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When and how the Tibetan Plateau formed and maintained its thick crust and high elevation on Earth is
continuing debated. Specifically, the coupling relationship between crustal thickening and corresponding
paleoelevation changing has not been well studied. The dominant factors in crustal thickness changing are
crustal shortening, magmatic input and surface erosion rates. Crustal thickness change and corresponding
paleoelevation variation with time were further linked by an isostatic equation in this study. Since 120 Ma
crustal shortening, magmatic input and surface erosion rates data from the central Tibetan Plateau are took
as input parameters. By using a one-dimensional isostasy model, the authors captured the first-order
relationship between crustal thickening and historical elevation responses over the central Tibetan Plateau,
including the Qiangtang and Lhasa terranes. Based on the modeling results, the authors primarily
concluded that the Qiangtang terrane crust gradually thickened to ca. 63 km at ca. 40 Ma, mainly due to
tectonic shortening and minor magmatic input combined with a slow erosion rate. However, the Lhasa
terrane crust thickened by a combination of tectonic shortening, extensive magmatic input and probably
Indian plate underthrusting, which thickened the Lhasa crust over 75 km since 25 Ma. Moreover, a long-
standing elevation >4000 m was strongly coupled with a thickened crust since about 35 Ma in the central

Tibetan Plateau.

©2021 China Geology Editorial Office.

1. Introduction

Since the onset of the India-Asia continental collision at
ca. 60 Ma (Hu XM et al., 2016), a continued India-Asian
convergence has produced the highly elevated Tibetan Plateau
(TP) (Harrison TM et al., 1992; Tapponnier P et al., 2001).
These hypotheses include the following, potentially co-
existing, scenarios: (1) The distributed shortening and
thickening of the Tibetan Plateau crust as a “viscous sheet”
(England P and Houseman G, 1989); (2) extensive thrusts
thickened the Tibetan Plateau crust tectonically (Harrison TM
et al., 1992), and (3) successive intra-continental subduction
and sedimentary infilling of the intermontane basins
(Tapponnier P et al., 2001). However, recent research results
argued that the central Tibetan crust had already thickened
and uplifted before the India-Asian collision (Kapp P et al.,
2007; Murphy M et al., 1997). And, a high-standing Early
Cenozoic paleoelevation existed in the central Tibetan Plateau
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(Ding L et al., 2014; Rowley DB et al., 2006; Wang CS et al.,
2008, 2014), which suggested that a proto-plateau formed
before ca. 45 Ma, including Qiangtang and Lhasa terranes
where belongs to the core of the central Tibetan Plateau
(Wang CS et al., 2008). As such, how and when the thick
continental crust and high elevation formed in the central
Tibetan Plateau remains an unanswered question, more
specifically, the interaction between changes in crustal
thickness and surface expressions during plateau formation
are still vague.

Factors controlling crustal thickness include the interplay
between tectonic shortening, magmatic addition and surface
erosion (Cao WR et al., 2016; Lee C-TA et al., 2015). Both
tectonic shortening and the influx of mantle-derived magma
can thicken the crust and trigger surface uplift, which
corresponds to faster erosional processes that thinning the
crust (Jiang HH and Lee C-TA, 2017). In addition, crustal
rooting or lithospheric mantle foundering can further raise the
crust elevation (Cao WR et al., 2016; Chen M et al., 2017).
Although there are an abundant number of studies on the
Tibetan Plateau formation (Guillot S et al., 2013; Li YL et al.,
2015; Wang CS et al., 2014), the causes of plateau crustal


mailto:zhaozhb04@163.com
http://dx.doi.org/10.31035/cg2021013
http://dx.doi.org/10.31035/cg2021013
http://chinageology.cgs.cn
https://www.sciencedirect.com/journal/china-geology

Zhao et al. / China

thickening and corresponding topographic evolution remain
unknown to us. Most studies invoke the role of crustal
shortening and thus high elevation that induces thickening
(Kapp P et al., 2005), and others have invoked Indian plate
underthrusting underneath the Tibetan Plateau (DeCelles PG
et al., 2002), Asian continental subduction (Replumaz A et al.,
2016) or lithospheric mantle remove (Chen M et al., 2017).
Nonetheless, most of these hypotheses have not yet been
quantitatively tested.

Here, this work aims to integrate crustal thickening and
reasonable surface uplift processes together, which could
offer more constraints on how and when the central Tibetan
Plateau attained its thick crust and high elevation. The authors
first collected and summarized basic geological observations,
including the crustal shortening rate, magmatic input flux and
erosion rates, which dominated crustal thickness and
paleoelevation changes since 120 Ma for the Qiangtang and
Lhasa terranes (Fig. 1). A simple one-dimensional mass
balance isostatic model was applied to link all of these
processes together. Primary results showed that crustal
thickening and elevation variation were strongly coupled and
comparable with documented geological observations.

2. Methods

Due to crustal thickness is determined by tectonic
shortening/extension, magmatic addition and surface erosion
process (Cao WR et al., 2016; Lee C-TA et al., 2015) and
could be estimated by empirical geochemical methods
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(Mantle GW and Collins WJ, 2008; Profeta L et al., 2015),
therefore the authors firstly collected these data from
documented literature (Fig. 2, and supplementary data file).
The tectonic shortening/extension and surface erosion rates
could be directly obtained from literature, but magma input
flux and historical crust thickness have to be transformed
from other parameters. Thus, here the authors briefly
introduced that how the authors calculated magmatic addition
rates and estimated historical crustal thickness in the
following section.

2.1. Magmatic addition rate calculations

The authors choose longitude between 85°E and 90°E for
the Qiangtang and Lhasa terranes to estimate magmatic
addition rates (MARSs) separately, which are relatively well
studied in the field of magmatism. The MAR can be estimated
from areas of different intrusive suites during special temporal
intervals within the target area (detailed data in supplementary
Table S;). The zircon U-Pb ages of plutons and volcanoes
from the literature are contoured at intervals of the geological
time scale on a geologic map (Fig. 3). Areas with plutons and
volcanoes within each geological time interval measured from
the map by ImagelJ are plotted against the ages in Fig. 4. The
total volume of magma can be calculated from the areal
distribution of the plutons multiplied by the thickness of the
plutons. The thickness is calculated by an empirical line,
which plots the pluton distribution area against the pluton
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http://www2 jpl.nasa.gov/srtm/. Locations of the collected data are
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Elevation map of the Tibetan Plateau with main tectonic units and their boundaries. Elevation data were downloaded from

shown, and more information is in their supplementary Tables S,—Ss.

JSS—Jinsha suture; LSS—Longmu Co-Shuanghu suture; BNS-Bangong-Nujiang suture; I'Y S—Indus-Yarlung suture.
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thickness with logarithmic coordinates (Brown M, 2013).
Final magmatic thickening rates or magmatic flux rates
(km*/km?*/Ma) are then obtained by dividing the volumetric
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addition rate by the total area (Jiang HH and Lee C-TA,
2017). Therefore, these calculated magmatic flux rates are
averages of magmatic fluxes for chosen area Fig. 4.
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Fig. 2. Collected and reprocessed data of geological observations are shown. The best fit modeled results are illustrated by curves. a—timing of
two major episodes during tectonic deformation for the Lhasa and Qiangtang terranes (see supplementary Table S;). b, c-magmatic input flux
rates estimates for the Lhasa and Qiangtang terranes, respectively (Fig. 4; supplementary Table S,). Blue and red lines are obtained from model-
ing results which are used to compare with calculated line. Green line is cited from Ma XX et al. (2021) which is statics of documented magma
ages on the Lhasa terrane. d—geological constraints for crustal thickness in the Lhasa and Qiangtang terranes (see Zhu DC et al., 2017 and sup-
plementary Table S,). e-geological constraints for paleoelevation. f—in this figure, red and blue crosses show the collected results for the Lhasa
and Qiangtang terranes, respectively. The blue and red curves show the results of the reference simulation for the Qiangtang and Lhasa terranes,

respectively. Crosses show the geological constraints for erosion rates.
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2.2. Crustal thickness estimate

The basic principle for estimating historical crustal
thickness is that the Ce/Y ratio of arc basalts (Mantle GW and
Collins WJ, 2008) and the La/Yb and Sr/Y ratios of arc
intermediate rocks (Profeta L et al., 2015) intrinsically reflect
the presence of mineral assemblages (amphibole + plagioclase
+ garnet) in the magma source region when slab-derived and
fractionated samples are excluded. These ratios could indicate
crustal thickness changes (Chapman JB et al., 2015; Profeta L
et al., 2015). Methods for translating (La/Yb), [where n
denotes the normalized chondritic values (Mcdonough WF
and Sun SS, 1995)] to crustal thickness are based on the
method of Profeta F et al. (2015), which selects the
intermediate intrusive rocks first (55%—68% SiO,). The
empirical fit defined by the (La/Yb), ratios of global
intermediate rocks with a crustal thickness (Profeta F et al.,

78°E 82°E

35

2015) is used to track the crustal thickness of the Gangdese
arc in the southern Tibetan Plateau (Zhu DC et al. 2017) (Fig.
2d, red cross). For the southern Qiangtang terrane, the authors
follow the methods of Profeta F et al. (2015) and Zhu DC et
al. (2017), which filtered the geochemical data first to
eliminate the effect of differentiation on primary magma
composition. The detailed results are

supplementary Table S,, Figs. 2d, 5 (blue cross).

available in

3. Geological observations and constraints

The Tibetan Plateau (Fig. 1) is a typical continent-
continent collisional region that was built on the Mesozoic-
Cenozoic convergence between the Indian and Eurasian plates
(Yin A and Harrison TM, 2000; Meng J et al., 2020). The
Qiangtang terrane collided with Eurasia during the Late
Triassic, while the Lhasa-Qiangtang collision occurred along
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Fig. 3. Magmatism contoured by geological time, scale from 85°E to 90°E in the Qiangtang and Lhasa terranes.
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Fig. 4. Magmatic input flux estimates for the Lhasa and Qiangtang terranes, respectively (data are shown in the supplementary Table S,). Gray
histograms show the pluton-exposed area, and the black squares show magmatic influx rates.
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Fig. 5. The crustal thickness variation of the southern Qiangtang
terrane from 170 Ma to 55 Ma. The crustal thickness variation of the
southern Qiangtang terrane was based on data from supplementary
Table S,. Different colors means collected from different literatures.

the Bangong-Nujiang suture during the Early Cretaceous,
which formed basic framework prior to the modern central
Tibetan Plateau (Fig. 1; Bian WW et al., 2017; Zhao ZB et al.,
2017). This is consistent with the paleomagnetic data, which
indicates that the Lhasa-Qiangtang collision occurred at ca.
120 Ma (Li C et al.,, 2019; Meng J et al., 2018). The Indian
continent finally collided with Eurasia at ca. 60 Ma along the
Indus-Yarlung suture leading to the Tibetan Plateau finally
raised (Hu XM et al., 2016; Wang CS et al., 2014). Hence, the
Tibetan Plateau formations resulted from a combination of
several geological processes and were inherited from an early
geological basis.

For building up logical
summarized geological observations from the central Tibetan

model the authors first
Plateau since 120 Ma, which determined the historical crustal
thickness and relative paleoelevation of the Qiangtang and
Lhasa terranes (Figs. 1, 2, 5). Detailed methods of the data
collection and calculations are included in the methods
section and summarized results are plotted in the Fig. 2.

Both crustal shortening and mantle-derived magmatic
additions are important processes that induce crustal
thickening (Jiang HH and Lee C-TA, 2017). A large amount

of crustal shortening and thickening occurred during 120-
50 Ma, with an average shortening rate of 50% and 55% for
the Qiangtang and Lhasa terranes, respectively (Fig. 2a,
supplementary Table S;) (Murphy M et al., 1997; Kapp P et
al., 2005, 2007; Volkmer JE et al., 2007, 2014; Zhao ZB et
al., 2020). While, after 50 Ma there are only ca. 10% crustal
shortening occurred within the south Qiangtang terrane (Zhao
7B et al., 2020) and very weak crustal deformation on the
Lhasa terrane (Fig. 2a; Table S;) (Volkmer JE et al., 2014).
These geological observations are in agreement with
paleomagnetic results (Meng J et al., 2017).

Based on the simple statistic results, there was one strong
magmatic addition stage with a magmatic flux rate of ca.
0.01 km*km*Ma for the Qiangtang terrane during the
Cenozoic Era (Figs. 2b, 4; supplementary Table §S).
Nonetheless, three high-magmatic addition events have
occurred over the Lhasa terrane since 120 Ma (Figs. 2c¢, 4;
supplementary Table S;). The largest magmatic input flux
reached ca. 0.034 km*/km*Ma during the Paleocene on the
southern Lhasa terrane (Figs. 2c, 4). However, the other two
peaks flux numbers were relative ). Due to erosion and a lack
of exposures, the estimated magmatic flux was at its
minimum. The authors also compared the calculated
magmatic flux rate curve with magmatic age probability
distribution curve from ompared the calculated magmatic flux
rate curve with magmatic age probability distribution curve
from Ma XX et al. (2021) for the Lhasa terrane. Although
peaks of these two lines are shifted a bit, the basic trending fit
quite well (Figs. 2b, c).

These magmatic and deformational events changed the
crustal thickness and further affected the elevation and surface
erosion of the central Tibetan Plateau (Figs. 2d, f). The
erosion rate decreased from 0.25 km/Ma at ca. 110 Ma to a
very slow rate of <0.1 km/Ma at ca. 75 Ma on the southern
Qiangtang terrane (Fig. 2f; supplementary Table S,; Lu L et
al., 2015; Zhao ZB et al., 2017). While the erosion rate
decreased from 0.3 km/Ma at 65 Ma to 0.05 km/Ma at 45 Ma
on th;hasa terrane (Fig. 2f; Hetzel R et al., 2011; Rohrmann A
et al, 2012), during the Cenozoic, the erosion rate was
obviously small in both the Lhasa and Qiangtang terranes
(<0.1 km/Ma) because the central Tibetan Plateau became
plateau-like by ca. 45 Ma (Gourbet L et al., 2016; Rohrmann
Aetal., 2012).

Using above mentioned inputs, the authors can calculate
crust thickness changing with time and further compare them
with crustal thickness estimated by geochemical methods
(Fig. 2d). For the Qiangtang terrane, the authors collected and
filtered intermediate rock data following the methods of Zhu
DC et al. (2017) to calculate historical crustal thickness.
Detailed results are in Figs. 2d, 5 (blue crosses) and
supplementary Table S,. The Qiangtang terrane crust
increased from 48 km to >60 km between 120 Ma and 60 Ma
(Fig. 2d). Afterwards, the Qiangtang crustal thickness was
nearly maintained at ca. 60 km. Crustal thickness of the south
Lhasa terrane was obtained by the (La/Yb), methods (Fig. 2d,
red crosses) (Hu FY et al., 2020; Zhu DC et al., 2017). The
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Lhasa crust thickened from ca. 37 km at 120 Ma to ca. 50 km
at 70 Ma, then thickened sharply from ca. 50 km to >60 km
during 70-50 Ma;Fig. 2d;Hu FY et al., 2020; Zhu DC et al.,
2017). However, the northern and central Lhasa terrane
crustal thickness was suddenly dropped to ca. 40 km and thus
elevation to ca. 2.5 km during 50—70 Ma in Hu FY et al.
(2020) by delamination Geological which is a bit wired with
that delamination normally lead to crust uplifting (Jiang HH
and Lee C-TA, 2017). Finally, crustal thickness of the Lhasa
terrane increased from >60 km to >75 km after 50 Ma (Zhu
DC etal., 2017).

Geological records suggested that the plateau elevation
and erosion rate fluctuated during the plateau evolution (Figs.
2e, f; supplementary Tables S;, Ss). Based on the
paleoelevations of the Qiangtang and Lhasa terranes (Fig. 2¢),
the authors found that both terranes stood >4 km high since
ca. 50 Ma (Ding L et al., 2014; Liu X et al., 2016; Xu Q et al.,
2013). The result has benefited from the development of a
number of paleoaltimetry analyses and their application to
studies of the TP (Ding L et al., 2014; Polissar PJ et al., 2009;
Liu X et al., 2016). The original ca. 2 km elevation of the
Qiangtang terrane at ca. 120 Ma was documented by Zhang
KJ et al. (2014) and Hu FY et al. (2020). A special exception
is the Lunpola Basin, where located along the Bangong-
Nujiang Suture (Fig. 1) and recorded <2.3 km elevation until
40 Ma (Fang XM et al., 2020).

In total, two slab foundering events were predicted by
documented data and adopted into the model. The first
involved the Neotethyan oceanic lithosphere that foundered
before 45 Ma, and the second consisted of the Indian
lithosphere that delaminated at ca. 30 Ma (Chen M et al.,
2017; Razi AS et al., 2016). After this, the long-term low
velocity of convergence rate supports a continuous hard
collision between India and Asia (van Hinsbergen DJJ et al.,
2011). Hence, the final elevation was also controlled by
lithospheric/crustal root foundering at ca. 45 Ma and 30 Ma,
respectively. This process deeply affected paleoelevation of
the central TP. Asthenospheric upwelling associated with
break-off events may explain the patterns of Cenozoic
volcanism in the TP (DeCelles PG et al., 2002).

4. Isostatic modeling

Aiming to combine all of these observations together and
attempting to find their internal relations, the authors applied
the isostatic modeling method of Cao WR and Paterson S
(2016). Here, the model used deformational, magmatic and
erosion rates parameterized from observations as inputs. The
outputs were historical crustal thickness and elevation values
from 120 Ma to present, which were tested by a comparison
with independent geological observations (Fig. 2). Lithospheric/
crustal root foundering was taken into account as well.

To calculate the elevation as a function of time [A(f)], the
authors used equation (8) and equation (9) of Cao WR and
Paterson S (2016) and their Matlab scripts to solve the
following equations:

dH (1)

a = HM+D+E(h) M

h(t) = ho+ <1 —p“) X [H (f)— Hy] + (1 —l‘;’> XR(@®) (2

m m

Here, dH/d¢t in equation (1) represents the crustal
thickening rate related to magmatic and deformational
thickening (H,,,,) and erosion rate (£). Equation (2) describes
the isostatic relationship between crustal thickness (H),
continental root thickness (R) and surface elevation (4). The
variables A, and H, represent the initial elevation and crustal
thickness, respectively. Variables p,., p,, and p, represent the
characteristic densities of the crust, lithospheric mantle and
continental root, respectively. More assumptions and limits of
the isostatic model are described in the methods section.

4.1. Isostatic modeling assumption

For a first-order approximation, the authors assume that
the crust and mantle have uniform densities, respectively. The
authors also assume that the isostatic adjustment is
instantaneous due to a shorter Maxwell time of the mantle (ca.
1 ka) (Burov EB, 2011) compared to the time scale for the
simulation (>10 Ma). A plane strain deformation without
shortening or stretching parallel to the orogenic belt is
assumed. The erosion rate is proportional to the elevation
divided by the erosion response time (zz), which becomes a
function of bedrock erodibility and precipitation rate
[equation 6 and equation 7 in Cao WR and Paterson S
(2016)]. The continental root, garnet-rich pyroxenites or
eclogites in the lower crust or upper mantle are denser than
the surrounding mantle, which creates a “pull-down” effect on
the elevation depending on its thickness (R) and density (p,)
(Saleeby J, 2003). All rate curves follow a Gaussian
distribution, and the area beneath the Gaussian curve is scaled
to the total amount of variation Cao WR and Paterson S
(2016). The Matlab code is available in Cao WR and Paterson
S (2016).

Because the Lhasa and Qiangtang terranes are separated in
the central Tibetan Plateau and probably possess historical
disparate uplifting (Hu FY et al., 2020), the authors modeled
the two terranes separately. The original crustal thickness of
the Qiangtang and Lhasa terranes were 48 km (supplementary
Table S,) (Hu FY et al., 2020) and 37 km (Zhu DC et al.,
2017), respectively. The initial elevation of the Qiangtang
terrane was approximately 2 km (Hu FY et al, 2020);
however, the Lhasa terrane was close to sea level (Kapp P et
al., 2005; Hu FY et al., 2020). The authors assigned three
separate evolution stages: 120—65 Ma, 65-45 Ma and 45—
0 Ma. Deformational and magmatic input parameters are
shown in Table 1, which derived from the collected data. The
erosion rate, which is a function of elevation, was tested for
several ranges to fit the observed data. To reduce the crustal
root foundering effect, the authors used a root growing related
number of y=1 (Cao WR and Paterson S, 2016). More detailed
parameters for the model setup are shown in Table 1. The
representative modeling results are shown in Figs. 6, 7.

4.2. Modeling results compared with geological observations

The best fit models are identical with the geological
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Table 1. Parameters used in the simulation experiments.

Qiangtang terrane

Start-end age/Ma 120-65 65-45 45-0 Hoq =48 km (initial crustal thickness of the Qiangtang terrane); /o =2

Duration/Ma 55 20 45 km (initial elevation of the Qiangtang terrane)

B 0.001 0.001 0.01

£ 0.40 0.1 0.1

& 0.66 0.10 0.1 Pe1, density of crust (2.8x10° kg/m®)?; P2, density of crust (2.6 10°

g (Ma) 10 20 30 kg/m’)*; p,, density of lithospheric mantle (3.3x10° kg/m?); p, density

IEI(Ma)b 15 25 35 of continental root (3.5x10° kg/m?)

y 1 1 1

Lhasa terrane

Start-end age/Ma 120-65 65-45 45-0 Hy, =37 km (initial crustal thickness of the Lhasa terrane); /o = 0 km

Duration/Ma 55 20 45 (initial elevation of the Lhasa terrane)

B 0.02 0.08 0.01

B! 0.02 0.08 0.17°

£ 0.35 0.2 0.1 . 5 3 . . .

c 0.54 025 o1 P, density of crust (2.8x10° kg/m”); p,,, density of lithospheric mantle
! ’ ’ ’ (3.3x10° kg/m); Py, density of continental root (3.5% 10° kg/m®)

g Ma 10 15 35

y 1 1 1

Notes: a—p,_., for crust density of the Qiangtang terrane represents the replacement of the crust after thermal expansion when using p ,. b-When decreasing the
crustal density, the responding elevation increases. Hence, it uses larger 1 to decrease the erosion rate when fitting with the geological observation. c-To
achieve a thicker crustal thickness, we simply increase the magmatic input rate; however, this does not indicate magmatic input.

observations and reveal several important crustal thickening
processes for the Lhasa and Qiangtang terranes (Figs. 2, 6, 7).
For a range of reasonable input conditions, the authors found
that observed tectonic shortening alone can achieve modern
crustal thickness for the Qiangtang terrane (Fig. 6a-1). Hence,
tectonic shortening is the dominant factor in crustal
thickening from the Cretaceous to the Paleocene to form
>60 km thick crust for the Qiangtang terrane (Figs. 2d, e).
Modern Qiangtang crustal thickness is ca. 62 km (Gao R et
al., 2013). The crustal thickening curve also coincides well
with the (La/YD), results (Fig. 2d).

However, the elevation of the Qiangtang terrane is
approximately 4 km high in the Set 1 model, which does not
fit the modern elevation (ca. 5 km) (Xu Q et al., 2013; Fig. 6a-
3). One possible cause for this is that due to the asthenosphere
upwelling beneath the Qiangtang terrane probably decrease
crust density by thermal expansion (Hyndman RD and Currie
CA, 2011). In this model, the authors decrease the crustal
density from 2.8 kg/m® to 2.6 kg/m® and maintain the other
parameters, which raises the modeled Qiangtang elevation
close to the modern elevation (Figs. 6b-3, 2e). Early crustal
shortening enhances the erosion rate, but the erosion rate
decreases during the late crustal shortening stage, which is
probably due to intermountain sedimentation (Fig. 2f;
Tapponnier P et al., 2001). In this model, the authors reduce
the erosion rate and set it to be similar to the documented
numbers (Fig. 6b-4).

According to geological observations (Fig. 2a), the
simulations suggest that the Lhasa terrane increased crustal
thickness together with the Qiangtang terrane due to tectonic
shortening (Fig. 7a-1) from 120 Ma to 65 Ma. However, the
second significant phase of crustal thickening and elevation
increased due to magmatic input from 65 Ma to 45 Ma (Fig. 2¢),

during which the crustal thickness increased from ca. 53 km
to ca. 65 km and the elevation increased from ca. 2 km to >4 km
during ca. 20 Ma (Figs. 7a-1, a-3). Here, because our
observed magmatic input rates were at a minimum, the
authors used a larger magmatic flux rate than the observed
magmatic flux rate to obtain a reasonable crustal thickness
(Fig. 2c; Table 1). During the last stage, the Set 3 simulation
predicted that the thickness of the Lhasa crust was ca. 65 km
(Fig. 7a-2) which is much thinner than it’s real thickness
(Fig. 2d; Gao R et al., 2013). For achieving a >75 km crustal
thickness, the model need additional ca. 10 km thickness
(Fig. 7b-1). The authors prefer that this additional crust
thickening was caused by the Indian plate underthrust beneath
the Lhasa terrane (Gao R et al., 2017). In this model, the
authors add additional crustal thickness by allowing a specific
amount of magma input for achieving the Indian crust
underthrusting (Figs. 7b-1, b-4).

The ca. 4 km elevation at the Paleocene from the
modeling results was similar with the published elevation
estimate (Fig. 2e; Ding L et al, 2014). Paleoelevation
estimated for the Eocene to Pliocene Oiyug Basin, Penbo
Basin, Eocene Nianbo Formation, all on Lhasaterrane,is>4.1 km
by at least ca. 30 Ma (Ingalls M et al., 2018). Finally, the
modeled elevation rose to >5.5 km, but induced a relative
faster exhumation rate than the documented data (<0.1 km/Ma)
(Fig. 21).

5. Crustal thickening and elevation rising in the central
Tibetan Plateau

Crustal thickening and a rise in topography are mainly due
to tectonic shortening, magmatic addition, large scale
underthrusting, crustal root delamination or a combination of
these processes (Cao WR and Paterson S, 2016; Chen M et
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al., 2017; DeCelles PG et al., 2002; Jiang HH and Lee C-TA, obtained >60 km thick crust and probably >4 km elevation
2017). during 120-50 Ma (Figs. 2d, ¢). That was because of the crust

of the Qiangtang terrane tectonically shorten ca. 50% during
5.1. Crustal thickening and elevation rising in the Qiangtang 120-50 Ma which was induced by the Lhasa-Qiangtang

terrane collision (Kapp P et al., 2007; Zhao ZB et al., 2020). The
Qiangtang terrane crust continuously shortened and elevated
Isostatic modeling results show that the Qiangtang terrane at a small rate due to the successive convergence of Lhasa-
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40

Qiangtang and a minor magmatic input after 80 Ma (Figs. 2d,
2e; Zhao ZB et al., 2017, 2020).

East-west calc-alkaline and potassium-rich volcanic rocks
developed from 45 Ma to 28 Ma in the Qiangtang terrane,
which were related to lithospheric thinning (Ding L et al.,
2007; Chung SL et al., 2005), which might be accompanied
by a large amount of mafic intrusion that will lead to thermal

Zhao et al. / China Geology 1 (2021) 32—43

expansion of the Qiangtang crust, and further increasing
elevation (Fig. 6b; Hyndman RD and Currie CA, 2011).
Actually, the negative P-wave velocity beneath the Qiangtang
terrane was usually interpreted as a thin and delaminated
lithospheric mantle that was replaced by a hot asthenosphere
since 35 Ma, which lead to the final uplift of the central
Tibetan Plateau (Chen M et al., 2017; Molnar P et al, 1993).
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Fig. 7. Results of Set 3—4 simulations. a-1 and b-1 represent crustal thickness; a-2 and b-2 represent total thickness, here, total thickness is
equal to crustal thickness plus crustal root thickness; a-3 and b-3 represent simulated elevation; and a-4 and b-4 represent the magmatic thicken-
ing rates and erosion rates. The Set 3 model does not consider the underthrusting of the Indian Plate beneath the Lhasa terrane. Set 4 is the best
fit simulation for the Lhasa terrane after adding an additional ca. 10 km crustal thickness.
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5.2. Crustal thickening and elevation rising in the Lhasa
terrane

In this model, the Lhasa terrane crust was thickened
during 120-65 Ma, 6545 Ma and 45-0 Ma, thus
corresponding elevation raised from sea level to ca. 2 km at
65 Ma, to ca. 4 km at 45 Ma and >5 km since 25 Ma (Figs.
2d, e). Using geological constrains, the authors discussed
these stages separately.

Stage 1: The Late Cretaceous crustal thickening of the
Lhasa terrane was due to the Lhasa-Qiangtang collision
induced by tectonic shortening (Murphy M et al., 1997), or
this crustal thickening stage was likely related to the oceanic
subduction of the Neotethys (Ding L et al., 2014; Lai W et al.,
2019). Basin inversion and regional compression initiated
during deposition of the uppermost Shexing strata (ca. 96
Ma), as indicated by active thrust faults and widespread
accumulation of syntectonic conglomerates in the western part
of the Lhasa block (Wang JG et al., 2020). Detrital zircons
separated from modern river sands in the Gangdese belt,
Lhasa terrane, reveal that the Lhasa crust has thicken to 60—
70 km since the Cretaceous (Tang M et al., 2020).

Stage 2: The Lhasa terrane experienced strong magmatic
input during 6545 Ma, which led to the crustal thickening
coeval with the rising elevation (Ma XX et al., 2021; Zhu DC
et al., 2017). The 65-45 Ma intensive magmatism was caused
by a rollback and consequential break-off of the subducted
Neotethyan lithosphere, which represented the transition from
oceanic to continental subduction (Huang et al., 2017). During
65-45 Ma, the crust of the Lhasa terrane thickened rapidly
from 50 km to 65 km due to magmatic input (Fig. 2d; Ma XX
et al., 2021; Tang M et al., 2020; Zhu DC et al., 2017). The
ca. 40 Ma adakitic magmatism on the south Lhasa terrane
suggested that the Lhasa crust was already thickened to ca.
65 km (Guan Q et al., 2012).

Stage 3: In this model, the Lhasa terrane needs an
additional ca. 10 km thickness after 45 Ma to obtain >75 km
crust (Fig. 7b). Due to there were weak deformation and
magma records (Figs. 2a, b), here, the Indian Plate
underthrusting was proposed to explain additional crustal
thickening and the elevation rising (Figs. 7b-1, b-3). The
crustal thickness increase after 45 Ma was attributed to
underthrusting of the Indian Plate (Styron R et al., 2015). The
ca. 15 km thick Indian crust possibly retained its strength as it
underthrusted beneath the Tibetan Plateau (Copley A et al,
2011; Gao R et al., 2017; Freymueller JT, 2011). In addition,
the India-Asia convergence rate dramatically decreased from
ca. 16 cm/a at approximately 50 Ma to ca. 5 cm/a at
approximately 35 Ma (van Hinsbergen DJJ et al., 2011),
which has normally been suggested to be related to the
resistance of the Indian Plate underthrusting (Yakovlev PV
and Clark MK, 2014). After the underthrusting, the crustal
thickness and paleoelevation of the Lhasa terrane exceeded
the Qiangtang terrane (Figs. 2d, ¢). The underthrusting was
followed by the foundering of thickened crustal root in the
Lhasa and Qiangtang terranes (Chen M et al., 2017; Razi AS

etal., 2016).

After 30 Ma, both the Lhasa and Qiangtang terranes
continued to thicken with a small tectonic shortening rate
(<10%) (Fig. 2a; Yin A et al, 1999). Meanwhile, the
Himalayas began to increase in elevation, and the plateau
propagated towards both northern and southern Tibetan
Plateau (Ding L et al., 2017).

Though constraints on elevation and erosion rate were too
scattered to reconstruct continuous histories of the Qiangtang
and Lhasa terranes, the collected data indicate that the high
elevation did not enhance the erosion rate in the central
Tibetan Plateau, which was probably due to intermontane
drainage (Figs. 2e, f). This may have a profound influence on
climate change during the Tibetan Plateau formation (Chen J
et al., 2013; Garzione CN, 2008; Molnar P et al., 2010), or
vice versa (van der Beek P, 2016).

6. Conclusion

Using the available published and newly estimated data,
the authors affirmed a strong coupling between crustal
thickening and elevation obtained in the central Tibetan
Plateau since 120 Ma. Hence, the Tibetan Plateau was most
likely built as a consequence of isostatic equilibrium from its
over-thickened crust.

Based on the one-dimensional isostatic modeling results,
the authors concluded that the Qiangtang Plateau was formed
mainly by tectonic shortening induced by crustal thickening
and a slow erosion rate. However, several processes have
collaborated to reconstruct the Lhasa Plateau under different
geological backgrounds, including the Qiangtang-Lhasa
continental collision during 120-65 Ma, the large magmatic
input during 6545 Ma, and underthrusting of the Indian crust
beneath the Lhasa terrane after 30 Ma. The authors also
showed that significant crustal thickening triggered central
Tibetan Plateau uplift and reduced long-term erosion after the
India-Asia collision.
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