Citation: | Si-hong Jiang, Leon Bagas, Yi-fei Liu, Li-li Zhang, 2021. Archean (about 2500 Ma) anatexis in eastern North China Block, China Geology, 4, 215-229. doi: 10.31035/cg2021014 |
Two Neoarchean alkaline feldspar-rich granites sourced from partially melted granulite-facies granodioritic orthogneiss have been here recognised in the eastern part of the North China Block (NCB). These poorly foliated granites have previously been assumed to be Mesozoic in age and never dated, and so their significance has not been recognised until now. The first granite (AG1) is a porphyritic syenogranite with megacrystic K-feldspar, and the second (AG2) is a quartz syenite with perthitic megacryst. Zircons from the granites yield LA-ICP-MS U-Pb ages of 2499 ± 10 Ma (AG1), and 2492 ± 28 Ma (AG2), which are slightly younger than the granodioritic orthogneiss that they intrude with a crystallisation U-Pb age of 2537 ± 34 Ma. The younger granites have higher assays for SiO2 (71.91% for AG1 and 73.22% for AG2) and K2O (7.52% for AG1 and 8.37% for AG2), and much lower assays for their other major element than the granodioritic orthogneiss. All of the granodioritic orthogneiss and granite samples have similar trace element patterns, with depletion in Th, U, Nb, and Ti and enrichment in Rb, Ba, K, La, Ce, and P. This indicates that the granites are derived from the orthogneiss as partial melts. Although they exhibit a similar REE pattern, the granites have much lower total REE contents (30.97×10−6 for AG1, and 25.93×10−6 for AG2), but pronounced positive Eu anomalies (Eu/Eu* = 8.57 for AG1 and 27.04 for AG2). The granodioritic orthogneiss has an initial 87Sr/86Sr ratio of 0.70144, εNd(t) value of 3.5, and εHf(t) values ranging from −3.2 to +2.9. The orthogneiss is a product of fractional crystallisation from a dioritic magma, which was derived from a mantle source contaminated by melts derived from a felsic slab. By contrast, the AG1 sample has an initial 87Sr/86Sr ratio of 0.6926 that is considered too low in value, εNd(t) value of 0.3, and εHf(t) values between +0.57 and +3.82; whereas the AG2 sample has an initial 87Sr/86Sr ratio of 0.70152, εNd(t) value of 1.3, and εHf(t) values between +0.5 and +14.08. These assays indicate that a Sr-Nd-Hf isotopic disequilibrium exists between the granite and granodioritic orthogneiss. The elevated εHf(t) values of the granites can be explained by the involvement of Hf-bearing minerals, such as orthopyroxene, amphibole, and biotite, in anatectic reactions in the granodioritic orthogneiss. Based on the transitional relationship between the granites and granodioritic orthogneiss and the geochemical characteristics mentioned above, it is concluded that the granites are the product of rapid partial-melting of the granodioritic orthogneiss after granulite-facies metamorphism, and their crystallisation age of about 2500 Ma provides the minimum age of the metamorphism. This about 2500 Ma tectonic-metamorphic event in NCB is similar to the other cratons in India, Antarctica, northern and southern Australia, indicating a possible connection between these cratons during the Neoarchean.
Aranovich LY, Makhluf AR, Manning CE, Newton RC. 2014. Dehydration melting and the relationship between granites and granulites. Precambrian Research, 253, 26–37. doi: 10.1016/j. precamres.2014.07.004. |
Ayres M, Harris N. 1997. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: Constraints from Himalayan leucogranites. Chemical Geology, 139, 249–269. doi: 10.1016/S0009-2541(97)00038-7. |
Bai X, Liu SW, Guo RR, Wang W. 2015. Zircon U-Pb-Hf isotopes and geochemistry of two contrasting Neoarchean charnockitic rock series in Eastern Hebei, North China Craton: Implications for petrogenesis and tectonic setting. Precambrian Research, 267, 72–93. doi: 10.1016/j.precamres.2015.06.004. |
Bai X, Liu SW, Guo RR, Wang W. 2016. A Neoarchean arc–back-arc system in Eastern Hebei, North China Craton: Constraints from zircon U-Pb-Hf isotopes and geochemistry of dioritic-tonalitic-trondhjemitic-granodioritic (DTTG) gneisses and felsic paragneisses. Precambrian Research, 273, 90–111. doi: 10.1016/j.precamres.2015.12.003. |
Bai X, Liu SW, Guo RR, Zhang LF, Wang W. 2014. Zircon U-Pb-Hf isotopes and geochemistry of Neoarchean dioritic-trondhjemitic gneisses, Eastern Hebei, North China Craton: Constraints on petrogenesis and tectonic implications. Precambrian Research, 251, 1–20. doi: 10.1016/j.precamres.2014.05.027. |
Barker F. 1979. Trondhjemite: Definition, environment and hypotheses of origin: Trondhjemites, dacites and related rocks. Amsterdam, Elsevier, 1‒12. |
Bea F, Montero P, Ortega M. 2006. A LA-ICP-MS evaluation of Zr reservoirs in common crustal rocks: Implications for Zr and Hf geochemistry, and zircon-forming processes. Canadian Mineralogist, 44, 693–714. doi: 10.2113/gscanmin.44.3.693. |
Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148, 243–258. doi: 10.1016/S0012-821X(97)00040-X. |
Burnham CW. 1967. Hydrothermal fluids at the magmatic stage. In: Barnes HL (eds.), Geochemistry of hydrothermal ore deposits. New York, Holt, Reinhart and Winston, 38‒76. |
Carvalho BB, Janasi VA, Sawyer EW. 2017. Evidence for Paleoproterozoic anatexis and crustal reworking of Archean crust in the São Francisco Craton, Brazil: A dating and isotopic study of the Kinawa migmatite. Precambrian Research, 291, 98–118. doi: 10.1016/j.precamres.2017.01.019. |
Cawood PA, Korsch RJ. 2008. Assembling Australia: Proterozoic building of a continent. Precambrian Research, 166, 1–38. doi: 10.1016/j.precamres.2008.08.006. |
Chen MY, Li SX. 1996. The evolution of granulite facies metamorphism in eastern Hebei province. Acta Petrologica Sinica, 12(2), 343–357 (in Chinese with English abstract). |
Chen YX, Gao P, Zheng YF. 2015. The anatectic effect on the zircon Hf isotope composition of migmatites and associated granites. Lithos, 238, 174–184. doi: 10.1016/j.lithos.2015.09.026. |
Chen YX, Zhou K, Gao XY. 2017. Partial melting of ultrahigh-pressure metamorphic rocks during continental collision: Evidence, time, mechanism, and effect. Journal of Asian Earth Sciences, 145, 177–191. doi: 10.1016/j.jseaes.2017.03.020. |
Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G, Burton K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 17, 1567–1574. doi: 10.1039/b206707b. |
Clemens JD, Droop GTR. 1998. Fluids, P-T paths and the fates of anatectic melts in the Earth ’s crust. Lithos, 44, 21–36. doi: 10.1016/S0024-4937(98)00020-6. |
Clemens JD, Vielzeuf D. 1987. Constraints on melting and magma production in the crust. Earth and Planetary Science Letters, 86, 287–306. doi: 10.1016/0012-821X(87)90227-5. |
Clemens JD. 1984. Water contents of silicic to intermediate magmas. Lithos, 17, 273–287. doi: 10.1016/0024-4937(84)90025-2. |
Condie KC, Belousova E, Griffin WL, Sircombe KN. 2009. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Research, 15, 228–242. doi: 10.1016/j.gr.2008.06.001. |
Davies GR, Tommasini S. 2000. Isotopic disequilibrium during rapid crustal anatexis: Implications for petrogenetic studies of magmatic processes. Chemical Geology, 162, 169–191. doi: 10.1016/S0009-2541(99)00123-0. |
Dong C, Xie H, Kröner A, Wan S, Liu S, Xie S, Song Z, Ma M, Liu D, Wan Y. 2017. The complexities of zircon crystallization and overprinting during metamorphism and anatexis: An example from the late Archean TTG terrane of western Shandong Province, China. Precambrian Research, 300, 181–200. doi: 10.1016/j.precamres.2017.07.034. |
Duan Z, Wei C, Li Z. 2019. Metamorphic P-T paths and zircon U-Pb ages of Paleoproterozoic metabasic dykes in eastern Hebei and northern Liaoning: Implications for the tectonic evolution of the North China Craton. Precambrian Research, 326, 124–141. doi: 10.1016/j.precamres.2017.11.001. |
Duan Z, Wei C, Qian J. 2015. Metamorphic P-T paths and Zircon U-Pb age data for the Paleoproterozoic metabasic dykes of high-pressure granulite facies from Eastern Hebei, North China Craton. Precambrian Research, 271, 295–310. doi: 10.1016/j.precamres.2015.10.015. |
Duan Z, Wei C, Rehman HU. 2017. Metamorphic evolution and zircon ages of pelitic granulites in eastern Hebei, North China Craton: Insights into the regional Archean P-T-t history. Precambrian Research, 292, 240–257. doi: 10.1016/j.precamres.2017.02.008. |
Farina F, Stevens G, Gerdes A, Frei D. 2014. Small-scale Hf isotopic variability in the Peninsula pluton (South Africa): The processes that control inheritance of source 176Hf/177Hf diversity in S-type granites. Contributions to Mineralogy and Petrology, 168, 1–18. doi: 10.1007/s00410-014-1065-8. |
Flowerdew MJ, Millar IL, Vaughan APM, Horstwood MSA, Fanning CM. 2006. The source of granitic gneisses and migmatites in the Antarctic Peninsula: A combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contributions to Mineralogy and Petrology, 151, 751–768. doi: 10.1007/s00410-006-0091-6. |
Fu J, Liu S, Wang M, Chen X, Guo B, Hu F. 2017. Late Neoarchean monzogranitic-syenogranitic gneisses in the Eastern Hebei-Western Liaoning Province, North China Craton: Petrogenesis and implications for tectonic setting. Precambrian Research, 303, 392–413. doi: 10.1016/j.precamres.2017.05.002. |
Gardiner NJ, Johnson TE, Kirkland CL, Smithies RH. 2017. Melting controls on the lutetium-hafnium evolution of Archaean crust. Precambrian Research, 305, 479–488. doi: 10.1016/j.precamres.2017.12.026. |
Geng YS, Liu FL, Yang CH. 2006. Magmatic event at the end of the Archean in Eastern Hebei Province and its geological implication. Acta Geologica Sinica (English Edition), 80, 819–833. doi: 10.1111/j.1755-6724.2006.tb00305.x. |
Geng YS, Shen QH, Du LL, Song HX. 2016. Regional metamorphism and continental growth and assembly in China. Acta Petrologica Sinica, 32(9), 2579–2608 (in Chinese with English abstract). |
Geng YS, Shen QH, Song HX. 2018. Metamorphic petrology and geology in China: A review. China Geology, 1, 137–157. doi: 10.31035/cg2018012. |
Geological Survey of Hebei Province. 1970. Geological Map of Qinglong Sheet at a scale of 1∶200000. Internal report, 1‒40 (in Chinese). |
Grant JA. 1985. Phase equilibria in partial melting of pelitic rocks. In: Ashworth JR (eds.), Migmatites. Glascow, Blackie and Son, 86‒144. |
Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu X, Zhou X. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61, 237–269. doi: 10.1016/S0024-4937(02)00082-8. |
Guo RR, Liu SW, Bai X, Zhang LF, Wang W, Hu FY, Yan M. 2014. Geochemistry and zircon U-Pb chronology of Shuangshanzi Group in the eastern Hebei province, North China Craton: Constraints on petrogenesis and tectonic setting. Acta Petrologica Sinica, 30(10), 2885–2904 (in Chinese with English abstract). |
Guo RR, Liu SW, Santosh M, Li QG, Bai X, Wang W. 2013. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton. Gondwana Research, 24, 664–686. doi: 10.1016/j.gr.2012.12.025. |
Guo RR, Liu SW, Wyman D, Bai X, Wang W, Yan M, Li QG. 2015. Neoarchean subduction: A case study of arc volcanic rocks in Qinglong-Zhuzhangzi area of the Eastern Hebei Province, North China Craton. Precambrian Research, 264, 36–62. doi: 10.1016/j.precamres.2015.04.007. |
He GP, Ye HW. 1992. The evolution of metamorphism in granulite facies terrane, Eastern Hebei Province. Acta Petrologica Sinica, 8(2), 129–135 (in Chinese with English abstract). |
Hou KJ, Li YH, Tian YY. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4), 481–492 (in Chinese with English abstract). |
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR, Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10), 2595–2604 (in Chinese with English abstract). |
Huang H, Niu Y, Mo X. 2017. Garnet effect on Nd-Hf isotope decoupling: Evidence from the Jinfosi batholith, Northern Tibetan Plateau. Lithos, 274–275, 31–38. doi: 10.1016/j.lithos.2016.12.025. |
Jackson SE, Pearson NJ, Griffin WL, Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in situ U-Pb zircon geochronology. Chemical Geology, 211, 47–69. doi: 10.1016/j.chemgeo.2004.06.017. |
Jiang SH, Bagas L, Liu YF, Zhang LL. 2018. Geochronology and petrogenesis of the granites in Malanyu Anticline in eastern North China Block. Lithos, 312–313, 21–37. doi: 10.1016/j.lithos.2018.04.028. |
Kriegsman LM. 2001. Partial melting, partial melt extraction and partial back reaction in anatectic migmatites. Lithos, 56, 75–96. doi: 10.1016/s0024-4937(00)00060-8. |
Kwan LCJ, Zhao GC, Yin CQ, Geng HY. 2016. Metamorphic P-T path of mafic granulites from Eastern Hebei: Implications for the Neoarchean tectonics of the Eastern Block, North China Craton. Gondwana Research, 37, 20–38. doi: 10.1016/j.gr.2016.05.004. |
Larsen RB. 2002. The distribution of rare-earth elements in K-feldspar as an indicator of the petrogenetic processes in granitic pegmatites: Examples from two pegmatite fields in Southern Norway. Canadian Mineralogist, 40, 137–151. doi: 10.2113/gscanmin.40.1.137. |
Li LX, Li HM, Xu YX, Chen J, Yao T, Zhang LF, Yang XQ, Liu MJ. 2015. Zircon growth and ages of migmatites in the Algoma-type BIF-hosted iron deposits in Qianxi Group from eastern Hebei Province, China: Timing of BIF deposition and anatexis. Journal of Asian Earth Sciences, 113, 1017–1034. doi: 10.1016/j.jseaes.2015.02.007. |
Lin Q, Wu FY, Liu SW, Ge WC, Sun JG, Yin JZ. 1992. Archean Granites in the East of North China Platform. Beijing, Science Press, 1‒220 (in Chinese). |
Liou P, Guo J, Huang G, Fan W. 2019. 29 Ga magmatism in Eastern Hebei, North China Craton. Precambrian Research, 326, 6–23. doi: 10.1016/j.precamres.2017.11.002. |
Liu DY, Nutman AP, Compston W, Wu JS, Shen QH. 1992. Remnants of CrossRef $\geqslant $ |
Liu F, Liu L, Cai J, Liu P, Wang F, Liu C, Liu J. 2019. A widespread Paleoproterozoic partial melting event within the Jiao-Liao-Ji Belt, North China Craton: Zircon U-Pb dating of granitic leucosomes within pelitic granulites and its tectonic implications. Precambrian Research, 326, 155–173. doi: 10.1016/j.precamres.2017.10.017. |
Liu FL, Robinson PT, Gerdes A, Xue HM, Liu PH, Liou JG. 2010a. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China: Constraints on the timing and nature of partial melting. Lithos, 117, 247–268. doi: 10.1016/j.lithos.2010.03.002. |
Liu FL, Xue HM, Liu PH. 2009. Partial melting time of ultrahigh-pressure metamorphic rocks in the Sulu UHP terrane: Constrained by zircon U-Pb ages, trace elements and Lu-Hf isotope compositions of biotite-bearing granite. Acta Petrologica Sinica, 25(5), 1039–1055 (in Chinese with English abstract). |
Liu R, Zhou H, Zhang L, Zhong Z, Zeng W, Xiang H, Jin S, Lu X, Li C. 2010. Zircon U-Pb ages and Hf isotope compositions of the Mayuan migmatite complex, NW Fujian Province, Southeast China: Constraints on the timing and nature of a regional tectonothermal event associated with the Caledonian orogeny. Lithos, 119, 163–180. doi: 10.1016/j.lithos.2010.06.004. |
Liu SJ, Wan YS, Sun HY, Nutman AP, Xie HQ, Dong CY, Ma MZ, Liu DY, Jahn BM. 2013. Paleo- to Eoarchean crustal evolution in eastern Hebei, North China Craton: New evidence from SHRIMP U-Pb dating and in-situ Hf isotopic study of detrital zircons from paragneisses. Journal of Asian Earth Sciences, 78, 4–17. doi: 10.1016/jjseaes.2013.07.041. |
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010c. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51, 537–571. doi: 10.1093/petrology/egp082. |
Liu ZH, Yang ZS. 1994. The tectonic evolution of Archean high-grade metamorphic terrane, eastern Hebei, China. Journal of Changchun University of Earth Sciences, 24(3), 254–258 (in Chinese with English abstract). |
London D, Morgan VI GB, Acosta-Vigil A. 2012. Experimental simulations of anatexis and assimilation involving metapelite and granitic melt. Lithos, 153, 292–307. doi: 10.1016/j.lithos.2012.04.006. |
Ludwig KR. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronology Center. Special Publication 4. |
Maki K, Yui TF, Miyazaki K, Fukuyama M, Wang KL, Martens U, Grove M, Liou JG. 2014. Petrogenesis of metatexite and diatexite migmatites determined using zircon U-Pb age, trace element and Hf isotope data, Higo metamorphic terrane, central Kyushu, Japan. Journal of Metamorphic Geology, 32, 301–323. doi: 10.1111/jmg.12073. |
Martin H, Smithies RH, Rapp R, Moyen JF, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79, 1–24. doi: 10.1016/j.lithos.2004.04.048. |
Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14, 753–756. doi: 10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2. |
Morel MLA, Nebel O, Nebel-Jacobsen YJ, Vroon PZ. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology, 255, 231–235. doi: 10.1016/j.chemgeo.2008.06.040. |
Nelson DR. 2008. Geochronology of the Archean of Australia. Australian Journal of Earth Sciences, 55(6–7), 779–793. doi: 10.1080/08120090802094135. |
Newton RC, Touret JLR, Aranovich LY. 2014. Fluids and H2O activity at the onset of granulite facies metamorphism. Precambrian Research, 253, 17–25. doi: 10.1016/j.precamres.2014.06.009. |
Nutman AP, Wan Y, Du L, Friend CRL, Dong C, Xie H, Wang W, Sun H, Liu D. 2011. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Research, 189, 43–65. doi: 10.1016/j.precamres.2011.04.005. |
Peng P. 2016. Structural architecture and spatial-temporal distribution of the Archean domains in the Eastern North China Craton. In: Zhai M, Zhao Y, Zhao T(eds.), Main tectonic events and metallogeny of the North China Craton: Springer Geology. doi: 10.1007/978-981-10-1064-4_3. |
Pirajno F, Bagas L. 2008. A review of Australia’s Proterozoic mineral systems and genetic models. Precambrian Research, 166, 54–80. doi: 10.1016/j.precamres.2007.05.008. |
Rapp RP, Shimizu N, Norman MD, Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 38 GPa. Chemical Geology, 160, 335–356. doi: 10.1016/S0009-2541(99)00106-0. |
Rapp RP, Watson EB. 1995. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36, 891–931. doi: 10.1093/petrology/36.4.891. |
Ren LD, Geng YS, Du LL, Wang YB, Liu P, Guo JJ. 2011. Anatexis and migmatization of the Fuping Complex, North China Craton. Acta Petrologica Sinica, 27(4), 1056–1066 (in Chinese with English abstract). |
Rocha BC, Moraes R, Möller A, Cioffi CR, Jercinovic MJ. 2017. Timing of anatexis and melt crystallization in the Socorro-Guaxupé Nappe, SE Brazil: Insights from trace element composition of zircon, monazite and garnet coupled to U-Pb geochronology. Lithos, 277, 337–355. doi: 10.1016/j.lithos.2016.05.020. |
Shi Y, Zhao X. 2017. Early Neoarchean magmatic and paleoproterozoic metamorphic events in the northern north China Craton: SHRIMP zircon dating and Hf isotopes of Archean rocks from the Miyun area, Beijing. Acta Geologica Sinica (English edition), 91(3), 988–1002. doi: 10.1111/1755-6724.13320. |
Sláma J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ. 2008. Plesovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–35. doi: 10.1016/j.chemgeo.2007.11.005. |
Stevens G, Clemens JD, Droop GTR. 1997. Melt production during granulite-facies anatexis: Experimental data from “primitive” metasedimentary protoliths. Contributions to Mineralogy and Petrology, 128, 352–370. doi: 10.1007/s004100050314. |
Stevens G, Clemens JD. 1993. Fluid-absent melting and the roles of fluids in the lithosphere: A slanted summary? Chemical Geology, 108, 1–17. doi: 10.1016/0009-2541(93)90314-9. |
Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD, Norry MJ(eds.), Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, 313‒345. |
Swain G, Woodhouse A, Hand M, Barovich K, Shwarz M, Fanning CM. 2005. Provenance and tectonic development of the late Archaean Gawler Craton, Australia: U-Pb zircon, geochemical and Sm-Nd isotopic implications. Precambrian Research, 141, 106–136. doi: 10.1016/j.precamres.2005.08.004. |
Tang M, Wang XL, Shu XJ, Wang D, Yang T, Gopon P. 2014. Hafnium isotopic heterogeneity in zircons from granitic rocks: Geochemical evaluation and modeling of “zircon effect” in crustal anatexis. Earth and Planetary Science Letters, 389, 188–199. doi: 10.1016/j.jpgl.2013.12.036. |
Taylor SR, Mclennan SM. 1985. The Continental Crust: Its Composition and Evolution. Oxford, Blackwell Scientific Publications, 1‒312. |
Vanderhaeghe O. 2009. Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics, 477, 119–134. doi: 10.1016/j.tecto.2009.06.021. |
Vavra G, Schmid R, Gebauer D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon: Geochronology of the Ivren Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134, 380–404. doi: 10.1007/s004100050492. |
Vervoort JD, Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63, 533–556. doi: 10.1016/S0016-7037(98)00274-9. |
Vielzeuf D, Holloway JR. 1988. Experimental determination of the fluid-absent melting relations in the pelitic system Consequences for crustal differentiation. Contributions to Mineralogy and Petrology, 98, 257–276. doi: 10.1007/BF00375178. |
Vielzeuf D, Schmidt MW. 2001. Melting relations in hydrous systems revisited: Application to metapelites, metagreywackes and metabasalts. Contributions to Mineralogy and Petrology, 141, 251–267. doi: 10.1007/s004100100237. |
Wan YS, Liu DY, Dong CY, Xie HQ, Kröner A, Ma MZ, Liu SJ, Xie SW, Ren P. 2015. Formation and Evolution of Archean Continental Crust of the North China Craton. In: Zhai M(ed.), Precambrian Geology of China, Springer Geology. doi: 10.1007/978-3-662-47885-1_2. |
Wan YS, Liu SJ, Xie HQ, Dong CY, Li Y, Bai WQ, Liu DY. 2018. Formation and evolution of the Archean continental crust of China: A review. China Geology, 1, 109–136. doi: 10.31035/cg2018011. |
Wang W, Liu SW, Santosh M, Bai X, Li QG, Yang PT, Guo RR. 2013. Zircon U-Pb-Hf isotopes and whole-rock geochemistry of granitoid gneisses in the Jianping gneissic terrane, Western Liaoning Province: Constraints on the Neoarchean crustal evolution of the North China Craton. Precambrian Research, 224, 184–221. doi: 10.1016/j.precamres.2012.09.019. |
Wang W, Liu SW, Santosh M, Deng ZB, Guo BR, Zhao Y, Zhang SH, Yang PT, Bai X, Guo RR. 2015. Late Paleoproterozoic geodynamics of the North China Craton: Geochemical and zircon U-Pb-Hf records from a volcanic suite in the Yanliao rift. Gondwana Research, 27, 300–325. doi: 10.1016/j.gr.2013.10.004. |
Wei CJ, Qian JH, Zhou XW. 2014. Paleoproterozoic crustal evolution of the Hengshan-Wutai-Fuping region, North China Craton. Geoscience Frontiers, 5, 485–497. doi: 10.1016/j.gsf.2014.02.008. |
Wilde SA, Valley JW, Kita NT, Cavosie AJ, Liu DY. 2008. SHRIMP U-Pb and CAMECA 1280 oxygen isotope results from ancient detrital zircons in the Caozhuang quartzite, Eastern Hebei, North China Craton: Evidence for crustal reworking 38 Ga ago. American Journal of Science, 308, 185–199. doi: 10.2475/03.2008.01. |
Wu FY, Yang YH, Xie LW, Yang JH, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234, 105–126. doi: 10.1016/j.chemgeo.2006.05.003. |
Yang C, Wei C. 2017. Two phases of granulite facies metamorphism during the Neoarchean and Paleoproterozoic in the East Hebei, North China Craton: Records from mafic granulites. Precambrian Research, 301, 49–64. doi: 10.1016/j.precamres.2017.09.005. |
Yang JH, Wu FY, Wilde SA, Zhao GC. 2008. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd-Hf isotopic evidence. Precambrian Research, 167, 125–149. doi: 10.1016/j.precamres.2008.07.004. |
Yang QY, Santosh M, Tsunogae T. 2016. High-grade metamorphism during Archean-Paleoproterozoic transition associated with microblock amalgamation in the North China Craton: Mineral phase equilibria and zircon geochronology. Lithos, 263, 101–121. doi: 10.1016/j.lithos.2015.11.018. |
Yuan LL, Zhang XH, Zhai MG. 2015. Two episodes of Paleoproterozoic mafic intrusions from Liaoning province, North China Craton: Petrogenesis and tectonic implications. Precambrian Research, 264, 119–139. doi: 10.1016/j.precamres.2015.04.017. |
Zhai M, Zhu X. 2016. Corresponding Main Metallogenic Epochs to Key Geological Events in the North China Craton: An Example for Secular Changes in the Evolving Earth. In: Zhai M, Zhao Y, Zhao T(eds.), Main tectonic events and metallogeny of the North China Craton, Springer Geology. doi: 10.1007/978-981-10-1064-4_1. |
Zhai MG, Santosh M. 2011. The early Precambrian odyssey of North China Craton: A synoptic overview. Gondwana Research, 20, 6–25. doi: 10.1016/j.gr.2011.02.005. |
Zhang LC, Zhai MG, Zhang XJ, Xiang P, Dai YP, Wang CL, Pirajno F. 2012. Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: constraints from geochemistry and SIMS zircon U-Pb dating. Precambrian Research, 222–223, 325–338. doi: 10.1016/j.precamres.2011.09.007. |
Zhao G, Sun M, Wilde SA. 2003. Correlations between the eastern block of the north China Craton and the south Indian Block of the Indian shield: An Archaean to Palaeoproterozoic link. Precambrian Research, 122(1–4), 201–233. doi: 10.1016/S0301-9268(02)00212-7. |
Zhao GC, Cawood P, Lu L. 1999. Petrology and P-T history of the Wutai amphibolites: Implications for tectonic evolution of the Wutai Complex, China. Precambrian Research, 93, 181–199. doi: 10.1016/S0301-9268(98)00090-4. |
Zhao GC, Sun M, Wilde SA, Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136, 177–202. doi: 10.1016/j.precamres.2004.10.002. |
Zhao GC, Wilde SA, Cawood PA, Lu LZ. 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geology Review, 40, 706–721. doi: 10.1080/00206819809465233. |
Zhao GC, Wilde SA, Cawood PA, Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107, 45–73. doi: 10.1016/S0301-9268(00)00154-6. |
Zheng YF, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth Planets Space, 66, 93. doi: 10.1186/1880-5981-66-93. |
Zulbati F, Harley SL. 2007. Late Archaean granulite facies metamorphism in the Vestfold Hills, East Antarctica. Lithos, 93, 39–67. doi: 10.1016/j.lithos.2006.04.004. |
Geological map showing: a‒tectonic units of the NCB and location of the study area (modified from Zhao GC et al., 2005); b‒geological sketch map of the Malanyu Antiform in Eastern Hebei Province showing the locations of the samples for which U-Pb and Lu-Hf zircon analyses were completed (modified from Bai X et al., 2016 and Geological Survey of Hebei Province, 1970).
Photographs and photomicrographs of granodioritic orthogneiss, syenogranite, and quartz syenite from the Archean Malanyu Inlier. a‒granodioritic orthogneiss with moderate foliation and intruded lensoidal syenogranite dykes; b‒light red anatectic granite (AG1) showing transitional relationships with granodioritic orthogneiss; c‒anatectic granite (AG2) with dark perthitic megacryst; d‒medium-grained granodioritic orthogneiss sample JD16-049 consisting of aligned orthopyroxene, hornblende, biotite, plagioclase, and quartz; e‒syenogranite (AG1) sample JD16-050 with K-feldspar megacryst and veinlet-like quartz; f‒xenolith of the host granodioritic orthogneiss within syenogranite (AG1); g‒quartz syenite (AG2) sample JD16-052 with K-feldspar megacryst and fine-grained quartz and plagioclase. The polysynthetic twinning can still be seen in plagioclase; h‒quartz syenite (AG2) sample JD16-052 with small albite crystals in perthitic feldspar. Ab-albite; Hb‒hornblende; Bi‒biotite; Opx‒orthopyroxene; Kfs‒K-feldspar, Pl‒plagioclase; Q‒quartz; Xen-xenolith. All the photomicrographs are taken under cross-polarized light. The hammer and marker pen in the photographs are 410 mm and 140 mm long, respectively.
CL images of representative zircon grains from samples JD16-049, JD16-050, and JD16-052 showing the inner structures and analysed locations.
Zircon U-Pb concordia diagram for granodioritic orthogneiss, syenogranite, and quartz syenite samples from the Malanyu Antiform. a‒granodioritic orthogneiss; b‒syenogranite (AG1); c‒quartz syenite (AG2). The weighted mean age or upper intercept ages and MSWD are shown in each graph.
Normalisation plots. a‒chondrite-normalised REE plot; b‒primitive mantle normalised element spider plot for the granodioritic orthogneiss, syenogranite, and quartz syenite in the Malanyu Antiform. Chondrite normalising values from Taylor SR and McLennan SM (1985), and primitive mantle normalised values from Sun SS and McDonough WF (1989).
Plot of zircon U-Pb ages vs. εHf(t) values for zircons from the granodioritic orthogneiss, syenogranite, and quartz syenite in the Malanyu Antiform. The error bar for individual εHf(t) value was not shown, as most of them have error range less than 1.0 unit, and thus within the symbol if plotted. All εHf(t) values were calculated at the age of the rock.
Petrogenetic discrimination diagrams for granodioritic orthogneiss. a‒MgO vs SiO2 plot (after Martin H et al., 2005); b‒(La/Yb)N vs YbN plot discriminating between adakitic and classical arc calc-alkaline compositions (after Martin H, 1986). The data of dioritic and trondhjemitic gneisses were cited from Bai X et al. (2014). PMB‒experimental partial melts from basalts or amphibolites; LSA‒low-silica adakite; HSA‒high-silica adakite.
Chondrite-normalised REE patterns of analysed zircons from samples. a‒JD16-049; b‒JD16-050; c‒JD16-052. Chondrite normalising values from Taylor SR and McLennan SM (1985).
Th vs U diagram for the zircons from the granodioritic orthogneiss, syenogranite, and quartz syenite in the Malanyu Antiform.