2021 Vol. 4, No. 1
Article Contents

Li-E Gao, Ling-sen Zeng, Ling-hao Zhao, Jia-hao Gao, Zhen Shang, 2021. Behavior of apatite in granitic melts derived from partial melting of muscovite in metasedimentary sources, China Geology, 4, 44-55. doi: 10.31035/cg2021009
Citation: Li-E Gao, Ling-sen Zeng, Ling-hao Zhao, Jia-hao Gao, Zhen Shang, 2021. Behavior of apatite in granitic melts derived from partial melting of muscovite in metasedimentary sources, China Geology, 4, 44-55. doi: 10.31035/cg2021009

Behavior of apatite in granitic melts derived from partial melting of muscovite in metasedimentary sources

More Information
  • Fluid-absent and fluid-fluxed melting of muscovite in metasedimentary sources are two types of crustal anatexis to produce the Himalaya Cenozoic leucogranites. Apatite grains separated from melts derived from the two types of parting melting have different geochemical compositions. The leucogranites derived from fluid-fluxed melting have relict apatite grains and magmatic crystallized apatite grains, by contrast, there are only crystallized apatite grains in the leucogranites derived from fluid-absent melting. Moreover, apatite grains crystallized from fluid-fluxed melting of muscovite contain higher Sr, but lower Th and LREE than those from fluid-absent melting of muscovite, which could be controlled by the distribution of partitioning coefficient (DAp/Melt) between apatite and leucogranite. DAp/Melt in granites derived from fluid-absent melting is higher than those from fluid-fluxed melting. So, not only SiO2 and A/CNK, but also types of crustal anatexis are sensitive to trace element partition coefficients for apatite. In addition, due to being not susceptible to alteration, apatite has a high potential to yield information about petrogenetic processes that are invisible at the whole-rock scale and thus is a useful tool as a petrogenetic indicator.

  • 加载中
  • Aikman AB, Harrison TM, Hermann J. 2012. Age and thermal history of Eo- and Neohimalayan granitoids, eastern Himalaya. Journal of Asian Earth Sciences, 51, 85–97. doi: 10.1016/j.jseaes.2012.01.011.

    CrossRef Google Scholar

    Aikman AB, Harrison TM, Ding L. 2008. Evidence for early (> 44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth and Planetary Science Letters, 274, 14–23. doi: 10.1016/j.jpgl.2008.06.038.

    CrossRef Google Scholar

    Aoya M, Wallis SR, Terada K, Lee J, Kawakami T, Wang Y, Heizler M. 2005. North–south extension in the Tibetan crust triggered by granite emplacement. Geology, 33, 853–856. doi: 10.1130/G21806.1.

    CrossRef Google Scholar

    Belousova EA, Griffin WL, O’Reilly SY, Fisher NI. 2002. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76(1), 45–69. doi: 10.1016/S0375-6742(02)00204-2.

    CrossRef Google Scholar

    Bruand E, Storey C, Fowler M. 2014. Accessory mineral chemistry of high Ba-Sr granites from northern scotland: Constraints on petrogenesis and records of whole-rock signature. Journal of Petrology, 55(8), 1619–1651. doi: 10.1093/petrology/egu037.

    CrossRef Google Scholar

    Bruand E, Fowler M, Storey C, Darling J. 2017. Apatite trace element and isotope applications to petrogenesis and provenance. American Mineralogist, 102, 75–84. doi: 10.2138/am-2017-5744.

    CrossRef Google Scholar

    Chen J, Huang B, Sun L. 2010. New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 489, 189–209. doi: 10.1016/j.tecto.2010.04.024.

    CrossRef Google Scholar

    Chu MF, Wang KL, Griffin WL, Chung SL, O’Reilly SY, Pearson NJ, Iizuka Y. 2009. Apatite composition: Tracing petrogenetic processes in transhimalayan granitoids. Journal of Petrology, 50, 1829–1855. doi: 10.1093/petrology/egp054.

    CrossRef Google Scholar

    Cottle JM, Searle MP, Horstwood MSA, Matthew SA, Waters David J. 2009. Timing of mid-crustal metamorphism, melting, and deformation in the Mount Everest region of southern Tibet revealed by U (‐Th)‐Pb geochronology. The Journal of Geology, 117(6), 643–664. doi: 10.1086/605994.

    CrossRef Google Scholar

    Dupont-Nivet G, Lippert PC, van Hinsbergen DJJ, Meijers MJM, Kapp P. 2010. Paleolatitude and age of the Indo- Asia collision: Paleomagnetic constraints. Geophysical Journal International, 182, 1189–1198. doi: 10.1111/j.1365-246X.2010.04697.x.

    CrossRef Google Scholar

    Emo RB, Smit MA, Melanie S, Ellen K, Scherer EE, Peter S, Bleeker W, Mezger K. 2018. Evidence for evolved hadean crust from sr isotopes in apatite within eoarchean zircon from the acasta gneiss complex. Geochimica et Cosmochimica Acta, S0016703718303089-. doi: 10.1016/j.gca.2018.05.028.

    Google Scholar

    Gao LE, Zeng LS, Hu GY, Wang YY, Wang Q, Guo CL, Hou KJ. 2019. Early Paleozoic magmatismalong the northernmargin of East Gondwana. Lithos, 334–335, 25–41. doi: 10.1016/j.lithos.2019.03.007.

    CrossRef Google Scholar

    Gao LE, Zeng LS, Asimow PD. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45(1), 39–42. doi: 10.1130/G38336.1.

    CrossRef Google Scholar

    Gao LE, Zeng LS, Wang L, Hou KJ, Gao JH, Shang Z. 2016. Timing and tectonic implication of different crustal partial melting in the Himalayan Orogenic Belt. Acta Geologica Sinica, 90(11), 3039–3059 (in Chinese with English abstract).

    Google Scholar

    Gao LE, Zeng LS. 2014. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss. Geochimica et Cosmochimica Acta, 130, 136–155. doi: 10.1016/j.gca.2014.01.003.

    CrossRef Google Scholar

    Gao LE, Zeng LS, Hou KJ, Guo CL, Tang SH, Xie KJ, Hu GY, Wang L. 2013. Episodic crustal anatexis and the formation of Paiku composite leucogranitic pluton in the Malashan Gneiss Dome, Southern Tibet. Chinese Science Bulletin, 58, 3546–3563. doi: 10.1007/s11434-013-5792-4.

    CrossRef Google Scholar

    Gao S, Liu XM, Yuan HL. 2002. Analysis of forty-two major and trace elements of USGS and NIST SRM Glasses by LA-ICPMS. Geostandards Newsletters, 26, 181–196. doi: 10.1111/j.1751-908X.2002.tb00886.x.

    CrossRef Google Scholar

    Gillespie J, Glorie S, Khudoley A, Collins AS. 2018. Detrital apatite u-pb and trace element analysis as a provenance tool: Insights from the yenisey ridge (siberia). Lithos, 314–315, 140–155. doi: 10.1016/j.lithos.2018.05.026.

    CrossRef Google Scholar

    Harrison TM, Watson EB. 1984. The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1467–1478. doi: 10.1016/0016-7037(84)90403-4.

    CrossRef Google Scholar

    Harrison TM, Grove M, Kevin D, McKeegan KD, Coath CD, Lovera OM, Le Fort P. 1999. Origin and episodic emplacement of the Manaslu intrusive complex, Central Himalaya. Journal of Petrology, 40, 3–19. doi: 10.1093/petroj/40.1.3.

    CrossRef Google Scholar

    Henrichs IA, O ’Sullivan G, Chew DM, Mark C, Babechuk MG, McKenna C, Emo R. 2018. The trace element and U-Pb systematics of metamorphic apatite. Chemical Geology, 483, 218–238. doi: 10.1016/j.chemgeo.2017.12.031.

    CrossRef Google Scholar

    Hodges KV. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin, 112, 324–350. doi: 10.1130/0016-7606(2000)1122.3.CO;2.

    CrossRef Google Scholar

    Hou ZQ, Zheng YC, Zeng LS, Gao LE, Huang KX, Li W, Li QY, Fu Q, Liang W, Sun QZ. 2012. Eocene–Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth and Planetary Science Letters, 349–350, 38–52. doi: 10.1016/j.jpgl.2012.06.030.

    CrossRef Google Scholar

    Hughes JM, Rakovan, JF. 2015. Structurally robust, chemically diverse: Apatite and apatite supergroup minerals. Elements, 11, 165–170. doi: 10.2113/gselements.11.3.165.

    CrossRef Google Scholar

    Jiang XY, Li H, Ding X, Wu K, Guo J Liu JQ, Sun WD. 2018. Formation of a-type granites in the lower yangtze river belt: A perspective from apatite geochemistry. Lithos, 304–307, 125–134. doi: 10.1016/j.lithos.2018.02.005.

    CrossRef Google Scholar

    Kali E, Leloup P, Arnaud N, Maheo G, Liu D, Boutonnet E, Van der Woerd J, Liu X, L IH. 2010. Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Kwy pressure-temperature-deformation-time constraints on orogenic models. Tectonics, 29(2), TC2014. doi: 10.1029/2009TC002551.

    CrossRef Google Scholar

    King J, Harris N, Argles T, Parrish R, Zhang HF. 2011. The contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geological Society of America Bulletin, 123, 218–239. doi: 10.1130/B30085.1.

    CrossRef Google Scholar

    Kirkland CL, Yakymchuk C, Szilas K, Evans N, Hollis J, McDonald B, Gardiner NJ. 2018. Apatite: A U-Pb thermochronometer or geochronometer? Lithos, 318–319, 143–157. doi: 10.1016/j.lithos.2018.08.007.

    CrossRef Google Scholar

    Lee J, Whitehouse MJ. 2007. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages. Geology, 35, 45–48. doi: 10.1130/G22842A.1.

    CrossRef Google Scholar

    Leloup PH, Maheo G, Arnaud N, Kali, E, Boutonnet E, Liu XH, Li HB. 2010. The South Tibet detachment shear zone in the Dinggye area: Time constraints on exhumation models of the Himalayas. Earth and Planetary Science Letters, 292(1–20), 1–16. doi: 10.1016/j.jpgl.2009.12.035.

    CrossRef Google Scholar

    Liebke U, Appel E, Ding L, Neumann U, Antolin A, Xu Q. 2010. Position of the Lhasa terrane prior to India-Asia collision derived from palaeomagnetic inclinations of 53 Ma old dykes of the Linzhou Basin: Constraints on the age of collision and post-collisional shortening within the Tibetan Plateau. Geophysical Journal International, 182, 1199–1215. doi: 10.1111/j.1365-246X.2010.04698.x.

    CrossRef Google Scholar

    Liu XM, Yuan HL, Hattendorf B, Gunther D, Chen L, Hu SH. 2002. Analysis of 42 major and trace elements in glass standard reference materials by 193nm LA-ICPMS. Acta Petrologica Sinica, 18(3), 408–418 (in Chinese with English abstract).

    Google Scholar

    Liu ZC, Wu FY, Ji WQ, Wang JG, Liu CZ. 2014. Petrogenesis of Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos, 208–209, 118–136. doi: 10.1016/j.lithos.2014.08.022.

    CrossRef Google Scholar

    Miles AJ, Graham CM, Hawkesworth CJ, Gillespie MR, Hinton RW. 2013. Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon. Contributions to Mineralogy and Petrology, 166, 1–19. doi: 10.1007/s00410-013-0862-9.

    CrossRef Google Scholar

    Miles AJ, Graham CM, Hawkesworth CJ, Gillespie MR, Hinton RW, Bromiey GD, Mac EM. 2014. Mn in apatite: A new redox proxy for silicic magmas? Geochimica et Cosmochimica Acta, 132, 101–119. doi: 10.1016/j.gca.2014.01.040.

    CrossRef Google Scholar

    Montel JM. 1993. A model for monazite/melt equilibrium and the application to the generation of granitic magmas. Chemical Geology, 110, 127–46. doi: 10.1016/0009-2541(93)90250-M.

    CrossRef Google Scholar

    Morton A, Yaxley G. 2007. Detrital apatite geochemistry and its application in provenance studies. Special Paper of the Geological Society of America, 420, 319–344. doi: 10.1130/2006.2420(19).

    CrossRef Google Scholar

    Murphy MA, Harrison TM. 1999. Relationship between leucogranites and the Qomolangma detachment in the Rongbuk Valley, south Tibet. Geology, 27(9), 831–834. doi: 10.1130/0091-7613(1999)027<0831:RBLATQ>2.3.CO;2.

    CrossRef Google Scholar

    Pan LC, Hu, RZ, Wang XS, Bi XW, Zhu JJ, Li C. 2016. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: Examples from four granite plutons in the sanjiang region, SW China. Lithos, 254–255, 118–130. doi: 10.1016/j.lithos.2016.03.010.

    CrossRef Google Scholar

    Patrick B, Bell EA, Thomas S, Reto T, Brenhin KC, Pardo OS, Davis AM, Harrison TM, Pellin MJ. 2018. Potassic, high-silica hadean crust. Proceedings of the National Academy of Sciences, 115, 6353. doi: 10.1073/pnas.1720880115.

    CrossRef Google Scholar

    Pearce NJG, Perkins WT, Wetgate JA, Gorton MP, Jackson SE, Neal CR, Chenery P. 1997. A compilation of new and published major and trace element data for NIST SRM610 and NIST SRM 612 glass reference materials. Geostandards Newsletters, 21, 115–144. doi: 10.1111/j.1751-908X.1997.tb00538.x.

    CrossRef Google Scholar

    Piccoli PM, Candela PA. 2002. Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48, 255–292. doi: 10.2138/rmg.2002.48.6.

    CrossRef Google Scholar

    Pichavant M, Montel JM, Richard LR. 1992. Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison-Watson model. Geochimica et Cosmochimica Acta, 56, 3855–3861. doi: 10.1016/0016-7037(92)90178-L.

    CrossRef Google Scholar

    Rapp RP, Watson EB. 1986. Monazite solubility and dissolution kinetics: Implications for the thorium and light rare earth chemistry of felsic magmas. Contributions to Mineralogy and Petrology, 94, 304–316. doi: 10.1007/BF00371439.

    CrossRef Google Scholar

    Searle MP, Godin L. 2003. The south Tibetan detachment and the Manaslu Leucogranite: A structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. The Journal of geology, 111(5), 505–523. doi: 10.1086/376763.

    CrossRef Google Scholar

    Streule M, Searle M, Waters D, Horstwood M. 2010. Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite: Constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology. Tectonics, 29(5), TC5011. doi: 10.1029/2009TC002533.

    CrossRef Google Scholar

    Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313–345. doi: 10.1144/GSL.SP.1989.042.01.19.

    CrossRef Google Scholar

    Villaros A, Stevens, G, Moyen J, Buick IS. 2009. The trace element compositions of S-type granites: Evidence for disequilibrium melting and accessory phase entrainment in the source. Contributions to Mineralogy and Petrology, 158, 543–561. doi: 10.1007/s00410-009-0396-3.

    CrossRef Google Scholar

    Watson EB, Harrison TM. 1984. Accessory minerals and the geochemical evolution of crustal magmatic system: A summary and prospectus of experimental approaches. Physics of the Earth and Planetary Interiors, 35, 19–30. doi: 10.1016/0031-9201(84)90031-1.

    CrossRef Google Scholar

    Wolf MB, London D. 1995. Incongruent dissolution of REE- and Sr-rich apatite in peraluminous granitic liquids: Differential apatite, monazite and xenotime solubilities during anatexis. American Mineralogist, 80(7–8), 765–775. doi: 10.2138/am-1995-7-818.

    CrossRef Google Scholar

    Yang XY, Zhang JJ, Qi GW. 2009. Structure and deformation around the Gyirong basin, northern Himalaya, and onset of the south Tibetan detachment system. Science in China Series D: Earth Sciences, 52, 1046–1058. doi: 10.1007/s11430-009-0111-2.

    CrossRef Google Scholar

    Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280. doi: 10.1146/annurev.earth.28.1.211.

    CrossRef Google Scholar

    Yu JJ, Zeng LS, Liu J, Gao LE, Xie KJ. 2011. Early Miocene leucogranites in Dinggye area, southern Tibet: Formation mechanism and tectonic implications. Acta Petrologia Sinica, 27(7), 1961–1972 (in Chinese with English abstract).

    Google Scholar

    Zeng LS, Asimow PD, Saleeby JB. 2005b. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source. Geochimica et Cosmochimica Acta, 69(14), 3671–3682. doi: 10.1016/j.gca.2005.02.035.

    CrossRef Google Scholar

    Zeng LS, Gao LE, Xie KJ, Liu J. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes: Melting thickened lower continental crust. Earth and Planetary Science Letters, 303, 251–266. doi: 10.1016/j.jpgl.2011.01.005.

    CrossRef Google Scholar

    Zeng LS, Saleeby JB, Asimow P. 2005a. Nd isotope disequilibrium during crustal anatexis: A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology, 33, 53–56. doi: 10.1130/G20831.1.

    CrossRef Google Scholar

    Zeng LS, Chen J, Gao LE, Chen ZY. 2012. The geochemical nature of apatites in high Sr/Y two-mica granites from the North Himalayan Gneiss Domes, southern Tibet. Acta Petrologica Sinica, 28(9), 2981–2993 (in Chinese with English abstract).

    Google Scholar

    Zeng LS, Gao LE. 2017. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt. Acta Petrologica Sinica, 33(5), 1420–1444 (in Chinese with English abstract).

    Google Scholar

    Zhang HF, Harris N, Parrish R, Kelley S, Zhang L, Rogers N, Argles T, King J. 2004. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth and Planetary Science Letters, 228, 195–212. doi: 10.1016/j.jpgl.2004.09.031.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(1623) PDF downloads(13) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint