2021 Vol. 4, No. 1
Article Contents

Zhong-bao Zhao, Chao Li, Xu-xuan Ma, 2021. How does the elevation changing response to crustal thickening process in the central Tibetan Plateau since 120 Ma?, China Geology, 4, 32-43. doi: 10.31035/cg2021013
Citation: Zhong-bao Zhao, Chao Li, Xu-xuan Ma, 2021. How does the elevation changing response to crustal thickening process in the central Tibetan Plateau since 120 Ma?, China Geology, 4, 32-43. doi: 10.31035/cg2021013

How does the elevation changing response to crustal thickening process in the central Tibetan Plateau since 120 Ma?

More Information
  • When and how the Tibetan Plateau formed and maintained its thick crust and high elevation on Earth is continuing debated. Specifically, the coupling relationship between crustal thickening and corresponding paleoelevation changing has not been well studied. The dominant factors in crustal thickness changing are crustal shortening, magmatic input and surface erosion rates. Crustal thickness change and corresponding paleoelevation variation with time were further linked by an isostatic equation in this study. Since 120 Ma crustal shortening, magmatic input and surface erosion rates data from the central Tibetan Plateau are took as input parameters. By using a one-dimensional isostasy model, the authors captured the first-order relationship between crustal thickening and historical elevation responses over the central Tibetan Plateau, including the Qiangtang and Lhasa terranes. Based on the modeling results, the authors primarily concluded that the Qiangtang terrane crust gradually thickened to ca. 63 km at ca. 40 Ma, mainly due to tectonic shortening and minor magmatic input combined with a slow erosion rate. However, the Lhasa terrane crust thickened by a combination of tectonic shortening, extensive magmatic input and probably Indian plate underthrusting, which thickened the Lhasa crust over 75 km since 25 Ma. Moreover, a long-standing elevation >4000 m was strongly coupled with a thickened crust since about 35 Ma in the central Tibetan Plateau.

  • 加载中
  • Brown M. 2013. Granite: From genesis to emplacement. Geological Society of America Bulletin, 125(7–8), 1079–1113. doi: 10.1130/b30877.1.

    CrossRef Google Scholar

    Bian WW, Yang T, Ma Y, Jin J, Gao F, Zhang S. 2017. New Early Cretaceous palaeomagnetic and geochronological results from the far western Lhasa terrane: Contributions to the Lhasa-Qiangtang collision. Scientific Reports, 7(1), 1–14. doi: 10.1038/s41598-017-16482-3.

    CrossRef Google Scholar

    Burov EB. 2011. Rheology and strength of the lithosphere. Marine and Petroleum Geology, 28(8), 1402–1443. doi: 10.1016/j.marpetgeo.2011.05.008.

    CrossRef Google Scholar

    Cao WR, Paterson S, Saleeby J, Zalunardo S. 2016. Bulk arc strain, crustal thickening, magma emplacement, and mass balances in the Mesozoic Sierra Nevada arc. Journal of Structural Geology, 84, 14–30. doi: 10.1016/j.jsg.2015.11.002.

    CrossRef Google Scholar

    Cao WR, Paterson S. 2016. A mass balance and isostasy model: Exploring the interplay between magmatism, deformation, and surface erosion in continental arcs using central Sierra Nevada as a case study. Geochemistry, Geophysics, Geosystems, 17(6), 1–19. doi: 10.1002/2015gc006229.

    CrossRef Google Scholar

    Chapman JB, Ducea MN, Decelles PG, Profeta L. 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43(10), 919–922. doi: 10.1130/g36996.1.

    CrossRef Google Scholar

    Chen M, Niu FL, Tromp J, Lenardic A, Lee C-TA, Cao WR, Ribeiro J. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet. Nature Communications, 8, 1–10. doi: 10.1038/ncomms15659.

    CrossRef Google Scholar

    Chen JM, Zhao P, Wang CS, Huang YJ, Cao K. 2013. Modeling East Asian climate and impacts of atmospheric CO2 concentration during the Late Cretaceous (66 Ma). Palaeogeography Palaeoclimatology Palaeoecology, 385(9), 190–201. doi: 10.1016/j.palaeo.2012.07.017.

    CrossRef Google Scholar

    Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q, Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3–4), 173–196. doi: 10.1016/j.earscirev.2004.05.001.

    CrossRef Google Scholar

    Copley A, Avouac JP, Wernicke BP. 2011. Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet. Nature, 472(7341), 79–81. doi: 10.1038/nature09926.

    CrossRef Google Scholar

    DeCelles PG, Robinson DM, Zandt G. 2002. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics, 21(6), 1–25. doi: 10.1029/2001tc001322.

    CrossRef Google Scholar

    Ding L, Xu Q, Yue YH, Wang HQ, Cai FL, Li S. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth and Planetary Science Letters, 392, 250–264. doi: 10.1016/j.jpgl.2014.01.045.

    CrossRef Google Scholar

    Ding L, Kapp P, Yue YH, Lai QZ. 2007. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth and Planetary Science Letters, 254(1–2), 28–38. doi: 10.1016/j.jpgl.2006.11.019.

    CrossRef Google Scholar

    Ding L, Spicer RA, Yang J, Xu Q, Cai FL, Li S, Lai QZ, Wang HQ, Spicer TEV, Yue Y, Shukla A, Srivastava G, Ali Khan M, Bera S, Mehrotra R. 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45(3), 215–218. doi: 10.1130/g38583.1.

    CrossRef Google Scholar

    England P, Houseman G. 1989. Extension during continental convergence, with application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12), 17561–17579. doi: 10.1029/jb094ib12p17561.

    CrossRef Google Scholar

    Fang XM, Dupont-Nivet G, Wang CS, Song CH, Meng QQ, Zhang WL, Nie JS, Zhang T, Mao ZQ, Chen Y. 2020. Revised chronology of central Tibet uplift (Lunpola Basin). Science Advances, 6(50), eaba7298. doi: 10.1126/sciadv.aba7298.

    CrossRef Google Scholar

    Freymueller JT. 2011. Earth science: A new mechanical model for Tibet. Nature, 472(7341), 48–49. doi: 10.1038/472048a.

    CrossRef Google Scholar

    Gao R, Chen C, Lu ZW, Brown LD, Xiong XS, Li WH, Deng G. 2013. New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling. Tectonophysics, 606, 160–170. doi: 10.1016/j.tecto.2013.08.006.

    CrossRef Google Scholar

    Gao R, Lu ZW, Klemperer SL, Wang HY, Dong SW, Li WH, Li HQ. 2017. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nature Geoscience, 9(7), 555–560. doi: 10.1038/ngeo2730.

    CrossRef Google Scholar

    Garzione CN. 2008. Surface uplift of Tibet and Cenozoic global cooling. Geology, 36(12), 1003–1007. doi: 10.1130/focus122008.1.

    CrossRef Google Scholar

    Gourbet L, Mahéo G, Shuster DL, Tripathy-Lang A, Leloup PH, Paquette JL. 2016. River network evolution as a major control for orogenic exhumation: Case study from the western Tibetan plateau. Earth and Planetary Science Letters, 456, 168–181. doi: 10.1016/j.jpgl.2016.09.037.

    CrossRef Google Scholar

    Guan Q, Zhu DC, Zhao ZD, Dong GC, Zhang LL, Li XW, Liu M, Mo XX, Liu YS, Yuan HL. 2012. Crustal thickening prior to 38 Ma in southern Tibet: Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21(1), 88–99. doi: 10.1016/j.gr.2011.07.004.

    CrossRef Google Scholar

    Guillot S, Replumaz A. 2013. Importance of continental subductions for the growth of the Tibetan plateau. Bulletin de la Societe Geologique de France, 184(3), 199–223. doi: 10.2113/gssgfbull.184.3.199.

    CrossRef Google Scholar

    Harrison TM, Copeland P, Kidd WS, Yin A. 1992. Raising Tibet. Science, 255(5052), 1663–1670. doi: 10.1126/science.255.5052.1663.

    CrossRef Google Scholar

    Hetzel R, Dunkl I, Haider V, Strobl M, von Eynatten H, Ding L, Frei D. 2011. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology, 39(10), 983–986. doi: 10.1130/g32069.1.

    CrossRef Google Scholar

    Hyndman RD, Currie CA. 2011. Why is the North America Cordillera high? Hot backarcs, thermal isostasy, and mountain belts Geology, 39(8), 783–786. doi: 10.1130/g31998.1.

    CrossRef Google Scholar

    Hu XM, Garzanti E, Wang JG, Huang WT, An W, Webb A. 2016. The timing of India-Asia collision onset– Facts, theories, controversies. Earth-Science Reviews, 160, 264–299. doi: 10.1016/j.earscirev.2016.07.014.

    CrossRef Google Scholar

    Hu FY, Wu FY, Chapman JB, Ducea MN, Ji WQ, Liu SW. 2020. Quantitatively tracking the elevation of the Tibetan Plateau since the cretaceous: Insights from whole-rock Sr/Y and La/Yb ratios. Geophysical Research Letters, 47, e2020GL089202. doi: 10.1029/2020gl089202.

    CrossRef Google Scholar

    Huang F, Xu JF, Zeng YC, Chen JL, Wang BD, Yu HX, Chen L, Huang WL, Tan RY. 2017. Slab breakoff of the Neo-Tethys Ocean in the Lhasa terrane inferred from contemporaneous melting of the mantle and crust. Geochemistry, Geophysics, Geosystems, 18(11), 4074–4095. doi: 10.1002/2017gc007039.

    CrossRef Google Scholar

    Ingalls M, Rowley D, Olack G, Currie B, Li SY, Schmidt J, Tremblay M, Polissar P, Shuster DL, Ding L, and Colman A. 2018. Paleocene to Pliocene low-latitude, high-elevation basins of southern Tibet: Implications for tectonic models of India-Asia collision, Cenozoic climate, and geochemical weathering. Geological Society of America Bulletin, 130(1–2), 307–330. doi: 10.1130/b31723.1.

    CrossRef Google Scholar

    Jiang HH, Lee C-TA. 2017. Coupled magmatism-erosion in continental arcs: Reconstructing the history of the Cretaceous Peninsular Ranges batholith, southern California through detrital hornblende barometry in forearc sediments. Earth and Planetary Science Letters, 472, 69–81. doi: 10.1016/j.jpgl.2017.05.009.

    CrossRef Google Scholar

    Kapp P, DeCelles PG, Gehrels GE, Heizler M, Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7–8), 917–932. doi: 10.1130/b26033.1.

    CrossRef Google Scholar

    Kapp P, Yin A, Harrison TM, Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Bulletin of the Geological Society of America, 117(7–8), 865–878. doi: 10.1130/b25595.1.

    CrossRef Google Scholar

    Lai W, Hu XM, Garzanti E, Sun GY, Garzione CN, BouDagher‐Fadel M, Ma AL. 2019. Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma). Geological Society of America Bulletin, 131(11–12), 1823–1836. doi: 10.1130/b35124.1.

    CrossRef Google Scholar

    Lee C-TA, Thurner S, Paterson S, Cao WR. 2015. The rise and fall of continental arcs: Interplays between magmatism, uplift, weathering, and climate. Earth and Planetary Science Letters, 425, 105–119. doi: 10.1016/j.jpgl.2015.05.045.

    CrossRef Google Scholar

    Li C, Wang GH, Zhao ZB, Du JX, Ma XX, Zheng YL. 2019. Late Mesozoic tectonic evolution of the central Bangong-Nujiang Suture Zone, central Tibetan Plateau. International Geology Review, 62(18), 2300–2323. doi: 10.1080/00206814.2019.1697859.

    CrossRef Google Scholar

    Li YL, Wang CS, Dai JG, Xu GQ, Hou YL, Li XH. 2015. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: A review. Earth-Science Reviews, 143, 36–61. doi: 10.1016/j.earscirev.2015.01.001.

    CrossRef Google Scholar

    Liu XH, Xu Q, Ding L. 2016. Differential surface uplift: Cenozoic paleoelevation history of the Tibetan Plateau. Science China Earth Sciences, 59(11), 2105–2120. doi: 10.1007/s11430-015-5486-y.

    CrossRef Google Scholar

    Lu L, Zhen Z, Wu ZH, Cheng Q, Ye PS. 2015. Fission track thermochronology evidence for the Cretaceous and Paleogene tectonic event of Nyainrong microcontinent, Tibet. Acta Geologica Sinica (English Edition), 89, 133–144. doi: 10.1111/1755-6724.12400.

    CrossRef Google Scholar

    Ma XX, Xu ZQ, Liu F, Zhao ZB, Li HB. 2021. Continental arc tempos and crustal thickening: A case study in the Gangdese arc, southern Tibet. Acta Geologica Sinica, 95(1), 107–123 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021007.

    CrossRef Google Scholar

    Meng J, Coe RS, Wang CS, Gilder SA, Zhao XX, Liu H, Li YL, Ma PF, Shi K, Li S. 2017. Reduced convergence within the Tibetan plateau by 26 Ma? Geophysical Research Letter, 44, 6624–6632. doi: 10.1002/2017gl074219.

    CrossRef Google Scholar

    Meng J, Zhao XX, Wang CS, Liu H, Li YL, Han ZP, Liu T, Wang M. 2018. Palaeomagnetism and detrital zircon U-Pb geochronology of Cretaceous redbeds from central Tibet and tectonic implications. Geological Journal, 53, 2315–2333. doi: 10.1002/gj.3070.

    CrossRef Google Scholar

    Meng J, Gilder SA, Li YL, Wang CS, Liu T. 2020. Expanse of Greater India in the late Cretaceous. Earth and Planetary Science Letters, 542, 116330. doi: 10.1016/j.jpgl.2020.116330.

    CrossRef Google Scholar

    Mantle GW, Collins WJ. 2008. Quantifying crustal thickness variations in evolving orogens: Correlation between arc basalt composition and Moho depth. Geology, 36(1), 87–90. doi: 10.1130/g24095a.1.

    CrossRef Google Scholar

    Mcdonough WF, Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3–4), 223–253. doi: 10.1016/0009-2541(94)00140-4.

    CrossRef Google Scholar

    Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31(4), 357–396. doi: 10.1029/93rg02030.

    CrossRef Google Scholar

    Molnar P, Boos WR, Battisti DS. 2010. Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences, 38(1), 77–102. doi: 10.1146/annurev-earth-040809-152456.

    CrossRef Google Scholar

    Murphy M, Yin A, Harrison TM, Durr SB, Chen Z, Ryerson FJ, Kidd WSF, Wang X, Zhou X. 1997. Did the Indo-Asian collision alone create the Tibetan plateau? Geology, 25(8), 719–723. doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2.

    CrossRef Google Scholar

    Polissar PJ, Freeman KH, Rowley DB, McInerney FA, Currie BS. 2009. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth and Planetary Science Letters, 287(1–2), 64–76. doi: 10.1016/j.jpgl.2009.07.037.

    CrossRef Google Scholar

    Profeta L, Ducea MN, Chapman JB, Paterson SR, Gonzales SMH, Kirsch M, Petrescu L, DeCelles PG. 2015. Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5, 17786. doi: 10.1038/srep17786.

    CrossRef Google Scholar

    Razi AS, Roecker SW, Levin V. 2016. The fate of the Indian lithosphere beneath western Tibet: Upper mantle elastic wave speed structure from a joint teleseismic and regional body wave tomographic study. Physics of the Earth and Planetary Interiors, 251, 11–23. doi: 10.1016/j.pepi.2015.12.001.

    CrossRef Google Scholar

    Rohrmann A, Kapp P, Carrapa B, Reiners PW, Guynn J, Ding L, Heizler M. 2012. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 40(2), 187–190. doi: 10.1130/g32530.1.

    CrossRef Google Scholar

    Rowley DB, Currie BS. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439(7077), 677–681. doi: 10.1038/nature04506.

    CrossRef Google Scholar

    Replumaz A, Funiciello F, Reitano R, Faccenna C, Balon M. 2016. Asian collisional subduction: A key process driving formation of the Tibetan Plateau. Geology, 44(11), 943–946. doi: 10.1130/g38276.1.

    CrossRef Google Scholar

    Saleeby J. 2003. Segmentation of the Laramide Slab—evidence from the southern Sierra Nevada region. Geological Society of America Bulletin, 115(6), 655–668. doi: 10.1130/0016-7606(2003)115<0655:SOTLSF>2.0.CO;2.

    CrossRef Google Scholar

    Styron R, Taylor M, Sundell K. 2015. Accelerated extension of Tibet linked to the northward underthrusting of Indian crust. Nature Geoscience, 8(2), 131–134. doi: 10.1038/ngeo2336.

    CrossRef Google Scholar

    Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang JS. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547), 1671–1677. doi: 10.1126/science.105978.

    CrossRef Google Scholar

    Tang M, Ji WQ, Chu X, Wu AB, Chen C. 2020. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology, 49(1), 76–80. doi: 10.1130/g47745.1.

    CrossRef Google Scholar

    van Hinsbergen DJJ, Kapp P, Dupont-Nivet G, Lippert PC, DeCelles PG, Torsvik TH. 2011. Restoration of Cenozoic deformation in Asia and the size of Greater India. Tectonics, 30(5), 1–31. doi: 10.1029/2011tc002908.

    CrossRef Google Scholar

    van der Beek P, Litty C, Baudin M, Mercier J, Robert X, Hardwick E. 2016. Contrasting tectonically driven exhumation and incision patterns, western versus central Nepal Himalaya. Geology, 44(4), 327–330. doi: 10.1130/g37579.1.

    CrossRef Google Scholar

    Volkmer JE, Kapp P, Guynn JH, Lai QZ. 2007. Cretaceous-Tertiary structural evolution of the north central Lhasa terrane, Tibet. Tectonics, 26, TC6007. doi: 10.1029/2005tc001832.

    CrossRef Google Scholar

    Volkmer JE, Kapp P, Horton BK, Gehrels GE, Minervini JM, Ding L. 2014. Northern Lhasa thrust belt of central Tibet: Evidence of Cretaceous–early Cenozoic shortening within a passive roof thrust system? Geological Society of America Special Papers, 507, 59–70. doi: 10.1130/2014.2507(03).

    CrossRef Google Scholar

    Wang CS, Dai JG, Zhao XX, Li YL, Graham SA, He DF, Ran B, Meng J. 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 621, 1–43. doi: 10.1016/j.tecto.2014.01.036.

    CrossRef Google Scholar

    Wang CS, Zhao XX, Liu ZF, Lippert PC, Graham SA, Coe RS, Yi HS, Zhu LD, Liu S, Li YL. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 105(13), 4987–4992. doi: 10.1073/pnas.0703595105.

    CrossRef Google Scholar

    Wang JG, Hu XM, Garzanti E, BouDagher-Fadel MK, Liu ZC, Li J, Wu FY. 2020. From extension to tectonic inversion: Mid-Cretaceous onset of Andean-type orogeny in the Lhasa block and early topographic growth of Tibet. Geological Society of America Bulletin, 132(11–12), 2432–2454. doi: 10.1130/b35314.1.

    CrossRef Google Scholar

    Xu Q, Ding L, Zhang LY, Cai FL, Lai QZ, Yang D, Liu ZJ. 2013. Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau. Earth and Planetary Science Letters, 362, 31–42. doi: 10.1016/j.jpgl.2012.11.058.

    CrossRef Google Scholar

    Yakovlev PV, Clark MK. 2014. Conservation and redistribution of crust during the Indo-Asian collision. Tectonics, 33(6), 1016–1027. doi: 10.1002/2013tc003469.

    CrossRef Google Scholar

    Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1), 211–280. doi: 10.1146/annurev.earth.28.1.211.

    CrossRef Google Scholar

    Yin A, Harrison TM, Murphy MA, Grove M, Nie S, Ryerson FJ, Wang XF, Chen ZL. 1999. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision. Geological Society of America Bulletin, 111(11), 1644–1664. doi: 10.1130/0016-7606(1999)111<1644:TDHOSA>2.3.CO;2.

    CrossRef Google Scholar

    Zhang KJ, Xia B, Zhang YX, Liu WL, Zeng L, Li JF, Xu LF. 2014. Central Tibetan Meso-Tethyan oceanic plateau. Lithos, 210, 278–288. doi: 10.1016/j.lithos.2014.09.004.

    CrossRef Google Scholar

    Zhao ZB, Bons PD, Stübner K, Wang GH, Ehlers TA. 2017. Early Cretaceous exhumation of the Qiangtang terrane during collision with the Lhasa terrane, Central Tibet. Terra Nova, 29, 382–391. doi: 10.1111/ter.12298.

    CrossRef Google Scholar

    Zhao ZB, Bons PD, Li C, Wang GH, Ma XX, Li GW. 2020. The Cretaceous crustal shortening and thickening of the South Qiangtang terrane and implications for proto-Tibetan Plateau formation. Gondwana Research, 78, 141–155. doi: 10.1016/j.gr.2019.09.003.

    CrossRef Google Scholar

    Zhu DC, Wang Q, Cawood PA, Zhao ZD, Mo XX. 2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1), 214–223. doi: 10.1002/2016jb013508.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(1713) PDF downloads(9) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint