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Two Neoarchean alkaline feldspar-rich granites sourced from partially melted granulite-facies
granodioritic orthogneiss have been here recognised in the eastern part of the North China Block (NCB).
These poorly foliated granites have previously been assumed to be Mesozoic in age and never dated, and
so their significance has not been recognised until now. The first granite (AG1) is a porphyritic
syenogranite with megacrystic K-feldspar, and the second (AG2) is a quartz syenite with perthitic
megacryst. Zircons from the granites yield LA-ICP-MS U-Pb ages 0f 2499 + 10 Ma (AG1), and 2492 + 28 Ma
(AG2), which are slightly younger than the granodioritic orthogneiss that they intrude with a
crystallisation U-Pb age of 2537 + 34 Ma. The younger granites have higher assays for SiO, (71.91% for
AGI and 73.22% for AG2) and K,O (7.52% for AG1 and 8.37% for AG2), and much lower assays for
their other major element than the granodioritic orthogneiss. All of the granodioritic orthogneiss and
granite samples have similar trace element patterns, with depletion in Th, U, Nb, and Ti and enrichment in
Rb, Ba, K, La, Ce, and P. This indicates that the granites are derived from the orthogneiss as partial melts.
Although they exhibit a similar REE pattern, the granites have much lower total REE contents (30.97x107°
for AG1, and 25.93x107¢ for AG2), but pronounced positive Eu anomalies (Euw/Eu* = 8.57 for AG1 and
27.04 for AG2). The granodioritic orthogneiss has an initial 8’Sr/*®Sr ratio of 0.70144, eNd() value of 3.5,
and ¢Hf(7) values ranging from —3.2 to +2.9. The orthogneiss is a product of fractional crystallisation from
a dioritic magma, which was derived from a mantle source contaminated by melts derived from a felsic
slab. By contrast, the AG1 sample has an initial *’Sr/*Sr ratio of 0.6926 that is considered too low in
value, eNd(?) value of 0.3, and ¢Hf(¢) values between +0.57 and +3.82; whereas the AG2 sample has an
initial ¥’St/*°Sr ratio of 0.70152, eNd(7) value of 1.3, and ¢Hf(¢) values between +0.5 and +14.08. These
assays indicate that a Sr-Nd-Hf isotopic disequilibrium exists between the granite and granodioritic
orthogneiss. The elevated ¢Hf{() values of the granites can be explained by the involvement of Hf-bearing
minerals, such as orthopyroxene, amphibole, and biotite, in anatectic reactions in the granodioritic
orthogneiss. Based on the transitional relationship between the granites and granodioritic orthogneiss and
the geochemical characteristics mentioned above, it is concluded that the granites are the product of rapid
partial-melting of the granodioritic orthogneiss after granulite-facies metamorphism, and their
crystallisation age of about 2500 Ma provides the minimum age of the metamorphism. This about 2500
Ma tectonic-metamorphic event in NCB is similar to the other cratons in India, Antarctica, northern and
southern Australia, indicating a possible connection between these cratons during the Neoarchean.

©2021 China Geology Editorial Office.

1. Introduction

experiments and experimental simulations have been
performed synthesizing partial melting employing the

Anatexis tak‘fs place in high-grade metamomhic terranes dehydration-melting model (London D et al., 2012; Aranovich
and orogens (Liu FL et al, 2009; Liu R et al, 2010; LY et al, 2014; Newton RC et al., 2014). Dehydration

Vanderhaeghe O, 2009; Carvalho BB et al., 2017; Dong C et
al., 2017; Rocha BC et al., 2017; Liu F et al., 2019). Many
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melting involves the breakdown of hydroxide-bearing phases
to produce a water-undersaturated melt and anhydrous solids
(Burnham CW, 1967; Clemens JD, 1984; Grant JA, 1985;
Vielzeuf D and Schmidt MW, 2001).

Generally, there are two types of anatexis, one is fluid-
present partial melting and the other fluid-absent partial
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melting, which are discussed in detail by Stevens G and
Clemens JD (1993) and Clemens JD and Droop GTR (1998).
Fluid-present melting takes place at or near the solidus
involving quartz and feldspar. Given that a small amount of
free water can be stored along mineral boundaries, fluid-
present melting produces very low amounts (<1 vol.%) of a
melt, unless external water is added to the system (Kriegsman
LM, 2001). By contrast, fluid-absent partial melting forms far
above the solidus and involves the breakdown of hydrous
minerals (such as mica and amphibole). As the resultant melts
are generally H,O-poor (undersaturated) and the amount of
H,O available for melting in hydrous minerals is significant
(2 vol.% —5 vol.%), the volume of melt produced reaches
values of up to 30 vol.%, depending on the melt fertility of the
rocks, which far exceeds the amount in fluid-present melting
(Clemens JD, 1984; Clemens JD and Vielzeuf D, 1987;
Kriegsman LM, 2001).

Other factors may affect partial melting as discussed by
Aranovich LY et al. (2014) who suggest that the volatile
components CO, and Cl are important agents in deep-crustal
metamorphism and anatexis. Stevens G et al. (1997)
conducted fluid-absent partial melting experiments at
pressures of 0.5 GPa and 1 GPa and temperatures between
750°C and 1000°C, investigating the influence of bulk-rock
Mg# [100Mg/(Mg+Fe)] and the effects of additional TiO, on
granulite-grade anatectic evolution of relatively magnesian-
rich metamorphosed shale and greywacke. It was found that
melting began between 780°C and 830°C with the breakdown
of biotite and production of quartz-saturated granulite-facies
residual mineral assemblages. It was also found that the
mineral assemblages were in equilibrium with H,O-
undersaturated granitic melt.

Also, element and isotope disequilibrium during crustal
anatexis are documented (Farina F et al., 2014; Chen YX et
al., 2015; Carvalho BB et al., 2017; Gardiner NJ et al., 2017;
Huang H et al., 2017). For example, Ayres M and Harris N
(1997) document REE fractionation and Nd-isotope
disequilibrium of Himalayan leucogranites during crustal
anatexis. Davies GR and Tommasini S (2000) propose that
rapid crustal anatexis will produce a sequence of chemically
and isotopically distinct melts that are in isotopic
disequilibrium with their crustal source.

Although anatexis and migmatisation have been described
in other parts of the North China Block (NCB; Ren LD et al.,
2011; Dong C et al., 2017; Liu F et al., 2019), they are less
studied in Eastern Hebei Province, which is one of the best-
exposed areas for the Archean metamorphic rocks in northern
China. Eastern Hebei Province is accessible and close to
Beijing, with the presence of about 3860 Ma detrital zircons
from fuchsite quartzite in the Caozhuang Complex (Liu DY et
al.,, 1992; Liu SJ et al., 2013; Wilde SA et al., 2008). These
zircons must have been derived from units of this age, which
might be present at depth in the complex, or are
allochthonous. This makes the region a natural laboratory for
the study of the evolution of Archean rocks and has attracted
many geoscientists (Nutman AP et al., 2011; Zhang LC et al.,
2012; Guo RR et al., 2015; Li LX et al., 2015; Bai X et al.,
2016; Kwan LCJ et al., 2016; Yang C and Wei C, 2017; Duan

Zetal.,2017,2019; FuJetal., 2017; Liou P et al., 2019).

The age of metamorphic rocks and their magmatic
precursors in Eastern Hebei Province are documented, and the
tectonic settings have been discussed by previous authors
(Wilde SA et al., 2008; Guo RR et al., 2015; Bai X et al.,
2016; Li LX et al., 2015; Duan Z et al., 2017, 2019; Fu J et
al., 2017; Liou P et al., 2019; Geng YS et al., 2018; Wan YS
et al., 2018). The magmatic precursors of orthogneiss record a
about 2900 Ma magmatic event at the Caochang Village in
the region (Fig. 1b; Liou P et al., 2019). Metavolcanic rocks
in the Saheqiao area are N-MORB-like basaltic rocks,
primitive arc basaltic rocks, island arc-like rocks, and Nb-
enriched basalt (NEB)-like rocks, with —magmatic
crystallisation ages of 2614-2518 Ma, indicative of an arc-
related tectonic setting (Guo RR et al., 2013). In contrast,
metavolcanic rocks in the Qinglong-Zhuzhangzi area include
depleted low Ti tholeiite, primitive and evolved arc tholeiite,
and K-rich andesite-dacite interpreted as a complete
subduction cycle ranging from orogen to primitive arc-
evolved arc and back to an orogenic setting during the period
2604 Ma to 2511 Ma (Guo RR et al., 2015). Additionally, Li
LX etal. (2015) document the presence of 2545 Ma and 2523
Ma banded iron-formation (BIF) in the area, which they
propose was deposited in an arc-related basin.

Neoarchean orthogneiss from the Zunhua-Qinglong area
consists of schlieric dioritic to tonalitic orthogneiss,
monzogranitic ~ orthogneiss,  charnockitic  plagioclase
orthogneiss, and charnockite (Bai X et al., 2014, 2015; Guo
RR et al., 2013, 2015). Protoliths of dioritic-trondhjemitic
orthogneiss in the northern Zunhua area have interpreted
crystallisation ages of 2535 -2513 Ma, with suggested
magmatic sources including depleted mantle and subducted
slab melts related to a Neoarchean subduction-related tectonic
setting (Bai X et al., 2014). Bai X et al. (2015) also document
the presence of charnockite in the Taipingzhai-Yuhuzhai and
Cuizhangzi areas contain magmatic orthopyroxene
crystallised directly from their magmatic precursors. They
propose that the magmatic precursors are sourced from a
subducted and partially melted slab strongly contaminated by
2527-2515 Ma mantle peridotite. LA-ICP-MS zircon U-Pb
isotopic dating reveals that the magmatic precursors of these
monzogranitic and syenogranitic orthogneisses in the southern
part of the Eastern Hebei and Western Liaoning provinces
were emplaced during 2527-2511 Ma interpreted in a back-
arc basin setting (Fu J et al., 2017, and references therein).
These studies propose the presence of a subduction zone
dipping southeast along the northern part of eastern NCB (Bai
X et al., 2016). The Neoarchean geodynamic evolution in
Eastern Hebei Province, however, is still uncertain. In contrast
to the subduction-related model, it is proposed that a
Neoarchean mantle plume led to widespread magmatism and
metamorphism, during a restricted period between about
2550 Ma and 2500 Ma (Geng YS et al., 2006, 2016; Yang JH
et al., 2008; Zhao GC et al., 1998, 1999).

The P-T path of the metamorphism has also been studied
using conventional thermobarometers with peak P-T
conditions for mafic granulite estimated to be 900—-1100 MPa
at temperatures between 810°C and 940°C, 950 MPa at
780-816°C, and 800—850 MPa at 850-900°C (He GP and Ye
HW, 1992; Chen MY and Li SX, 1996; Zhao GC et al.,
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Fig. 1. Geological map showing: a—tectonic units of the NCB and location of the study area (modified from Zhao GC et al., 2005); b—geologic-
al sketch map of the Malanyu Antiform in Eastern Hebei Province showing the locations of the samples for which U-Pb and Lu-Hf zircon ana-
lyses were completed (modified from Bai X et al., 2016 and Geological Survey of Hebei Province, 1970).

1998). Recently, mafic granulite and charnockite located at
Taipingzhai were estimated using pseudo section modelling
with THERMOCALC, giving a 960-1030 MPa pressure at
temperatures between 860°C and 900°C and 700-1400 MPa at
800-920°C (Kwan LCJ et al., 2016; Yang QY et al., 2016).
The same method has been employed for Archean pelitic
granulite from the Taipingzhai and Laolijia areas in Eastern
Hebei Province, which record an anticlockwise P-T path with
the peak metamorphism at a temperature of >950°C and
pressure of 900 MPa (Duan Z et al., 2017). As can be seen,
these estimated P-T values are very similar obtained using
different methods.

Anatectic potassic granitic veins are thought to be rare in
Eastern Hebei Province (He GP and Ye HW, 1992; Lin Q et
al., 1992). Nutman AP et al. (2011) report a zircon U-Pb age
of 2503 + 11 Ma for a pegmatite with orthopyroxene
megacrysts intruding leptynite in the area. Li LX et al. (2015)
propose that the anatectic event in the region extended from
2511 Ma to 2485 Ma, based on U-Pb dating of zircon grains
with light-grey tones on their rims using cathodoluminescence
(CL) images and newly grown homogeneous grains from the
migmatitic rocks peaking at 2506 Ma, immediately following
deposition of BIF.

Although the ages of the pegmatite and development of
migmatite related to the granulite-facies metamorphism in
Eastern Hebei Province have been studied, Neoarchean
granites formed from partial melting of granulite-facies
orthogneiss have not been reported. In this contribution, the
authors present new zircon LA-ICP-MS U-Pb dates, whole-
rock geochemistry, Sr-Nd isotopic geochemistry, and zircon
Hf isotopic data for granites hosted by and sourced from

granodioritic orthogneiss during partial melting. The aims of
this study are: (1) Constrain the timing of the anatexis; (2) trace
the elements and isotope behaviour during anatexis; (3) discuss
the relationship between the granulite-facies metamorphism
and Neoarchean granitic intrusions.

2. Geological setting

The NCB is bound by the Early Paleozoic to Early
Mesozoic Central Asian Orogen to the north and Qinling-
Dabie-Sulu Orogen to the south (Fig. la). The block is
commonly and broadly subdivided into the Archean Eastern
and Western zones separated by the Paleoproterozoic Trans-
Northern China Orogen (Zhao GC et al., 2001). Most of the
Archean rocks are Neoarchean, and older (possibly
Eoarchean) rocks are in the northeastern part of the Eastern
Zone (Liu DY et al., 1992; Liu ZH and Yang ZS, 1994; Wilde
SA et al., 2008). The Archean rocks are multiply deformed,
and metamorphosed to granulite facies (Zhai MG and Santosh
M, 2011). Previous authors have dated the metamorphism
between about 2500 Ma and 2370 Ma with a peak at about
2450 Ma (Bai X et al., 2016, 2014; Guo RR et al., 2013).

The Malanyu Antiform is an example of multiply folded
and faulted structure located northeast of Beijing (Figs. 1a, b).
The antiform is doubly plunging, trends eastward, and its
Archean core (inlier) is around 110 km long and 30 km wide.
The Archean to Early Paleoproterozoic rocks include
orthogneiss, gneisses derived from supercrustal rocks. The
supercrustal gneisses appear to form rafts within the
orthogneiss, or the orthogneiss was originally a lopolith
within the paragneiss and the present distribution of the
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paragneiss is controlled by interference folding (Fig. 1b). The
composition of the orthogneiss in the western part of the
antiform is dioritic to tonalitic, in the east is dioritic, tonalitic,
trondhjemitic, granodioritic, and monzogranitic, and the
south-central part of the antiform includes minor charnockitic
plagioclase-rich orthogneiss and charnockite.

The gneisses in the Malanyu Antiform are unconformably
overlain by Late Paleo- to Neoproterozoic sequences
consisting of quartz sandstone, siltstone, mudstone, dolomite
and rare pyroclastic (tuffaceous) units, and an Early Paleozoic
sequence of carbonate rocks, and Mesozoic volcanic-
sedimentary rocks (Fig. 1b).

At least three major deformation events are affecting the
Late Paleo- to Neoproterozoic sedimentary and rare volcanic
units in the area represented by folds orientated 110°-290°
(Fy), 60°-240° (F,), and 20°-200° (F3) (Jiang SH et al., 2018).
These structures relate to compression orientated 20°—200°
(Dy), 150°-330° (D,) and 110°-190° (D3) (Jiang SH et al.,
2018).

Mesozoic granites are concentrated in the Archean rocks
along the axis of the Malanyu Antiform, although rare
Mesozoic granites intrude the synclinal folded Proterozoic
rocks to the north of the antiform’s core (Fig. 1b). These
intrusives consist of quartz monzonite, syenogranite,
granodiorite, and monzogranite, and commonly have
ellipsoidal shape rafts (or windows) with long axes trending
subparallel to the axis of the antiform (Jiang SH et al., 2018).

3. Sample description and analytical methods
3.1. Description of orthogneiss and granite samples

Three samples were collected from near an open-cut iron-
ore mine located in the Archean Malanyu Inlier (Fig. 1b).

Sample JD16-049 is a granodioritic orthogneiss from
40°15'09 "N and 118°13'42"E (Fig. 2a), with the foliation
dipping 85°S, and consists of pyroxene (about 15 vol.%),
amphibole (about 5 vol.%), biotite (about 15 vol.%),
plagioclase (about 50 vol.%), and quartz (about 15 vol.%;
Fig. 2d).

Sample JD16-50 is light red syenogranite (AG1) from
40°15 '09 "N and 118°13 '42 "E, where it intrudes the
granodioritic orthogneiss and contains xenoliths of the
orthogneiss. The syenogranite consists of megacrysts K-
feldspar (about 65 vol.%), fine-grained quartz (about 20
vol.%), and plagioclase (about 15 vol.%; Fig. 2e, f).

Sample JD16-052 is a quartz syenite (AG2) from
40°14 '55 "E and 118°13 '51 "N (Fig. 2c), which has a
gradational contact with the granodioritic orthogneiss. The
sample consists of perthite (about 35 vol.%), megacrysts K-
feldspar (35 vol.%), fine-grained quartz (15 vol.%), and
plagioclase (15 vol.%; Fig. 2g, h). Mafic minerals, such as
hornblende and biotite are rare in both AGl and AG2 and
form lensoidal dykes interpreted as the product of the in situ
anatexis in the granodioritic orthogneiss (Fig. 2a).

3.2. Analytical methods

3.2.1. LA- ICP-MS U-Pb zircon dating
Three samples were collected from the granodioritic

orthogneiss and granites for Laser Ablation Inductively
Coupled Plasma Mass Spectrometry (LA-ICP-MS) U-Pb
zircon dating. The samples were crushed, sieved and the
heavy mineral fraction was separated using magnetic and
heavy liquid separation methods to concentrate zircons. The
zircons were then handpicked, placed in standard GJ-1 epoxy
resin mounts, and polished. The binocular microscope and
cathodoluminescence (CL) imaging were used to study the
morphology and internal structure of the zircons before the
grains were selected for U-Pb isotope analyses. CL images
were produced using a JSM-6510 with a GATAN MiniCL
detector at Beijing Createch Testing Technology Co. Ltd. All
U-Pb dating analyses were completed using a LA-ICP-MS at
Beijing Createch Testing Technology Co. Ltd. Detailed
operating conditions for the laser ablation and ICP-MS
instruments and data reduction are the same as a description
by Hou KJ et al. (2009). Laser ablation was performed using
an ESI NWR 193 nm laser ablation platform, and ion-signal
intensities were measured using an AnlyitikJena PQMS Elite
ICP-MS instrument. Helium was used as a carrier gas, and
argon was used as the make-up gas mixed with the helium in
a T-connector before entering the ICP. Each analysis included
a background acquisition of approximately 15 s (gas blank)
followed by 45 s data acquisition from the sample. Off-line
raw data selection and integration of background and analysed
signals, and time-drift correction and quantitative calibration
for U-Pb dating was calculated using the ICPMSDataCal
software (Liu YS et al., 2010).

The GJ1 zircon was used as an external standard and was
analysed twice every five analyses. Time-dependent drifts of
U-Th-Pb isotopic ratios were corrected using linear
interpolation with time for every ten analyses according to the
variations of GJ1 (i.e. 2 zircon GJ1 + 10 samples + 2 zircon
GJ1) (Liu YS et al., 2010). The preferred U-Th-Pb isotopic
ratios used for the zircon GJ1 standard are documented by
Jackson SE et al. (2004) and preferred the uncertainty of the
value of <0.5% for GJ1 was propagated to the analyses of the
dated samples. Common Pb correction was not necessary
because of the low signal of common 2**Pb and high
206pp/204pY ratio of the samples dated. The U, Th, and Pb
concentrations were calibrated using the NIST 610 glass
standard. Concordia diagrams and weighted mean calculations
were made using the Isoplot/Ex_ver3 program of Ludwig KR
(2003). The standard Plesovice zircon is dated as an unknown
sample yield weighted mean 2°°Pb/>*8U age of 337 + 2 Ma
(20, n = 30), which is in good agreement with the
recommended 2°°Pb/***U age of 337.13 = 0.37 Ma (20)
(Slama J et al., 2008).

3.2.2. Major and trace element analyses

Whole-rock analyses were completed in the Analytical
Center at the Beijing Institute of Geology for Nuclear Industry
(ACBIGNI). Major element compositions were determined
with X-ray fluorescence (Philip PW2404) using fused disks.
Trace elements were determined using an ICP-MS (Finnigan-
MAT Element I) after acid digestion of samples in Teflon
bombs. The analytical precision and accuracy of the analyses
are better than 5% for major elements and 10% for trace
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Fig. 2. Photographs and photomicrographs of granodioritic orthogneiss, syenogranite, and quartz syenite from the Archean Malanyu Inlier.
a—granodioritic orthogneiss with moderate foliation and intruded lensoidal syenogranite dykes; b—light red anatectic granite (AG1) showing
transitional relationships with granodioritic orthogneiss; c—anatectic granite (AG2) with dark perthitic megacryst; d-medium-grained granodior-
itic orthogneiss sample JD16-049 consisting of aligned orthopyroxene, hornblende, biotite, plagioclase, and quartz; e —syenogranite (AG1)
sample JD16-050 with K-feldspar megacryst and veinlet-like quartz; f—xenolith of the host granodioritic orthogneiss within syenogranite
(AG1); g—quartz syenite (AG2) sample JD16-052 with K-feldspar megacryst and fine-grained quartz and plagioclase. The polysynthetic twin-
ning can still be seen in plagioclase; h—quartz syenite (AG2) sample JD16-052 with small albite crystals in perthitic feldspar. Ab-albite;
Hb-hornblende; Bi-biotite; Opx—orthopyroxene; Kfs—K-feldspar, Pl-plagioclase; Q—quartz; Xen-xenolith. All the photomicrographs are taken
under cross-polarized light. The hammer and marker pen in the photographs are 410 mm and 140 mm long, respectively.
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elements.
Sample JD16-049 plots in the granodiorite field in the An-
Ab-Or diagram (not shown; Barker F, 1979).

3.2.3. Rb-Sr and Sm-Nd isotope analyses

Whole-rock Rb-Sr and Sm-Nd isotopic ratios were
determined on an ISOPROBE-T at ACBIGNI. The
47Sm/'"Nd and ¥"Rb/3Sr ratios were calculated using Sm,
Nd, Rb, and Sr concentrations measured with an ICP-MS. The
measured "®Nd/'*Nd were normalised to *Nd/'**Nd =
0.7219, and ¥Sr/*°Sr ratios to *Sr/*Sr = 0.1194. The
SHINESTU Nd standard was measured during analyses
yielding a '*Nd/'**Nd ratio of 0.512118 + 3 (20), and the
NBS-987 Sr standard yielded a Sr/*Sr ratio of 0.71025 + 7
(20).

3.2.4. In-situ zircon Hf isotopic analysis

In-situ zircon Hf isotope analysis was completed on dated
spots using an ESI NWR193 laser-ablation microprobe, which
was attached to a Neptune plus multi-collector ICP-MS at the
Beijing CreaTech Testing International Co. Ltd. Instrumental
conditions and data acquisition are comprehensively
described by Wu FY et al. (2006) and Hou KJ et al. (2007). A
stationary spot was used for the present analyses, with a beam
diameter of 40 um depending on the size of ablated domains.
Helium was used as a carrier gas to transport the ablated
sample from the laser-ablation cell to the ICP-MS torch via a
mixing chamber mixed with Argon. The *Lu/'"Lu =
0.02658 and '"6Yb/!*Yb =0.796218 ratios were determined
to correct the isobaric interferences of '"Lu and '"*Yb on
6Hf (Chu NC et al., 2002). For instrumental mass bias
correction, the '"?Yb/!72Yb ratios were normalised to 1.35274
(Chu NC et al., 2002) and the "Hf/'7"Hf ratios to 0.7325
using an exponential law. The mass bias behaviour of Lu was
assumed to follow that of Yb, and the mass bias correction
protocol details were described by Wu FY et al. (2006) and
Hou K et al. (2007). The zircon GJ1 standard was used as the
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reference standard during the routine analyses, with a
weighted mean '7*Hf/!""Hf ratio of 0.282007 = 0.000007 (25,
n=36). This value is not distinguishable from a weighted
mean "Hf/'""Hf ratio of 0.282000 + 0.000005 (20) using a
solution analysis method by alysis method by Morel MLA et
al. (2008). Single zircon U-Pb ages were used to calculate
eHf(¢) values adopting the present-day chondritic ratios of
61 TTHE = 0.282772 and SLu/'""Hf = 0.0332 (Blichert-
Toft J and Albarede F, 1997). Single-stage model ages (fp)
were calculated by referring to a depleted mantle with a
present-day !7*Hf/!"7Hf ratio of 0.28325 and '"*Lu/'""Hf ratio
of 0.0384 (Vervoort JD and Blichert-Toft J, 1999). Two-stage
model ages were calculated with an assumed '"°Lu/!""Hf ratio
of 0.015 for the average continental crust (fpy,; Griffin WL et
al., 2002).

4. Results
4.1. U-Pb zircon geochronology

Twenty LA-ICP-MS U-Pb analyses were completed on 20
zircons from the granodioritic orthogneiss (sample JD16-
049). The zircons have short prismatic shapes, with
length/width ratios between 1 : 1 and 2 . 1. The CL images
show that the zircons contain distinct cores with a blurry
oscillatory zonation and bright structureless rims (e.g. spots 1,
4,7, and 9; Fig. 3a). Spot 4 located at the core of zircon with
oscillatory zonation has the oldest 2°’Pb/2%Pb date of 3059 +
17 Ma and a Th/U value is 0.26, which is interpreted as being
xenocrystic (Fig. 3a; Appendix Table S1). The second oldest
207pp/206pp date of 2639 + 17 Ma is from spot 9 located on a
dark sector of a rounded zircon with a Th/U value of 0.76 and
is interpreted as being xenocrystic. Except for spot 19, which
is not included in the age calculation due to its large error and
low concordance, the other 17 analyses include 14 located on
blurry oscillatory-zoned inner cores (e.g. spot 1 in Fig. 3) and
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Fig. 3. CL images of representative zircon grains from samples JD16-049, JD16-050, and JD16-052 showing the inner structures and analysed
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Fig. 4. Zircon U-Pb concordia diagram for granodioritic or-
thogneiss, syenogranite, and quartz syenite samples from the
Malanyu Antiform. a —granodioritic orthogneiss; b —syenogranite
(AG1); c—quartz syenite (AG2). The weighted mean age or upper in-
tercept ages and MSWD are shown in each graph.

three structureless zircon rims (e.g. spot 7 in Fig. 3a). The
zircons have Th/U values of 0.04 —2.99 and younger
207pb/2%Pp dates ranging from 2549 + 22 Ma to 2394 + 20 Ma.
This large range of 2’Pb/*°Pb dates is interpreted as being
due to radiogenic Pb-loss from a single-aged zircon
population with an upper intercept date of 2537 + 34 Ma
(MSWD = 0.51) interpreted as the crystallisation age of the
orthogneiss * protolith (Fig. 4a). Also, there are 12 analyses
that plotted below the concordia curve, which are caused by
later metamorphic or alteration events (Fig. 4a).

Zircons from the syenogranite sample (JD16-050, AG1)
are 100 pm to 180 pm long, anhedral to subhedral in shape,
with length/width ratios of 1 © 1to 2 ! 1. They have weak and
blurry oscillatory growth zonation or are structureless (Fig. 3b),
with Th/U ratios of 0.79 —1.50 (indicative of a magmatic
origin). Eighteen analyses from the sample yield 27Pb/*%°Pb
dates ranging from 2524 + 22 Ma to 2468 £+ 20 Ma with a
weighted mean of 2499 + 10 Ma (MSWD = 0.60; Fig. 4b;
Appendix Table S1), which is interpreted as the crystallisation
age of the syenogranite. Younger apparent *°’Pb/*"Pb dates
of 2439 + 21 Ma (spot 12) and 2331 + 25 Ma (spot 10) are
interpreted as recording younger metamorphic or alteration
events in the region.

Twenty spots were analysed on 20 zircons from the quartz
syenite sample (AG2, JD16-052). The zircons are subhedral
to anhedral in shape, 50 —120 um long, have length/width
ratios of 1.1 to 1.5:1 and exhibit structureless inner
textures on CL images (Fig. 3c). The zircons have a wide
range of 2Y’Pb/2%Pb dates from 2522 + 20 Ma to 1861 + 21 Ma
with Th/U ratios of 0.001-1.77. These dates can be divided
into two groups, with the first consisting of 18 spots yielding
27pp/20Ph dates of 2522 + 20 Ma to 2431 + 24 Ma with
Th/U ratios of 0.02—1.77, and a weighted mean 2’Pb/*%Pb
date of 2477 + 16 Ma (MSWD = 2). Eleven of the 18 spots
plot on the concordia curve whereas the other seven spots fall
below the curve (Fig. 4c). Taken together, the 18 analyses
yield an upper intercept date of 2492 + 28 Ma (MSWD =
0.68), which is coeval with their weighted mean 2’Pb/*"°Pb
date of 2477 + 16 Ma within error, and is interpreted as the
crystallisation age of the quartz syenite. The second group
consists of two analyses yielding a 2*’Pb/?%Pb date of 2155 +
34 Ma with a Th/U ratio of 0.001, and an 1836 + 17 Ma date
with a Th/U ratio of 0.002. These younger dates may
represent the timing of metamorphic or alteration events in the
region.

4.2. Major and trace elements

4.2.1. Major elements

The granodioritic orthogneiss, syenogranite, and quartz
syenite were analysed for major and trace -elements
geochemistry (Appendix Table S2). The granodioritic
orthogneiss sample is characterized by moderate SiO,
(61.74%), Na,O (3.54%) and K,O (2.59%), and high MgO
(4.10%), with an Mg# [100 x Mg/(Mg + Fe )] of 51.86. In
contrast, the granites have much higher SiO, (71.91% and
73.22%) and K,O (7.52% and 8.37%) values, and much lower
assays of the other major elements (Appendix Table S2). In
addition, the A/CNK ratios [molar Al,05/(CaO + Na,O +
K,0)] of the granodioritic orthogneiss is 0.98
(metaluminous), syenogranite is 1.07 (weakly peraluminous),
and quartz syenite is 1.05 (weakly peraluminous).

4.2.2. Trace elements

The granodioritic orthogneiss sample (JD16-049) has a
total rare earth element (REE;) content of 90.9x10°® and
exhibits a right-inclined pattern indicating the enrichment in
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light rare earth elements (LREE) relative to heavy rare earth
elements (HREE) with a (La/Yb)y ratio of 14.46, and positive
Eu anomalies (Eu/Eu* = 1.35; Fig. 5a).

In contrast, the syenogranite and quartz syenite have lower
total REE contents of 30.97x10°° (AG1) and 25.93x10°¢
(AG2), have more steeply right-inclined patterns, with higher
(La/Yb)y ratios of 76.27 (AGl) and 146.24 (AG2), and
pronounced positive Eu anomalies (Eu/Eu*) of 8.57 for AG1
and 27.04 for AG2 (Appendix Table S2; Fig. 5a).

On a primitive mantle-normalised trace element spider
diagram (Fig. 5b), the granodioritic orthogneiss, syenogranite,
and quartz syenite have similar trace element patterns, with
depletion in Th, U, Nb, and Ti and enrichment in Rb, Ba, K,
La, Ce, and P.

4.3. Sr and Nd isotopes

The Sr-Nd isotopic analytical results for the granodioritic
orthogneiss, syenogranite, and quartz syenite are given in
Appendix Table S2. The calculated initial *’St/*®Sr ratio for
the granodioritic orthogneiss is 0.70144, syenogranite (AG1)
is 0.69194, and quartz syenite (AG2) is 0.70152 (further
discussed below).

The granodioritic orthogneiss has an ¢éNd(¢) value of 3.5
with a two-stage depleted mantle Nd model age (Thpy) of
2619 Ma, whereas the syenogranite has an eéNd(z) value of 0.3
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Fig. 5. Normalisation plots. a —chondrite-normalised REE plot;

b—primitive mantle normalised element spider plot for the granodior-
itic orthogneiss, syenogranite, and quartz syenite in the Malanyu An-
tiform. Chondrite normalising values from Taylor SR and McLen-
nan SM (1985), and primitive mantle normalised values from Sun SS
and McDonough WF (1989).

with a Topy age of 2841 Ma, and the quartz syenite has an
eNd(?) value of 1.3 with a Thp age of 2754 Ma.

4.4. Hf isotopes

The three samples dated above had in-sifu zircon Hf
isotopic measurements completed on their dated spots. The
results are plotted in Fig. 6, and listed in Appendix Table S3.

Nine Lu-Hf isotopic analyses from the granodioritic
orthogneiss (sample JD16-049) yielded 76H£/'T7Hf ratios of
0.28115 to 0.281279, eHf(¢) values from —3.2 to +2.9 (for t =
2537 Ma), and tpyy, ages of 3253-2866 Ma (Appendix Table
S3). Eighteen zircon grains from the syenogranite (AGI,
sample JD16-050) have variable Hf isotopic compositions,
with 7SHf/!7HF ratios between 0.28122 and 0.28131, eHf(r)
values between +0.57 and +3.82 (for ¢t = 2499 Ma), and two-
stage depleted mantle Hf model ages (fpy) between 2987 and
2779 Ma (Fig. 6; Appendix Table S3). Fourteen zircon grains
from the quartz syenite (AG2; sample JD16-052) yielded
6H{/'7THS ratios between 0.281126 and 0.28162, eHf(f)
values between +0.5 and +14.08 (for ¢ = 2492 Ma), and fpypn
ages between 2986 Ma and 2112 Ma (Fig. 6; Appendix Table
S3). Generally, the syenogranite and quartz syenite have
much higher eHf(f) values and younger two-stage depleted
mantle Hf model ages than the granodioritic orthogneiss.

5. Discussion
5.1. Geochronology

The LA-ICP-MS zircon U-Pb zircon date of 2537 + 34 Ma
for the granodioritic orthogneiss is interpreted as the
crystallisation age for its protolith, which is coeval with the
dates of magmatic precursors for the dioritic and
trondhjemitic orthogneisses dated between 2535 + 23 Ma and
2513 + 8 Ma in the region (Bai X et al., 2014). Two inherited
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Fig. 6. Plot of zircon U-Pb ages vs. eHf(f) values for zircons from
the granodioritic orthogneiss, syenogranite, and quartz syenite in the
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zircon grains from the granodioritic orthogneiss have
207pb/2%Ph ages of 3059 + 17 Ma and 2639 + 17 Ma. The
former date is identical within error with the 2°’Pb/*°°Pb
zircon ages of tonalitic orthogneiss in the neighbouring
Huangbaiyu area (Nutman AP et al., 2011), and the latter is
coeval within error with metavolcanic rocks intruded by
protoliths for the granodioritic orthogneiss in the region (Guo
RR etal., 2013, 2015).

The 2499 + 10 Ma (for AG1) and 2492 + 28 Ma date for
the syenogranite sample (AG2) are a little younger than a
pegmatite with a U-Pb zircon age of 2503 = 11 Ma that
intrudes a fine-grained granulite-facies gneiss. The gneiss is
located a few kilometres east of the study area and consists of
K-feldspar, and minor amounts of quartz, white mica, garnet,
and tourmaline. The age of the pegmatite is coeval with the
granulite facies metamorphic age of 2503 £ 5 Ma (Nutman
AP et al, 2011). These coincident ages show that the
granulite-facies metamorphism is associated with anatexis and
intrusion of coeval poorly foliated or non-foliated granitic
dykes similar to the syenogranite and quartz syenite in the
study area. It is proposed that the anatexis is related to
decompression and remelting of the orthogneiss following the
peak granulite facies metamorphism. One of the youngest
207pb/2%Ph age of 1836 + 17 Ma for zircon from the quartz
syenite is similar to the about 1850 Ma granulite in the Trans-
North China Orogen (TNCO), which is interpreted as
representing an uplifting and cooling age of granulite terranes
following a crustal thickening event related to continental
collision (Duan Z et al., 2015). The younger 2’Pb/*’Pb
zircon date of 2155 + 34 Ma from the quartz syenite possibly
dates a thermal event, which is also indicated by similar
zircon dates from orthogneiss in the region, the age of
Paleoproterozoic metamafic dykes in Eastern Hebei and
northern Liaoning provinces, and magmatic events in the
Trans-North China Orogen and Jiao-Liao-Ji Belt (Guo RR et
al., 2013; Wei CJ et al., 2014; Yuan LL et al., 2015; Duan Z
et al., 2019). Therefore, as both the syenogranite (AG1) and
quartz syenite (AG2) are neither foliated nor metamorphosed,
the youngest age limit for the granulite-facies metamorphism
in the region is constrained by the about 2500 Ma age of these
granitic rocks. The implication is that the younger ages
reported in the literature for the metamorphism are not the
minimum age of the granitite-facies metamorphic event in the
Eastern Zone of NCB.

5.2. Petrogenesis  of  the
syenogranite, and quartz syenite

granodioritic  orthogneiss,

5.2.1. Petrogenesis of the granodioritic orthogneiss

Magmatic zircons analysed from granodioritic orthogneiss
sample (JD16-049) have ¢Hf(¢) values between —3.2 and +2.9,
with most lying between the evolutionary lines for chondrite
and the depleted mantle (Fig. 6). This indicates that the
granodioritic magma was derived from partial melting of a
depleted mantle, or partial melting of juvenile basaltic
precursors derived from a depleted mantle, with a minor
contribution from the crust. This is supported by the
xenocrystic zircons in the granodioritic orthogneiss. The
eH{f(f) values obtained in this study are similar to those from

metadioritic and trondhjemitic orthogneiss in the region with
values of +1.5 to +5.3 (Bai X et al., 2014). This indicates that
the magmatic precursors of the gneisses have similar
petrogenetic histories and tectonic settings.

Geochemical data reveal that the granodioritic orthogneiss
sample displays a high MgO content of 4.1% with a Mg# of
51.86. Previous experimental studies have found that partial
melting of a single basalt composition can provide a Mg#
value no greater than about 48 (Rapp RP et al, 1999).
Combined with the ¢Hf(r) values, it is suggested that the
magmatic precursor for the granodioritic orthogneiss is
similar to those of the metadioritic and trondhjemitic
orthogneisses, which are derived from a depleted mantle (Bai
X et al., 2014; Rapp RP and Watson EB, 1995; Yang JH et
al., 2008). Bai X et al. (2014) propose that the Neoarchean
dioritic magma was derived from a mantle source that had
been modified by reaction with felsic slab-derived melts.
Although the granodioritic orthogneiss plots in the high-silica
adakite (HSA) field in Fig. 7, its major geochemical
characteristics and crystallisation age are similar to the
metadioritic ~ and  trondhjemitic  orthogneisses.  The
granodioritic orthogneiss, therefore, is derived from fractional
crystallisation of a dioritic magma, instead of partial melting
of a subducted slab (Bai et al., 2014).

5.2.2. Petrogenesis of the anatectic granites

Anatectic or partial melts form in the lower part of the
crust or mantle where temperatures are higher than the solidus
producing migmatites (Zheng YF and Hermann J, 2014).
Furthermore, anatectic melts are derived from incongruent
melting of source rocks with the least differentiation. The
syenogranite and quartz syenite in this study exhibit
transitional ~(or gradational) relationships with the
granodioritic orthogneiss, indicating a genetic relationship.

Compared to the granodioritic orthogneiss, the
syenogranite and quartz syenite are enriched in SiO,, K,O,
Eu, Rb, Ba, and depleted in all other major and trace
elements, which are likely concentrated in mafic residues. The
Sr only has small variations between these two rocks. These
characteristics show that Si, and large ion lithophile elements
(LILE), such as K, Rb, and Ba, readily enter the melts during
anatexis. The LREE and HREE from the syenogranite and
quartz syenite generally experienced strong magmatic
differentiation with (La/Yb)y ratios of 76.27 (AGl) and
146.24 (AG2) (Fig. 5), except for Eu®" that is easily
accommodated at the alkali-site in the K-feldspar and
typically induces a positive anomaly (Larsen RB, 2002).
Therefore, the syenogranite and quartz syenite are the
products of partial melting of the source rocks similar in
composition with the granodioritic orthogneiss.

All zircons from the granodioritic orthogneiss,
syenogranite, and quartz syenite exhibit steep HREE patterns
with a positive Ce, with most having negative Eu anomalies
(Appendix Table S4; Fig. 8). However, the U and Th contents
of zircons from the granodioritic orthogneiss, syenogranite,
and quartz syenite are different (Appendix Table S1; Fig. 9).
Among these three rock types, the quartz syenite has the
highest U concentration ranging from 673x107° to 4225x10°¢
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and the widest Th variation between 3x107® and 1683x107°.
In contrast, the syenogranite has the lowest U concentration
ranging from 14x107 to 48x107° and the narrowest Th range
between 14x10° and 68x10°° Similarly, the REE
concentrations of zircons from the quartz syenite are the
highest among these three rock types. These differences in U,
Th, and REE in the zircons may be caused by the distinctive T
and P during the anatexis forming the syenogranite and quartz
syenite, which is analogues to the zircons in the Ivrea Zone of
Italy (Vavra G et al., 1999). Zircon overgrowths formed
during upper amphibolite facies at the low growth rate in the
Ivrea Zone have U contents between 1008 pg/g and 2279 pg/g,
which is higher than those formed during granulite facies at
high growth rates, with zircon U contents ranging from 53 ug/g
to 127 pg/g (Vavra G et al., 1999). The obvious implication is
that the granodioritic orthogneiss was formed earlier at a
higher-pressure during granulite-facies than the quartz
syenite.

The granodioritic orthogneiss and quartz syenite have
similar initial %’Sr/%6Sr ratios, but the syenogranite has an
abnormal initial ’St/*Sr ratio due to its high 8’Rb/*®Sr value.
This could have resulted from a rapid partial melting causing
the disequilibrium of the Rb-Sr isotope system, as Sr tends to
be enriched in early crystallised calcium plagioclase leaving
Rb in the liquid phase to eventually enter potassium-bearing
minerals. Although it is reasonable to suggest that the eNd(¢)
values of the syenogranite and quartz syenite, being the
products of partial melting, are lower than that of the
granodioritic orthogneiss, the difference between them shows
that the syenogranite and quartz syenite did not fully inherit
the Sr-Nd isotope system of the granodioritic orthogneiss. In
other words, the Sr-Nd isotopes of the syenogranite and
quartz syenite cannot reflect their source rock (i.e.
granodioritic orthogneiss). In addition, the syenogranite and
quartz syenite, and granodioritic orthogneiss have different
eHf(?) values, which will be discussed below.

Biotite starts to breakdown around 850°C at 1000 MPa

(Vielzeuf D and Holloway JR, 1988). These are similar
conditions to the estimated peak P-T values of 900-1030 MPa
at 860-950°C in Eastern Hebei Province (Duan Z et al., 2017,
Kwan LCJ et al., 2016). Biotite can therefore breakdown at
these conditions during granulite metamorphism leading to
partial-melting of the granodioritic orthogneiss, and the
formation of the syenogranite and quartz syenite.

5.2.3. Hf isotope data discrepancy

Zircons contain the highest levels and least radiogenic Hf
isotope compositions in crustal rocks. This means that zircons
crystallising from partial melts usually show similar
6Hf/'""Hf ratios as relict zircons whose dissolution
dominates the budget of Hf in melts. It is noted that the
granodioritic orthogneiss and syenogranite from the Malanyu
Antiform have a similar narrow range of eHf(r) values
measured in this study. Zircons from the quartz syenite,
however, have a much wider range and elevated eHf(¢) values
of +0.5 to +14.08 compared to the range of —3.2 to +2.9 for
the granodioritic orthogneiss. The implication is that the Hf
isotope composition of zircons crystallising from partial melts
and accompanying magmatic zircons do not necessarily
reflect the Hf isotope composition of their source rocks.
Examples are found in leucosomes and associated granitic
rocks in the Weihai UHP Terrane of the Sulu Orogeny in east-
central China, where ¢eHf(#) values for magmatic and anatexis-
related zircons are elevated by 10 units, which is analogous to
the zircons in the syenogranite and quartz syenite in our study
(Liu FL et al., 2009, 2010). Other examples are found at the
Mayuan Metamorphic Complex of the Cathaysian Terrane in
southeastern China (Liu R et al.,, 2010), granites from the
Peninsula Pluton in South Africa (Farina F et al., 2014),
migmatite from the Higo Metamorphic Terrane in Japan
(Maki K et al., 2014), Antarctic Peninsula (Flowerdew MJ et
al., 2006), and Kinawa in the Sdo Francisco Craton of Brazil
(Carvalho BB et al., 2017). In these examples, the elevated
eHf{(z) values could be attributed to the anatectic effects on the
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zircon Lu-Hf isotopic system, where the Hf is not bound in
zircons and constitutes an important proportion of Hf in the
anatectic melts (Liu FL et al., 2010; Farina F et al., 2014;
Chen YX et al., 2015).

In principle, Hf in an anatectic melt may be derived from
two components in a closed system. The first is from the
dissolution of zircons in the source rock (zircon-Hf), and the
second is from the other Hf-bearing minerals during anatexis
in the crust (Chen YX et al., 2015). The relative contribution
of these two Hf types depends on the melt reaction and
dynamics (i.e. the rates of partial melting and melt extraction),
which can greatly influence the dissolution kinetics of zircons
in partial melts (Tang M et al., 2014).

Zircon is the dominant Hf carrier in most granitic rocks,
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Fig. 9. Th vs U diagram for the zircons from the granodioritic or-
thogneiss, syenogranite, and quartz syenite in the Malanyu Antiform.

whereas the Hf contents of common rock-forming minerals
are very low, typically <10x107%, except titanite that may
have higher contents reaching about 130x107® (Bea F et al.,
2006). The amphibole in calc-alkaline tonalite to
monzogranite can contain around 2x10°® Hf, and
orthopyroxene in felsic granulite can contain around 1x10°°
Hf (Bea F et al., 2006). Although these common rock-forming
minerals have much lower Hf contents than zircon, they can
also be important sources for Hf due to their high modal
abundances in crustal rocks (Chen YX et al., 2015).

The granodioritic orthogneiss in the study area contains a
large proportion of the mafic minerals orthopyroxene,
amphibole, and biotite, which are potential sources for Hf in
addition to zircon. Therefore, the break-down of these Hf-
bearing major minerals in anatectic reactions causes the
dissolution of Hf into partial melts, resulting in elevated
6H£/'TTHf ratios for zircons crystallised from such melts.
Consequently, it does not need an external source with high
6H£/'7THE ratios (Maki K et al., 2014). Thus, the elevated
eHf(f) values in the quartz syenite sample (AG2) are
interpreted to be sourced from Hf-bearing minerals such as
orthopyroxene, amphibole, and biotite during partial melting
of the granodioritic orthogneiss. Although the rapid extraction
and ascent of partial melts can preserve the original isotopic
heterogeneity of the source rocks, sufficient merging of melts
can obscure such heterogeneity (Chen YX et al., 2017). Such
a scenario is regarded as being unlikely given that the
transitional  relationship  between the  granodioritic
orthogneiss, syenogranite, and quartz syenite.

5.3. Implication to the geological evolution in Eastern Hebei
Province

Although a Neoarchean mantle plume has been proposed
as the geodynamic setting in the Eastern Hebei Province
(Zhao GC et al., 1998, 1999; Geng YS et al., 2006, 2016;
Yang JH et al., 2008), a subduction-related setting at a
convergent plate margin is also proposed in the literature
(Nutman AP et al., 2011; Zhang LC et al., 2012; Guo RR et
al., 2013, 2014, 2015; Bai X et al., 2014, 2015, 2016). Bai X
et al. (2014, 2015) propose that the subduction-related
granites and charnockites in the region have crystallisation
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ages of 2535-2513 Ma, and Guo RR et al. (2013, 2015)
suggest that arc-related metavolcanic rocks have a magmatic
crystallisation age spanning 2614 —2511 Ma. If the 2545 —
2523 Ma BIF and 2527-2511 Ma magmatic protoliths of the
monzogranitic and syenogranitic orthogneisses formed in a
back-arc basin (Fu J et al., 2017; Li LX et al., 2015), the
youngest limit of subduction is confined at 2511 Ma. The
subsequent  upper  amphibolite- to  granulite-facies
metamorphism recorded by the Archean metavolcanic units
and orthogneiss in Eastern Hebei Province would have taken
place between 2511 Ma and 2500 Ma (Yang JH et al., 2008;
Nutman AP et al., 2011; Wang W et al., 2013, 2015; Fu J et
al.,, 2017; Yang C and Wei C, 2017). Such deep-seated
metamorphism would be related to the collision of continental
terranes  during crustal thickening and subsequent
emplacement of the 2499 Ma syenogranite and 2492 Ma
quartz syenite. This places the period between collisional,
granulite-facies metamorphism, and anatexis at around
10x10° years. Such a limited time span and intense tectonic-
metamorphism coincide with the tectonic-thermal event
recording the Neoarchean amalgamation of multiple terranes
throughout NCB during about 2500 Ma (Zhai MG and
Santosh M, 2011; Wan YS et al., 2015; Peng P, 2016; Zhai M
and Zhu X, 2016; Shi Y and Zhao X, 2017). Furthermore, the
deformation appears to be stronger than many Archean
cratons characterised by about 2700 Ma tectonic events
(Condie KC et al., 2009), but appears to be similar to the
latest Archean magmatism and orogenesis present in the
Dharwar Craton of India, the Napier Complex and Vestfold
Hills of Antarctica, North Australian Craton, and Gawler
Craton in southern Australia (Zhao G et al., 2003; Swain G et
al., 2005; Zulbati F and Harley SL, 2007; Cawood PA and
Korsch RJ, 2008; Nelson DR, 2008). The regional granulite
grade metamorphism and crustal thickening took place in the
Gawler Craton during the 2500 —2400 Ma Sleafordian
Orogeny, which was driven by the collision between
continental components, leading to the formation of a
continental interior (Swain G et al., 2005). This was coeval
with the emplacement of the protoliths for the 2510 Ma
orthogneiss in the North Australia Craton (Pirajno F and
Bagas L, 2008). Granulites facies metamorphic events dared
at about 2500 Ma are also documented in the Dharwar Craton
of India and Vestfold Hills of Antarctica (Zhao G et al., 2003;
Zulbati F and Harley SL, 2007). The synchronosity of this
apparently widespread metamorphic and tectonic event could
be due to these cratons being linked during the late
Neoarchean.

6. Conclusion

The LA-ICP-MS zircon U-Pb dating shows that
syenogranite and quartz syenite sourced from partial melts of
a granodioritic orthogneiss were emplaced during about
2500 Ma at the end of granulite-facies metamorphism. Based
on the geological and geochemical studies, the about 2500 Ma
non-foliated granites are interpreted to be the product of rapid
partial-melting of the granodioritic orthogneiss spanning a
period of around 10x10° years between 2511 Ma and 2499 Ma.
Furthermore, the Sr-Nd-Hf isotopic geochemistry of the

granodioritic orthogneiss, syenogranite, and quartz syenite
shows that there was an isotope disequilibrium between the
orthogneiss and granites. The 2511 Ma to 2499 Ma tectonic-
metamorphism in NCB is similar to those in the Dharwar
Craton of India, the Napier Complex, and Vestfold Hills of
Antarctica, North Australian Craton, and Gawler Craton in
southern Australia, indicating a spatial connection between
these regions during the Neoarchean.
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