. Rapid formation of eclogites during a nearly closed ocean: Revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau. Chemical Geology, 477, 112–122. doi: 10.1016/j.chemgeo.2017.12.012.

    CrossRef Google Scholar

    Davis PB, Whitney DL. 2006. Petrogenesis of lawsonite and epidote eclogite and blueschist, Sivrihisar Massif, Turkey. Journal of Metamorphic Geology, 24, 823–849. doi: 10.1111/j.1525-1314.2006.00671.x.

    CrossRef Google Scholar

    Dewey JF, Bird JM. 1971. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. Journal of Geophysical Research, 76, 3179–3206. doi: 10.1029/JB076i014p03179.

    CrossRef Google Scholar

    Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society America Bulletin, 123(3–4), 387–411. doi: 10.1130/B30446.1.

    CrossRef Google Scholar

    Dilek Y, Furnes H. 2014. Ophiolites and their origins. Elements, 10, 93–100. doi: 10.2113/GSELEMENTS.10.2.93.

    CrossRef Google Scholar

    Dong GC, Mo XX, Zhao ZZ, Zhu DC, Goodman RC, Kong H, Wang S. 2013. Zircon U-Pb dating and the petrological and geochemical constraints on Lincang granite in Western Yunnan, China: Implications for the closure of the Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 62, 282–294. doi: 10.1016/j.jseaes.2012.10.003.

    CrossRef Google Scholar

    Dong YS, Li C. 2009. Discovery of eclogite in the Guoganjianian Mountain, central Qiangtang area, northern Tibet. Geological Bulletin of China, 28, 1197–1200 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2009.09.006.

    CrossRef Google Scholar

    Ernst WG. 2005. Alpine and Pacific styles of Phanerozoic mountain building: Subduction-zone petrogenesis of continental crust. Terra Nova, 17, 165–188. doi: 10.1111/j.1365-3121.2005.00604.x.

    CrossRef Google Scholar

    Evans TP. 2004. A method for calculating effective bulk composition modification due to crystal fractionation in garnet-bearing schist: Implications for isopleth thermobarometry. Journal of Metamorphic Geology, 22, 547–557. doi: 10.1111/j.1525-1314.2004.00532.x.

    CrossRef Google Scholar

    Fan WM, Wang YJ, Zhang Y, Zhang YH, Jourdan F, Zi JW, Liu HC. 2015. Paleotethyan subduction process revealed from Triassic blueschists in the Lancang tectonic belt of Southwest China. Tectonophysics, 662, 95–108. doi: 10.1016/j.tecto.2014.12.021.

    CrossRef Google Scholar

    Fang NQ, Feng QL, Zhang SH, Wang XL. 1998. Paleo-Tethys evolution recorded in the Changning-Menglian Belt, western Yunnan, China. Comptes Rendus de l’Académie des Sciences - Series IIA - Earth and Planetary Science, 326, 275–282. doi: 10.1016/S1251-8050(97)86818-8.

    CrossRef Google Scholar

    Fang N, Liu B, Feng Q, Jia J. 1994. Late Palaeozoic and Triassic deep-water deposits and tectonic evolution of the Palaeotethys in the Changning-Menglian and Lancangjiang belts, southwestern Yunnan. Journal of Southeast Asian Earth Sciences, 9, 363–374. doi: 10.1016/0743-9547(94)90048-5.

    CrossRef Google Scholar

    Gaidies F, De Capitani C, Abart R, Schuster R. 2008. Prograde garnet growth along complex P-T-t paths: Results from numerical experiments on polyphase garnet from the Wolz Complex (Austroalpine basement). Contributions to Mineralogy and Petrology, 155, 673–688. doi: 10.1007/s00410-007-0264-y.

    CrossRef Google Scholar

    Gómez-Pugnaire MT, Karsten L, Sánchez-Vizcaíno VL. 1997. Phase relationships and P-T conditions of coexisting eclogite-blueschists and their transformation to greenschist-facies rocks in the Nerkau Complex (Northern Urals). Tectonophysics, 276, 195–216. doi: 10.1016/S0040-1951(97)00055-3.

    CrossRef Google Scholar

    Goodenough KM, Thomas RJ, Styles MT, Schofield DI, MacLeod CJ. 2014. Records of ocean growth and destruction in the Oman-UAE ophiolite. Elements, 10, 109–114. doi: 10.2113/gselements.10.2.109.

    CrossRef Google Scholar

    Green ECR, White RW, Diener JFA, Powell R, Holland TJB, Palin RM. 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34, 845–869. doi: 10.1111/jmg.12211.

    CrossRef Google Scholar

    Hennig D, Lehmann B, Frei D, Belyatsky B, Zhao XF, Cabral AR, Zeng PS, Zhou MF, Schmidt K. 2009. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U-Pb age and Nd-Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos, 113, 408–422. doi: 10.1016/j.lithos.2009.04.031.

    CrossRef Google Scholar

    Holland TJB, Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contributions to Mineralogy & Petrology, 145, 492–501. doi: 10.1007/s00410-003-0464-z.

    CrossRef Google Scholar

    Holland TJB, Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309–343. doi: 10.1111/j.1525-1314.1998.00140.x.

    CrossRef Google Scholar

    Holland TJB, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333–383. doi: 10.1111/j.1525-1314.2010.00923.x.

    CrossRef Google Scholar

    Hu ZC, Gao S, Liu YS, Hu SH, Chen HH, Yuan HL. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry, 23, 1093–1101. doi: 10.1039/b804760j.

    CrossRef Google Scholar

    Jian P, Liu D, Kröner A, Zhang Q, Wang Y, Sun X, Zhang W. 2009a. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (I): Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks. Lithos, 113, 748–766. doi: 10.1016/j.lithos.2009.04.004.

    CrossRef Google Scholar

    Jian P, Liu D, Kröner A, Zhang Q, Wang Y, Sun X, Zhang, W. 2009b. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113, 767–784. doi: 10.1016/j.lithos.2009.04.006.

    CrossRef Google Scholar

    Jian P, Liu DY, Sun XM. 2003. SHRIMP dating of baimaxueshan and Ludian granitoid batholiths, Northwestern Yunnan Province, and its geologieal impliecations. Acta Geoscientia Sinica, 24(4), 337–342 (in Chinese with English abstract). doi: 10.1016/S0955-2219(02)00073-0.

    CrossRef Google Scholar

    Jin X, Zhang YX, Zhou XY, Zhang KJ, Li ZW, Khalid SB, Hu JC, Lu L, Sun WD. 2019. Protoliths and tectonic implications of the newly discovered Triassic Baqing eclogites, central Tibet: Evidence from geochemistry, Sr-Nd isotopes and geochronology. Gondwana Research, 69, 144–162. doi: 10.1016/j.gr.2018.12.011.

    CrossRef Google Scholar

    Klemd R, John T, Scherer EE, Rondenay S, Gao J. 2011. Changes in dip of subducted slabs at depth: Petrological and geochronological evidence from HP-UHP rocks (Tianshan, NW-China). Earth and Planetary Science Letters, 310, 9–20. doi: 10.1016/j.jpgl.2011.07.022.

    CrossRef Google Scholar

    Kohn MJ, Kelly NM. 2018. Petrology and Geochronology of Metamorphic Zircon, In: Moser DE, Corfu F, Darling JR, Reddy SM, Tait K. (eds.), Microstructural Geochronology: Planetary Records Down to Atom Scale. USA, John Wiley & Sons, Inc., Hoboken, 35–61. doi: 9781119227250.

    Google Scholar

    Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745–750. doi: 10.1093/petrology/27.3.745.

    CrossRef Google Scholar

    Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Guo YZ. 1997. Nomenclature of amphiboles; Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. American Mineralogist, 82, 1019–1037. doi: 10.1180/minmag.1997.061.405.13.

    CrossRef Google Scholar

    Li C, Zhai QC, Dong Y, Huang X. 2006. Discovery of eclogite and its geological significance in Qiangtang area, central Tibet. Chinese Science Bulletin, 51, 1095–1100 (in Chinese with English abstract). doi: 10.1007/s11434-006-1095-3.

    CrossRef Google Scholar

    Li J, Sun ZB, Xu GX, Tian SM, Deng RH, Zhou K. 2017. PTt path and geological significance of retrograded eclogites from Mengku area in western Yumumn Province, China. Acta Petrologica Sinica, 33, 2285–2301 (in Chinese with English abstract).

    Google Scholar

    Li J, Sun ZB, Xu GX, Zhou K, Zeng WT, Huang L, Tian SM, Chen GY, Liu GC. 2015. Firstly discovered garnet-amphibolite from Mengku area, Shuangjiang county, Western Yunnan province, China. Acta Mineralogica Sinica, 35, 421–424 (in Chinese with English abstract). doi: 10.16461/j.cnki.1000-4734.2015.04.001.

    CrossRef Google Scholar

    Li JL, Klemd R, Gao J, Meyer M. 2012. Coexisting carbonate-bearing eclogite and blueschist in SW Tianshan, China: Petrology and phase equilibria. Journal of Asian Earth Sciences, 60, 174–187. doi: 10.1016/j.jseaes.2012.08.015.

    CrossRef Google Scholar

    Liati A, Gebauer D, Wysoczanski R. 2002. U-Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece); Evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism. Chemical Geology, 184, 281–299. doi: 10.1016/S0009-2541(01)00367-9.

    CrossRef Google Scholar

    Liu GC, Sun ZB, Zeng WT, Feng QL, Huang L, Zhang H. 2017. The age of Wanhe ophiolitic mélange from Mengku area, Shuangjiang County, Western Yunnan Province, and its geological significance. Acta Petrologica et Mineralogica, 36, 163–174 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2017.02.003.

    CrossRef Google Scholar

    Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51, 537–571. doi: 10.1093/petrology/egp082.

    CrossRef Google Scholar

    Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257, 34–43. doi: 10.1016/j.chemgeo.2008.08.004.

    CrossRef Google Scholar

    Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J, Chen HH. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55, 1535–1546. doi: 10.1007/s11434-010-3052-4.

    CrossRef Google Scholar

    Lou YX, Wei CJ, Chu H, Wang W, Zhang JS. 2009. Metamorphic evolution of high-pressure eclogite from Hong’an, Western Dabie Orogen, central China: Evidence from petrography and calculated phase equilibria in system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-(Fe2O3). Acta Petrologica Sinica, 25, 124–138 (in Chinese with English abstract).

    Google Scholar

    Marmo BA, Clarke GL, Powell R. 2002. Fractionation of bulk rock composition due to porphyroblast growth: Effects on eclogite facies mineral equilibria, Pam Peninsula, New Caledonia. Journal of Metamorphic Geology, 20, 151–165. doi: 10.1046/j.0263-4929.2001.00346.x.

    CrossRef Google Scholar

    McLean NM, Bowring JF, Bowring SA. 2011. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation. Geochemistry Geophysics Geosystems, 12, 1–26. doi: 10.1029/2010GC003478.

    CrossRef Google Scholar

    Metcalfe I. 1992. Upper Triassic conodonts from the Kodiang Limestone, Kedah, Peninsular Malaysia. Journal of Southeast Asian Earth Sciences, 7, 131–138. doi: 10.1016/0743-9547(92)90047-F.

    CrossRef Google Scholar

    Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences, 43, 605–623. doi: 10.1080/08120099608728282.

    CrossRef Google Scholar

    Metcalfe I. 2002. Permian tectonic framework and palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20, 551–566. doi: 10.1016/s1367-9120(02)00022-6.

    CrossRef Google Scholar

    Metcalfe I. 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Research, 9, 24–46. doi: 10.1016/j.gr.2005.04.002.

    CrossRef Google Scholar

    Metcalfe I. 2011. Palaeozoic–Mesozoic history of SE Asia. London, Geological Society, Special Publications, 355, 7–35. doi: 10.1144/SP355.2.

    CrossRef Google Scholar

    Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66, 1–33. doi: 10.1016/j.jseaes.2012.12.020.

    CrossRef Google Scholar

    Nie X, Feng Q, Qian X, Wang Y. 2015. Magmatic record of Prototethyan evolution in SW Yunnan, China: Geochemical, zircon U-Pb geochronological and Lu-Hf isotopic evidence from the Huimin metavolcanic rocks in the southern Lancangjiang zone. Gondwana Research, 28, 757–768. doi: 10.1016/j.gr.2014.05.011.

    CrossRef Google Scholar

    Noda A. 2017. A new tool for calculation and visualization of U-Pb age data: UPbplot.py. Bulletin of the Geological Survey of Japan, 68, 131–140. doi: 10.9795/bullgsj.68.131.

    CrossRef Google Scholar

    Peacock SM. 2003. Thermal structure and metamorphic evolution of subducting slabs. In: Eiler JM (ed.), Inside the Subduction Factory. Washington, D.C, AGU, 7–12. doi: 10.1029/138GM02.

    Google Scholar

    Peng T, Wang Y, Fan W, Liu D, Shi Y, Miao L. 2006. SHRIMP ziron U-Pb geochronology of early Mesozoic felsic igneous rocks from the southern Lancangjiang and its tectonic implications. Science China Earth Sciences, 49, 1032–1042. doi: 10.1007/s11430-006-1032-y.

    CrossRef Google Scholar

    Peng T, Wang Y, Zhao G, Fan W, Peng B. 2008. Arc-like volcanic rocks from the southern Lancangjiang zone, SW China: Geochronological and geochemical constraints on their petrogenesis and tectonic implications. Lithos, 102, 358–373. doi: 10.1016/j.lithos.2007.08.012.

    CrossRef Google Scholar

    Peng T, Wilde SA, Wang Y, Fan W, Peng B. 2013. Mid-Triassic felsic igneous rocks from the southern Lancangjiang Zone, SW China: Petrogenesis and implications for the evolution of Paleo-Tethys. Lithos, 168–169, 15–32. doi: 10.1016/j.lithos.2013.01.015.

    CrossRef Google Scholar

    Pullen A, Kapp P, Gehrels GE, Vervoort JD, Ding L. 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology, 36, 351–354. doi: 10.1130/G24435A.1.

    CrossRef Google Scholar

    Rubatto D. 2017. Zircon: The metamorphic mineral. Petrochronology: Methods and applications, 83, 261–295. doi: 10.1515/9783110561890-010.

    CrossRef Google Scholar

    Schliestedt M. 1986. Eclogite-blueschist relationships as evidenced by mineral equilibria in the high-pressure metabasic rocks of Sifnos (Cycladic Islands), Greece. Journal of Petrology, 27, 1437–1459. doi: 10.1093/petrology/27.6.1437.

    CrossRef Google Scholar

    Searle M, Cox J. 1999. Tectonic setting, origin, and obduction of the Oman ophiolite. Geological Society of America Bulletin, 111, 104–122. doi: 10.1130/0016-7606(1999)1112.3.CO;2.

    CrossRef Google Scholar

    Şengör AMC, Yılmaz Y, Sungurlu O. 1984. Tectonics of the Mediterranean Cimmerides: Nature and evolution of the western termination of Palaeo-Tethys. London, Geological Society, Special Publications, 17, 77–112. doi: 10.1144/GSL.SP.1984.017.01.04.

    CrossRef Google Scholar

    Spear FS. 1993. Metamorphic Phase Equilibria and Pressure-Tmeperature-Time Paths. Washington, D. C., Mineralogical Society of America.

    Google Scholar

    Spencer CJ, Kirkland CL, Taylor RJM. 2016. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers, 7, 581–589. doi: 10.1016/j.gsf.2015.11.006.

    CrossRef Google Scholar

    Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. London, Geological Society, Special Publications, 42, 313–345. doi: 10.1144/GSL.SP.1989.042.01.19.

    CrossRef Google Scholar

    Sun ZB, Li J, Zhou K, Zeng WT, Duan XD, Zhao JT, Xu GX, Fan YH. 2017a. Geochemical characteristics and geological significance of retrograde eclogite in Mengku Area, Shuangjiang County, Western Yunnan Province, China. Geoscience, 31, 746–756 (in Chinese with English abstract).

    Google Scholar

    Sun ZB, Zeng WT, Zhou K, Wu JL, Li GJ, Huang L, Zhao JT. 2017b. Identification of Ordovician oceanic island basalt in the Changning-Menglian suture zone and its tectonic implications: Evidence from geochemical and geochronological data. Geological Bulletin of China, 36, 1760–1771 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2017.10.008.

    CrossRef Google Scholar

    Tian ZL, Wei CJ. 2013. Metamorphism of ultrahigh-pressure eclogites from the Kebuerte Valley, South Tianshan, NW China: Phase equilibria and P-T path. Journal of Metamorphic Geology, 31, 281–300. doi: 10.1111/jmg.12021.

    CrossRef Google Scholar

    Tian ZL, Wei CJ. 2014. Coexistence of garnet blueschist and eclogite in South Tianshan, NW China: Dependence of P-Tevolution and bulk-rock composition. Journal of Metamorphic Geology, 32, 743–764. doi: 10.1111/jmg.12089.

    CrossRef Google Scholar

    Tinkham DK, Ghent ED. 2005. Estimating P-T conditions of garnet growth with isochemical phase-diagram sections and the problem of effective bulk rock-compositions. The Canadian Mineralogist, 43, 35–50. doi: 10.2113/ gscanmin.43.1.35.

    CrossRef Google Scholar

    Tsujimori T, Sisson VB, Liou JG, Harlow GE, Sorensen SS. 2006. Very-low-temperature record of the subduction process: A review of worldwide lawsonite eclogites. Lithos, 92, 609–624. doi: 10.1016/j.lithos.2006.03.054.

    CrossRef Google Scholar

    Vitale Brovarone A, Beyssac O. 2014. Lawsonite metasomatism: A new route for water to the deep Earth. Earth and Planetary Science Letters, 393, 275–284. doi: 10.1016/j.jpgl.2014.03.001.

    CrossRef Google Scholar

    Vitale Brovarone A, Groppo C, Hetényi G, Compagnoni R, Malavieille J. 2011. Coexistence of lawsonite-bearing eclogite and blueschist: Phase equilibria modelling of Alpine Corsica metabasalts and petrological evolution of subducting slabs. Journal of Metamorphic Geology, 29, 583–600. doi: 10.1111/j.1525-1314.2011.00931.x.

    CrossRef Google Scholar

    Wakabayashi J. 1999. Subduction and the rock record: Concepts developed in the Franciscan Complex, California. In: Moores EM, Sloan D, Stout DL. (eds.), Classic Cordilleran Concepts: A View from California. Geological Society of America, 123–133. doi: 10.1130/0-8137-2338-8.123.

    Google Scholar

    Wakabayashi J. 2017a. Sedimentary serpentinite and chaotic units of the lower Great Valley Group forearc basin deposits, California: Updates on distribution and characteristics. International Geology Review, 59, 599–620. doi: 10.1080/00206814.2016.1219679.

    CrossRef Google Scholar

    Wakabayashi J. 2017b. Structural context and variation of ocean plate stratigraphy, Franciscan Complex, California: Insight into mélange origins and subduction-accretion processes. Progress in Earth and Planetary Science, 4, 1–23. doi: 10.1186/s40645-017-0132-y.

    CrossRef Google Scholar

    Wakabayashi J, Dilek Y. 2011. Introduction: Characteristics and tectonic settings of mélanges, and their significance for societal and engineering problems. In: Wakabayashi J, Dilek Y (eds.), Mélanges: Processes of Formation and Societal Significance. Geological Society of America, 5–10. doi: 10.1130/2011.2480(00).

    Google Scholar

    Wang BD, Wang L, Pan GT, Yin FG, Wang DB, Tang Y. 2013. U-Pb zircon dating of Early Paleozoic gabbro from the Nantinghe ophiolite in the Changning-Menglian suture zone and its geological implication. Chinese Science Bulletin, 58, 920–930 (in Chinese with English abstract). doi: 10.1360/csb2013-58-4-344.

    CrossRef Google Scholar

    Wang DB, Luo L, Tang Y, Yin F, Wang BD, Wang L. 2016. Zircon U-Pb dating and petrogenesis of Early Paleozoic adakites from the Niujingshan ophiolitic mélange in the Changning-Menglian Suture zone and its geological implications. Acta Petrologica Sinica, 32, 2317–2329 (in Chinese with English abstract).

    Google Scholar

    Wang F, Liu FL, Liu P, Shi J, Cai J. 2014. Petrogenesis of Lincang granites in the south of Lancangjiang area: Constrain from geochemistry and zircon U-Pb geochronology. Acta Petrologica Sinica, 30, 3034–3050 (in Chinese with English abstract).

    Google Scholar

    Wang F, Liu F, Schertl HP, Liu PL, Ji L, Cai J, Liu LS. 2019a. Paleo-Tethyan tectonic evolution of Lancangjiang metamorphic complex: Evidence from SHRIMP U-Pb zircon dating and 40Ar/39Ar isotope geochronology of blueschists in Xiaoheijiang-Xiayun area, Southeastern Tibetan Plateau. Gondwana Research, 65, 142–155. doi: 10.1016/j.gr.2018.08.007.

    CrossRef Google Scholar

    Wang F, Liu FL, Ji L, Liu PH, Cai J, Tian ZH, Liu LS. 2016. Petrogenesis and metamorphic evolution of blueschist from Xiaoheijiang-Shangyun area in Lancangjiang metamorphic complex. Acta Petrologica et Mineralgica 35, 804–820 (in Chinese with English abstract).

    Google Scholar

    Wang HN, Liu FL, Li J, Sun ZB, Ji L, Tian ZL, Liu L, Santosh M. 2019b. Petrology, geochemistry andP-T-t path of lawsonite-bearing retrograded eclogites in the Changning-Menglian orogenic belt, southeast Tibetan Plateau. Journal of Metamorphic Geology, 37, 439–478. doi: 10.1111/jmg.12462.

    CrossRef Google Scholar

    Wang HN, Liu FL, Santosh M, Wang F. 2020. Subduction erosion associated with Paleo-Tethys closure: Deep subduction of sediments and high pressure metamorphism in the SE Tibetan Plateau. Gondwana Research, 82, 171–192. doi: 10.1016/j.gr.2020.01.001.

    CrossRef Google Scholar

    Wei CJ, Clarke GL. 2011. Calculated phase equilibria for MORB compositions: A reappraisal of the metamorphic evolution of lawsonite eclogite. Journal of Metamorphic Geology, 29, 939–952. doi: 10.1111/j.1525-1314.2011.00948.x.

    CrossRef Google Scholar

    Wei CJ, Li YJ, Yu Y, Zhang JS. 2010. Phase equilibria and metamorphic evolution of glaucophane-bearing UHP eclogites from the Western Dabieshan Terrane, Central China. Journal of Metamorphic Geology, 28, 647–666. doi: 10.1111/j.1525-1314.2010.00884.x.

    CrossRef Google Scholar

    White RW, Powell R, Holland TJB, Johnson TE, Green ECR. 2014a. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32, 261–286. doi: 10.1111/jmg.12071.

    CrossRef Google Scholar

    White RW, Powell R, Johnson TE. 2014b. The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals. Journal of Metamorphic Geology, 32, 809–828. doi: 10.1111/jmg.12095.

    CrossRef Google Scholar

    Whitney DL, Davis PB. 2006. Why is lawsonite eclogite so rare? Metamorphism and preservation of lawsonite eclogite, Sivrihisar, Turkey Geology, 34, 473–476. doi: 10.1130/G22259.1.

    CrossRef Google Scholar

    Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187. doi: 10.2138/am.2010.3371.

    CrossRef Google Scholar

    Wiedenbeck M, AllÉ P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt AV, Roddick JC, Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19, 1–23. doi: 10.1111/j.1751-908X.1995.tb00147.x.

    CrossRef Google Scholar

    Wu H, Boulter CA, Ke B, Stow DAV, Wang Z. 1995. The Changning-Menglian suture zone: A segment of the major Cathaysian-Gondwana divide in Southeast Asia. Tectonophysics, 242, 267–280. doi: 10.1016/0040-1951(94)00210-Z.

    CrossRef Google Scholar

    Wu YB, Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49, 1554–1569. doi: 10.1007/BF03184122.

    CrossRef Google Scholar

    Xiang Hua, 2020. GeoPS: an interactive visualization tool for thermodynamic modeling of phase equilibria. Earth and Space Science Open Archive. doi: 10.1002/essoar.10502553.1.

    Google Scholar

    Xu GX, Zeng WT, Sun ZB, Huang L, Chen GY, Tian SM, Zhou K. 2016. Petrology and mineralogy of (retrograded) eclogites from Mengku area, Shuangjiang county, western Yunnan province. Geological Bulletin of China, 35, 1035–1045 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2016.07.001.

    CrossRef Google Scholar

    Yakymchuk C, Kirkland CL, Clark C. 2018. Th/U ratios in metamorphic zircon. Journal of Metamorphic Geology, 36, 715–737. doi: 10.1111/jmg.12307.

    CrossRef Google Scholar

    Zhai QG, Jahn BM, Li XH, Zhang RY, Li QL, Yang YN, Wang J, Liu T, Hu PY, Tang SH. 2017. Zircon U-Pb dating of eclogite from the Qiangtang terrane, north-central Tibet: A case of metamorphic zircon with magmatic geochemical features. International Journal of Earth Sciences, 106, 1239–1255. doi: 10.1007/s00531-016-1418-9.

    CrossRef Google Scholar

    Zhai QG, Jahn BM, Wang J, Hu PY, Chung SL, Lee HY, Tang SH, Tang Y. 2016. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau. Geological Society of America Bulletin, 128, 355–373. doi: 10.1130/B31296.1.

    CrossRef Google Scholar

    Zhai QG, Jahn BM, Zhang RY, Wang J, Su L. 2011a. Triassic Subduction of the Paleo-Tethys in northern Tibet, China: Evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block. Journal of Asian Earth Sciences, 42, 1356–1370. doi: 10.1016/j.jseaes.2011.07.023.

    CrossRef Google Scholar

    Zhai QG, Zhang RY, Jahn BM, Li C, Song SG, Wang J. 2011b. Triassic eclogites from central Qiangtang, northern Tibet, China: Petrology, geochronology and metamorphic P-T path. Lithos, 125, 173–189. doi: 10.1016/j.lithos.2011.02.004.

    CrossRef Google Scholar

    Zhai QG, Li C, Wang J. 2009. Petrology, mineralogy and pTt path for the eclogite from central Qiangtang, northern Tibet. Geological Bulletin of China, 28, 1207–1220 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2009.09.008.

    CrossRef Google Scholar

    Zhang KJ, Cai JX, Zhang YX, Zhao TP. 2006. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications. Earth and Planetary Science Letters, 245, 722–729. doi: 10.1016/j.jpgl.2006.02.025.

    CrossRef Google Scholar

    Zhang YX, Jin X, Zhang KJ, Sun WD, Liu JM, Zhou XY, Yan LL. 2018. Newly discovered Late Triassic Baqing eclogite in central Tibet indicates an anticlockwise West-East Qiangtang collision. Scientific Reports, 8, 966. doi: 10.1038/s41598-018-19342-w.

    CrossRef Google Scholar

    Zhong DL. 1998. The Paleotethys orogenic belt in west of Sichuan and Yunnan. Beijing, Science Publishing House (in Chinese).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(2456) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint