2021 Vol. 4, No. 2
Article Contents

Hai-Bo Zhao, Yong Zhang, Lei Liu, 2021. Hydrothermal alteration processes in the giant Dahutang tungsten deposit, South China: Implications from litho-geochemistry and mass balance calculation, China Geology, 4, 230-244. doi: 10.31035/cg2021003
Citation: Hai-Bo Zhao, Yong Zhang, Lei Liu, 2021. Hydrothermal alteration processes in the giant Dahutang tungsten deposit, South China: Implications from litho-geochemistry and mass balance calculation, China Geology, 4, 230-244. doi: 10.31035/cg2021003

Hydrothermal alteration processes in the giant Dahutang tungsten deposit, South China: Implications from litho-geochemistry and mass balance calculation

More Information
  • The giant Dahutang tungsten (W) deposit has a total reserve of more than 1.31 Mt WO3. Veinlet-disseminated scheelite and vein type wolframite mineralization are developed in this deposit, which are related to Late Mesozoic biotite granite. Four major types of alterations, which include albitization, potassic-alteration, and greisenization, and overprinted silicification developed in contact zone. The mass balance calculate of the four alteration types were used to further understanding of the mineralization process. The fresh porphyritic biotite granite has high Nb, Ta, and W, but low Ca and Sr while the Jiuling granodiorite has high Ca and Sr, but low Nb, Ta, and W concentrations. The altered porphyritic biotite granite indicated that the Nb, Ta, and W were leached out from the fresh porphyritic biotite granite, especially by sodic alteration. The low Ca and Sr contents of the altered Neoproterozoic Jiuling granodiorite indicate that Ca and Sr had been leached out from the fresh granodiorite by the fluid from Mesozoic porphyritic biotite granites. The metal W of the Dahutang deposit was mainly derived from the fluid exsolution from the melt and alteration of W-bearing granites. This study of alteration presents a new hydrothermal circulation model to understand tungsten mineralization in the Dahutang deposit.

  • 加载中
  • Bédard JH. 2006. Trace element partitioning in plagioclase feldspar. Geochimica et Cosmochimica Acta, 70(14), 3717–3742. doi: 10.1016/j.gca.2006.05.003.

    CrossRef Google Scholar

    Barsukov VL. 1957. The geochemistry of tin. Geokimiya, 1, 41–53.

    Google Scholar

    Chen B, Gu H-o, Chen Y, Sun K, Chen W. 2018. Lithium isotope behaviour during partial melting of metapelites from the Jiangnan Orogen, South China: Implications for the origin of REE tetrad effect of F-rich granite and associated rare-metal mineralization. Chemical Geology, 483, 372–384. doi: 10.1016/j.chemgeo.2018.03.002.

    CrossRef Google Scholar

    Chen GH, Wan HZ, Shu LS. 2012. An analysis on ore-controlling conditions and geological features of the Cu-W polymetallic ore deposit in the Zhuxi area of Jingdezhen, Jiangxi Province. Acta Petrologica Sinica, 28(12), 3901–3914 (in Chinese with English abstract). doi: 10.1134/S0869593812070027.

    CrossRef Google Scholar

    Chen YW, Bi XW, Hu RZ, Zhu WG, Xu LL, Dong SH. 2010. The geochemical characteristics of biotites and their constraints on uranium mineralization in guidong pluton. Bulletin of Mineralogy Petrology & Geochemistry, 29(4), 355–363 (in Chinese with English abstract). doi: 10.3724/SP.J.1231.2010.06586.

    CrossRef Google Scholar

    Cooke DR. 2005. Giant porphyry deposits: Characteristics, distribution, tectonic controls. Economic Geology, 100(5), 801–818. doi: 10.2113/gsecongeo.100.5.801.

    CrossRef Google Scholar

    Cooke DR, Hollings P, Wilkinson JJ, Tosdal, RM. 2014. 13.14-Geochemistry of porphyry deposits. Treatise on Geochemistry, 1(3), 357–381.

    Google Scholar

    Corbett GJ, Leach TM. 1998. Southwest Pacific Rim gold-copper systems: structure, alteration and mineralisation. Society of Economic Geologists, 237 pp.

    Google Scholar

    Ding X, Jiang SY, Ni P, Gu LX, Jiang YH. 2005. Zircon SIMS U-Pb geochronology of host granitoids in Wushan and Yongping copper deposits, Jiangxi Province. Geological Journal of China Universities, 11(3), 383–389 (in Chinese with English abstract).

    Google Scholar

    Durand C, Oliot E, Marquer D, Sizun JP. 2015. Chemical mass transfer in shear zones and metacarbonate xenoliths: A comparison of four mass balance approaches. European Journal of Mineralogy, 27, 731–754. doi: 10.1127/ejm/2015/0027-2475.

    CrossRef Google Scholar

    Eugster HP. 1985. Granites and hydrothermal ore deposits: A geochemical framework. Mineralogical Magazine, 49(350), 7–23. doi: 10.1180/minmag.1985.049.350.02.

    CrossRef Google Scholar

    Feng CY, Zhang DQ, Xiang XK, Li DX, Qu HY, Liu JN, Xiao Y. 2012. Re-Os isotopic dating of molybdenite from the Dahutang tungsten deposit in northwestern Jiangxi Province and its geological implication. Acta Geologica Sinica, 28(12), 3858–3868 (in Chinese with English abstract).

    Google Scholar

    Gao JF, Lu JJ, Lai MY, Lin YP, Pu W. 2003. Analysis of Trace Elements in Rock Samples Using HR-ICPMS. Journal of Nanjing University, 39(6), 844–850 (in Chinese with English abstract).

    Google Scholar

    González-Acebrón L, Götze J, Barca D, Arribas J, Mas R, Pérez-Garrido C. 2012. Diagenetic albitization in the Tera Group, Cameros Basin (NE Spain) recorded by trace elements and spectral cathodoluminescence. Chemical Geology, 312–313, 148–162. doi: 10.1016/j.chemgeo.2012.04.012.

    CrossRef Google Scholar

    Grant JA. 1986. The isocon diagram-A simple solution to Gresens’ equation for Metasomatic alteration. Economic Geology, 81(8), 1976–1982. doi: 10.2113/gsecongeo.81.8.1976.

    CrossRef Google Scholar

    Gresens RL. 1967. Composition-volume relationships of metasomatism. Chemical Geology, 2(67), 47–65. doi: 10.1016/0009-2541(67)90004-6.

    CrossRef Google Scholar

    Gustafson LB, Hunt JP. 1975. The porphyry copper deposit at El Salvador, Chile. Economic Geology, 70(5), 857–912. doi: 10.2113/gsecongeo.70.5.857.

    CrossRef Google Scholar

    Han L, Huang X, Li J, He P, Yao J. 2016. Oxygen fugacity variation recorded in apatite of the granite in the Dahutang tungsten deposit, Jiangxi Province, South China. Acta Petrologica Sinica, 32(3), 746–758 (in Chinese with English abstract).

    Google Scholar

    Harris AC, Golding SD. 2002. New evidence of magmatic-fluid related phyllic alteration: Implications for the genesis of porphyry Cu deposits. Geology, 30(4), 335–338. doi: 10.1130/0091-7613(2002)0302.0.CO;2.

    CrossRef Google Scholar

    Hou ZQ, Pan XF, Yang ZM, Qu XM. 2007. Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction: Examples from Chinese porphyry deposits in continental settings. Geoscience, 21(2), 332–351 (in Chinese with English abstract).

    Google Scholar

    Hou ZQ, Zheng YC, Yang ZM, Yang ZS. 2012. Metallogenesis of continental collision setting: Part I, Gangdese Cenozoic porphy Cu-Mo systems in Tibet. Mineral Deposits, 31(4), 647–670 (in Chinese with English abstract).

    Google Scholar

    Hu SX, Ye Y, Fang CQ. 2004. Petrology of Metasomatic Rocks and Implieations Fur Ore Exploration. Beijing, Geological publishing house, 109. (in Chinese).

    Google Scholar

    Hu ZH, Liu D, Liu SB, Lang XH, Zhang JJ, Chen YC, Shi GH, Wang YY, Lei TH, Nei LM, Sha M, Gong LX, Liu ZQ. 2015. Rock-forming and ore-forming ages and significance of Taqian Mo (W) deposit, Leping, Jiangxi, China. Journal of Chengdu University of Technology, 42(3), 312–322 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2015.03.07.

    CrossRef Google Scholar

    Huang LC, Jiang SY. 2013. Geochronology, geochemistry and petrogenesis of the tungsten-bearing porphyritic granite in the Dahutang tungsten deposit, Jiangxi Province. Acta Petrologica Sinica, 29(12), 4323–4335 (in Chinese with English abstract).

    Google Scholar

    Huang LC, Jiang SY. 2014. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China: Geochronology, petrogenesis and their relationship with W-mineralization. Lithos, 202(4), 207–226. doi: 10.1016/j.lithos.2014.05.030.

    CrossRef Google Scholar

    Jia LQ, Xu WY, Yang D, Yang ZS, Mo XX, Wang L. 2015a. Zircon U-Pb and molybdenite Re-Os dating of the Dongleiwan skarn Cu polymetallic deposit in Jiangxi Province, Eastern China. Acta Geologica Sinica, 36(2), 177–186 (in Chinese with English abstract).

    Google Scholar

    Jia LQ, Xu WY, Yang D, Yang ZS, Wang L. 2015b. Zircon U-Pb and molybdenite Re-Os dating of Baoshan porphyry Cu polymetallic deposit in Jiujiang-Ruichang ore concentration area of Jiangxi Province and its geological significance. Mineral Deposits, 34(1), 63–80 (in Chinese with English abstract). doi: 10.1007/s11442-008-0201-7.

    CrossRef Google Scholar

    Jiang SY, Peng NJ, Huang LC, Xu YM, Zhan GL, Dan XH. 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province. Acta Petrologica Sinica, 31(3), 639–655 (in Chinese with English abstract).

    Google Scholar

    Klammer D. 1997. Mass change during extreme acid-sulphate hydrothermal alteration of a Tertiary latite, Styria, Austria. Chemical Geology, 141(1−2), 33–48. doi: 10.1016/S0009-2541(97)00056-9.0.

    CrossRef Google Scholar

    Kusakabe M. 1984. Oxygen and sulfur isotopic compositions of quartz, an hydrite and sulfide minerals from the El Teniente and Rio Blanco porphyry copper deposits, Chile. Bulletin of the Geological Survey of Japan, 35, 583–614.

    Google Scholar

    Kusakabe M, Hori M, Matsuhisa Y. 1990. Primary mineralization-alteration of the El Teniente and Río Blanco porphyry copper deposits, Chile: Stable isotope, fluid inclusion and Mg+2/Fe+2/Fe+3 ratios of hydrothermal fluids. In: Herbert HK, Ho SE (eds.) Stable isotopes and fluid processes in mineralization. University of Western Australia Press, Perth, 244–259.

    Google Scholar

    López-Moro FJ. 2012. EASYGRESGRANT—A Microsoft Excel spreadsheet to quantify volume changes and to perform mass-balance modeling in metasomatic systems. Computers & Geosciences, 39, 191–196. doi: 10.1016/j.cageo.2011.07.014.

    CrossRef Google Scholar

    Lecumberri-Sanchez P, Vieira R, Heinrich CA, Pinto F, W?lle M. 2017. Fluid-rock interaction is decisive for the formation of tungsten deposits. Geology, 45(7), 579–582. doi: 10.1130/G38974.1.

    CrossRef Google Scholar

    Lentz D. 1992. Petrogenesis and geochemical composition of biotites in rare-element granitic pegmatites in the southwestern Grenville Province, Canada. Mineralogy and Petrology, 46(3), 239–256. doi: 10.1007/BF01164649.

    CrossRef Google Scholar

    Li J, Huang XL, He PL, Li WX, Yu Y, Chen LL. 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65, 793–810. doi: 10.1016/j.oregeorev.2014.09.028.

    CrossRef Google Scholar

    Li XH, Li ZX, Ge W, Zhou H, Li W, Liu Y, Wingate MTD. 2003. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at about 825 Ma? Precambrian Research, 122(s1–4), 45–83. doi: 10.1016/S0301-9268(02)00207-3.

    CrossRef Google Scholar

    Li Y, Pan XF, Zhao M, Chen GH, Zhang TF, Liu X, Zhang C. 2014. LA-ICP-MS zircon U-Pb age, geochemical features and relations to the W-Cu mineralization of granitic porphyry in Zhuxi skarn deposit, Jingdezhen, Jiangxi. Geological Review, 60(3), 693–708 (in Chinese with English abstract).

    Google Scholar

    Liang Q, Grégoire DC. 2000. Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma−Mass Spectrometry. Geostandards & Geoanalytical Research, 24(1), 51–63 (in Chinese with English abstract). doi: 10.1111/j.1751-908X.2000.tb00586.x.

    CrossRef Google Scholar

    Liu J, Mao JW, Ye HS, Xie GQ, Yang GQ, Zhang W. 2008. Zircon LA-ICPMS U-Pb dating of Hukeng granite in Wugongshan area, Jiangxi Province and its geoehemical characteristics. Acta Petrologica Sinica, 24(8), 1813–1822 (in Chinese with English abstract).

    Google Scholar

    Liu JX, Chen HW, Liu XC, Wang G, Chao LI, Zhang JG. 2015. Isotopic age dating of Huashandong tungsten deposit in Xiushui County, Jiangxi Province and its geological significance. Resources Survey & Environment, 36(1), 1–9 (in Chinese with English abstract).

    Google Scholar

    Liu SB, Liu ZQ, Wang CH, Wang DH, Zhao Z, Hu ZH. 2017a. Geochemical characteristics of REEs and trace elements and Sm-Nd dating of scheelite from the Zhuxi giant tungsten deposit in northeast Jiangxi. Earth Science Frontiers, 24(5), 17–30 (in Chinese with English abstract). doi: 10.13745/j.esf.yx.2017-1-3.

    CrossRef Google Scholar

    Liu XC, Zhang DH, Zhao B, Liao ZZ, Liu CP. 2017b. Quantitative analysis of the “Five-floor” vertical morphological zonation in the Piaotang tungsten deposits, South China. Geological Journal of China Universities, 23(3), 408–416 (in Chinese with English abstract).

    Google Scholar

    Liu YJ, Ma DS. 1987. Geochemistry of tungsten. Beijing, Science Press, 1–232. (in Chinese).

    Google Scholar

    Liu YY, Ma CQ, Zhao Y, Huang WP. 2012. Zircon U-Pb age, element and Sr-Nd-Hf isotope geochemistry of Late Mesozoic magmatism from the Guichi metallogenic district in the Middle and Lower Reaches of the Yangtze River Region. Acta Petrologica Sinica, 28(10), 3287–3305 (in Chinese with English abstract).

    Google Scholar

    Lou FS, Shen WZ, Wang DZ, Shu LS, Wu FJ, Zhang FR, Yu JH. 2005. Zircon U-Pb isotopic chronology of the Wugongshan dome compound granite in Jiangxi Province. Acta Geologica Siniabout, 79(5), 637–644 (in Chinese with English abstract).

    Google Scholar

    Lowell JD, Guilbert JM. 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology, 65(4), 373–408. doi: 10.2113/gsecongeo.65.4.373.

    CrossRef Google Scholar

    Maclean WH. 1988. Rare earth element mobility at constant inter-REE ratios in the alteration zone at the Phelps Dodge massive sulphide deposit, Matagami, Quebec. Mineralium Deposita, 23(4), 231–238. doi: 10.1007/BF00206399.

    CrossRef Google Scholar

    Maclean WH. 1990. Mass change calculations in altered rock series. Mineralium Deposita, 25(1), 44–49. doi: 10.1007/BF03326382.

    CrossRef Google Scholar

    Maclean WH, Kranidiotis P, Maclean WH, Kranidiotis P. 1987. Immobile elements as monitors of mass transfers in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, 82(4), 951–962. doi: 10.2113/gsecongeo.82.4.951.

    CrossRef Google Scholar

    Mao JW, Guy B, Raimbault L, Shimazaki H. 1996. Manganese skarn in the Shizhuyuan polymetallic tungsten deposit, Hunan, China. Resource Geology, 46(1), 1–11.

    Google Scholar

    Mao JW, Wang YT, Lehmann B, Yu JJ, Du AD, Mei YX, Li YF, Zang WS, Stein HJ, Zhou TF. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geology Reviews, 29(3–4), 307–324. doi: 10.1016/j.oregeorev.2005.11.001.

    CrossRef Google Scholar

    Mao JW, Xie GY, Chao D, Franco P, Dazio I, Chen YC. 2011. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1), 294–314. doi: 10.1016/j.oregeorev.2011.07.010.

    CrossRef Google Scholar

    Mao ZH, Cheng YB, Liu JJ, Yuan SD, Wu SH, Xiang XK, Luo XH. 2013. Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province, China. Ore Geology Reviews, 53, 422–433. doi: 10.1016/j.oregeorev.2013.02.005.

    CrossRef Google Scholar

    Mao ZH, Liu JJ, Mao JW, Deng J, Zhang F, Meng XY, Xiong BK, Xiang XK, Luo XH. 2015. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, mineralization. Gondwana Research, 28(2), 816–836. doi: 10.1016/j.gr.2014.07.005.

    CrossRef Google Scholar

    Nadeau O. 2015. Economic geology: Ore metals beneath volcanoes. Nature Geoscience, 8(3), 168–170. doi: 10.1038/ngeo2379.

    CrossRef Google Scholar

    Neves LJPF. 1997. Trace element content and partitioning between biotite and muscovite of granitic rocks: A study in the Viseu region (Central Portugal). European Journal of Mineralogy, 9(4), 849–857. doi: 10.1127/ejm/9/4/0849.

    CrossRef Google Scholar

    Oliver NHS, Cleverley JS, Mark G, Pollard PJ, Fu B, Marshall LJ, Rubenach MJ, Williams PJ, Baker T. 2004. Modeling the role of sodic alteration in the genesis of iron oxide-copper-gold deposits, eastern mount Isa Block, Australia. Economic Geology, 99, 1145–1176. doi: 10.2113/gsecongeo.99.6.1145.

    CrossRef Google Scholar

    Pan YM, Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15(4), 177–242. doi: 10.1016/S0169-1368(99)00022-0.

    CrossRef Google Scholar

    Parsons I, Magee CW, Allen CM, Shelley JMG, Lee MR. 2009. Mutual replacement reactions in alkali feldspars Ⅱ: Trace element partitioning and geothermometry. Contributions to Mineralogy and Petrology, 157(5), 663–687. doi: 10.1007/s00410-008-0358-1.

    CrossRef Google Scholar

    Pirajno F. 1982. Geology, geochemistry, mineralisation, metal zoning of the McConnochie greisenised granite, Reefton district, Westland, New Zealand. New Zealand. Journal of Geology & Geophysics, 25(4), 405–425. doi: 10.1080/00288306.1982.10421507.

    CrossRef Google Scholar

    Pirajno F. 2013. Effects of Metasomatism on Mineral Systems and Their Host Rocks: Alkali Metasomatism, Skarns, Greisens, Tourmalinites, Rodingites, Black-Wall Alteration and Listvenites, Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences. Berlin, Springer Berlin Heidelberg. 203–251.

    Google Scholar

    Plümper O, Botan A, Los C, Liu Y, Malthesørenssen A, Jamtveit B. 2017a. Fluid-driven metamorphism of the continental crust governed by nanoscale fluid flow. Nature Geoscience, 10(9), 685–691. doi: 10.1038/ngeo3009.

    CrossRef Google Scholar

    Plümper O, John T, Podladchikov YY, Vrijmoed JC, Scambelluri M. 2017b. Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nature Geoscience, 10(2), 150–156. doi: 10.1038/ngeo2865.

    CrossRef Google Scholar

    Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Barton MD. 2005. Porphyry deposits: Characteristics and origin of hypogene features. Economic geology, 100th anniversary volume, 251–298. doi: 10.5382/AV100.10.

    Google Scholar

    Shcherba GN. 1970. Greisens. International Geology Review, 12(2), 114–150. doi: 10.1080/00206817009475216.

    CrossRef Google Scholar

    Sial AN, Bettencourt JS, De Campos CP, Ferreira VP. 2011. Granite-related ore deposits: An introduction. Geological Society London Special Publications, 350(1), 1–5. doi: 10.1144/SP350.1.

    CrossRef Google Scholar

    Sillitoe RH. 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 44(3), 373–388. doi: 10.1080/08120099708728318.

    CrossRef Google Scholar

    Sillitoe RH. 2000. Gold-rich porphyry deposits, descriptive and genetic models and their role in exploration and discovery. Seg Reviews, 13, 315–345.

    Google Scholar

    Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1), 3–41. doi: 10.2113/gsecongeo.105.1.3.

    CrossRef Google Scholar

    Soloviev SG, Kryazhev S. 2016. Geology, mineralization, fluid inclusion characteristics of the Chorukh-Dairon W-Mo-Cu skarn deposit in the Middle Tien Shan, Northern Tajikistan. Ore Geology Reviews, 80, 79–102. doi: 10.1016/j.oregeorev.2016.06.021.

    CrossRef Google Scholar

    Soloviev SG, Kryazhev SG. 2017. Geology, mineralization, fluid inclusion characteristics of the Skrytoe reduced-type W skarn and stockwork deposit, Sikhote-Alin, Russia. Mineralium Deposita, 52(6), 1–26. doi: 10.1007/s00126-016-0705-5.

    CrossRef Google Scholar

    Sun CG, Graff M, Liang Y. 2017. Trace element partitioning between plagioclase and silicate melt: The importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. Geochimica et Cosmochimica Acta, 206, 273–295. doi: 10.1016/j.gca.2017.03.003.

    CrossRef Google Scholar

    Sun KK, Chen B. 2017. Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China. American Mineralogist, 102(5), 1114–1128. doi: 10.2138/am-2017-5654.

    CrossRef Google Scholar

    Taylor RG. 1979. Geology of tin deposits. Elsevier Scientific Pub. Co., distributors for the U.S. and Canada, Elsevier/North-Holland, 543.

    Google Scholar

    Wang H, Feng C, Zhao Y, Zhang M, Chen R, Chen J. 2016. Ore genesis of the Lunwei granite-related scheelite deposit in the Wuyi metallogenic belt, Southeast China: Constraints from geochronology, fluid inclusions, H-O-S isotopes. Resource Geology, 66(3), 240–258. doi: 10.1111/rge.12100.

    CrossRef Google Scholar

    Wang JC, Wei LM, Zhu WF, Wan FL. 2008a. Texture and tectonic style of “Five-storeyed Type” for the tungsten deposits in the Nanling Mountains, Southern China−An example from the Meiziwo tungsten deposit. Acta Geologica Sinica, 82(7), 894–899 (in Chinese with English abstract).

    Google Scholar

    Wang XL, Zhao GC, Zhou JC, Liu YS, Hu J. 2008b. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China: Implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen. Gondwana Research, 14(3), 355–367. doi: 10.1016/j.gr.2008.03.001.

    CrossRef Google Scholar

    Watanabe Y, Hedenquist JW. 2001. Mineralogical and stable isotope zonation at the surface over the El Salvador porphyry Cu deposit, Chile. Economic Geology, 96, 1775–1797. doi: 10.2113/96.8.1775.

    CrossRef Google Scholar

    Weisheit A, Bons PD, Elburg MA. 2013. Long-lived crustal-scale fluid flow: The hydrothermal mega-breccia of Hidden Valley, Mt. Painter Inlier, South Australia. International Journal of Earth Sciences, 102(5), 1219–1236. doi: 10.1007/s00531-013-0875-7.

    CrossRef Google Scholar

    Wolfe R, Cooke D, Hooper B, Heithersay P. 1996. A magmatic origin for late-stage sericite-alunite alteration at the Endeavour 48 Cu-Au porphyry deposit, Goonumbla, NSW, 13th Australian Geological Convention, Canberra, Australia. Earth Sciences, 480 pp.

    Google Scholar

    Xiang XK, Wang P, Sun DM, Zhong B. 2013a. Re-Os isotopic age of molybdeinte from the Shimensi tungsten polymetallic deposit in northern Jiangxi province and its geological implications. Geological Bulletin of China, 32(11), 1824–1831 (in Chinese with English abstract).

    Google Scholar

    Xiang XK, Wang P Zhan GN, Sun DM, Zhong B, Qian ZY, Tan R. 2013b. Geological characteristics of Shimensi tungsten polymetallic deposit in northern Jiangxi Province. Mineral Deposits, 32(6), 1171–1187 (in Chinese with English abstract).

    Google Scholar

    Xiong X, Xu WY, Wen CH. 2015. Fluid characteristics and genesis of Xianglushan skam scheelite deposit in. Mineral Deposits, 34(5), 1046–1056 (in Chinese with English abstract).

    Google Scholar

    Xu XB, Zhang YQ, Jia D, Shu LS, Wang, RR. 2009. Early Mesozoic geotectonic processes in South China. Geology in China, 36(3), 573–593 (in Chinese with English abstract). doi: 10.1016/S1874-8651(10)60080-4.

    CrossRef Google Scholar

    Yang MG, Wang FN, Zeng Y, Lai XP, Huang SB, Zhou H. 2004. Geology of Metallogenesis in Notherm Jiangxi Province. Wuhan, China Earth Press, 186. (in Chinese).

    Google Scholar

    Yang P, Rivers T. 2000. Trace element partitioning between coexisting biotite and muscovite from metamorphic rocks, Western Labrador: Structural, compositional and thermal controls. Geochimica et Cosmochimica Acta, 64(8), 1451–1472. doi: 10.1016/S0016-7037(99)00425-1.

    CrossRef Google Scholar

    Yin R, Han L, Huang XL, Li J, Li WX, CHen LL. 2019. Textural and chemical variations of micas as indicators for tungsten mineralization: Evidence from highly evolved granites in the Dahutang tungsten deposit, South China. American Mineralogist, 104(7), 949–965. doi: 10.2138/am-2019-6796.

    CrossRef Google Scholar

    Zaw K, Peters SG, Cromie P, Burrett C, Hou Z. 2007. Nature, diversity of deposit types and metallogenic relations of South China. Ore Geology Reviews, 31(1), 3–47. doi: 10.1016/j.oregeorev.2005.10.006.

    CrossRef Google Scholar

    Zhang FX, Pointeau V, Shuller LC, Reaman DM, Lang M, Liu Z, Hu J, Panero WR, Becker U, Poinssot C, Ewing RC. 2009. Structural transitions and electron transfer in coffinite, USiO4, at high pressure. American Mineralogist, 94(7), 916–920. doi: 10.2138/am.2009.3111.

    CrossRef Google Scholar

    Zhang JJ, Mei YP, Wang DH, Li HQ. 2008. Isochronology study on the Xianglushan scheelite deposit in north Jiangxi Province and its geological significance. Acta Geologica Sinica, 82(7), 927–931 (in Chinese with English abstract).

    Google Scholar

    Zhang MY, Feng CY, Li DX, Wang H, Zhou JH, Ye SZ, Wang GH. 2016a. Geochronological study of the Kunshan W-Mo-Cu deposit in the Dahutang area, northern Jiangxi Province and its geological significance. Geotectonica et Metallogenia, 40(3), 503–516 (in Chinese with English abstract).

    Google Scholar

    Zhang Y. 2018. Ore-forming Fluid Evolution and Sb-Au-W Metallogenesis in the Central Hunan-Northwestern Jiangxi, South China. Nanjing, Najing University, 145. (in Chinese).

    Google Scholar

    Zhang Y, Gao JF, Ma DS, Pan J. 2018a. The role of hydrothermal alteration in tungsten mineralization at the Dahutang tungsten deposit, South China. Ore Geology Reviews, 95, 1008–1027. doi: 10.1016/j.oregeorev.2018.04.006.

    CrossRef Google Scholar

    Zhang Y, Liu NQ, Pan JY, Xiang XK, Jiang QX, Jiang CQ, Jiang YY, Ding WK. 2018b. The superposition of alkaline by acidic hydrothermal alteration and its formation mechanism at Dahutang tungsten deposit, South China. Beijing, Science Press, 116. (in Chinese).

    Google Scholar

    Zhang Y, Pan J, Ma D S, Liu G, Liu Y, Yang C, Zhang L. 2015a. Re‐Os molybdenite ages of Dahutang granite-related tungsten ore field, South China. Acta Geologica Sinica (English Edition), 88(s2), 1043–1044.

    Google Scholar

    Zhang Y, Pan JY, Ma DS, Dan XH, Zhang LL, Xu GH, Yang CP, Jiang QX, Jiang CQ. 2017. Re-Os molybdenite age of Dawutang tungsten ore district of northwest Jiangxi and its geological significance. Mineral Deposits, 36(3), 749–769 (in Chinese with English abstract).

    Google Scholar

    Zhang Y, Pan JY, Ma DS. 2020a. Lithium element enrichment and inspiration for prospecting for rare- metal mineralization in the Dahutang tungsten deposit: Constraints from mineralogy and geochemistry of hydrothermal alteration. Acta Geologica Siniabout, 94(11), 3321–3342 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2020218.

    CrossRef Google Scholar

    Zhang Y, Ma D, Gao JF. 2020b. Origin and evolution of ore-forming fluids in a tungsten mineralization system, Middle Jiangnan orogenic belt, South China: Constraints from in-situ LA-ICP-MS analyses of scheelite. Ore Geology Reviews, 127, 103806. doi: 10.1016/j.oregeorev.2020.103806.

    CrossRef Google Scholar

    Zhang YQ, Dong SW, Li JH, Cui JJ, Shi W, Su JB, Li Y. 2012. The new progress in the study of Mesozoic tectonics of South China. Acta Geoscientica Sinica, 33(3), 257–279 (in Chinese with English abstract). doi: 10.3975/cagsb.2012.03.01.

    CrossRef Google Scholar

    Zhang ZY, Hou ZQ, Peng HM, Fan XK, Wu XY, Dai JL. 2019. In situ oxygen isotope, trace element, fluid inclusion evidence for a primary magmatic fluid origin for the shell-shaped pegmatoid zone within the giant Dahutang tungsten deposit, Jiangxi Province, South China. Ore Geology Reviews, 104, 540–560. doi: 10.1016/j.oregeorev.2018.11.013.

    CrossRef Google Scholar

    Zhang ZY, Hou ZQ, Peng HM, Zhu XQ, Pan XF, Ye ZY. 2015b. Exsolution of primary fluids from magma in the superlarge Dahutang tungsten deposit of Jiangxi Province: Records from the pegmatoid shell. Geological Bulletin of China, 34(2), 487–500 (in Chinese with English abstract).

    Google Scholar

    Zhong YF, Ma CQ, She ZB, Lin GC, Xu HJ, Wang RJ, Yang KG, Liu Q. 2005. SHRIMP U-Pb Zircon Geochronology of the Jiuling Granitic Complex Batholith in Jiangxi Province. Earth Sciences, 30(6), 685–691 (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(3937) PDF downloads(33) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint