Citation: | De Pesquidoux I Tchaptchet Tchato, Jacqueline Tchakounte, Aurélie Ngamy Kamwa, Jean Pierre Tchouankoue, Soumyajit Mukherjee, 2021. Geometry and kinematics of brittle deformation in the Central Cameroon Shear Zone (Kékem area): Implication for gold exploration within the Central Africa Fold Belt in Cameroon, China Geology, 4, 245-255. doi: 10.31035/cg2020058 |
The Central Africa Fold Belt (CAFB) is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years. However, favorable areas for gold exploration are poorly known. This paper presents (1) the kinematics of the brittle deformation in the Kékem area in the SW portion of the Central Cameroon Shear Zone and (2) constraints gold mineralization events with respect to the collisional evolution of the CAFB. The authors interpret that the conjugate ENE to E and NNW to NW trending lineament corresponds to the synthetic (R) and the antithetic (R’) shears, which accompanied the dextral slip along the NE to ENE striking shear. The latter coincides with the last 570–552 Ma D3 dextral simple shear-dominated transpression, which is parallel to the Bétaré Oya shear zone hosting gold deposits. Gold mineralizations, which mainly occurred during the last dextral shearing, are disseminated within quartz veins associated to Riedel’s previous structures reactivated due to late collisional activities of the CAFB as brittle deformation. Gold mineralizations occurred mainly during the 570–552 Ma D3 event. The reactivation, which might be due to dextral simple shear during mylonitzation, plausibly remobilized the early gold deposits hosted in syn-compressional rocks and/or possibly focused deep-sourced fluid mixed with those released by dehydration. Therefore, the Central Cameroon Shear Zone where Kékem is located, and which shows similar petrographical and structural features to those controling Batouri gold district, is a target area for gold exploration in Cameroon.
Ahlgren SG. 2001. The nucleation and evolution in Riedel shear zones as deformation bands in porous sandstone. Journal of Structural Geology, 23(8), 1203–1214. doi: 10.1016/S0191-8141(00)00183-8. |
Akam JM, Mvondo OJ, Assatse TW, Owona S, Olinga JB, Messi OEJ, Ntomba S. 2014. Apport des images landsat 7 ETM+ à l’étude structurale du socle archéen de Sangmélima (Sud-Cameroun). Revue Française de Photogrammétrie et de Télédétection, 206, 15 –25 (in French with English abstract). doi: 10.52638/rfpt.2014.119. |
Arau′jo CNM, Vasconcelos MP, da Silva FCA, de Sá EFJ, Sá JM. 2005. 40Ar/39Ar geochronology of gold mineralization in Brasiliano strike-slip shear zones in the Borborema province, NE Brazil. Journal of South American Earth Sciences, 19(4), 445–460. doi: 10.1016/j.jsames.2005.06.009. |
Araújo FJOD, Kuyumjian RM. 2000. Structurally-controlled gold occurrences in the southern Brasília fold-thrust belt of central and SE-goiás. Revista Brasileira de geociencias, 30(2), 289–292. doi: 10.25249/0375-7536.2000302289292. |
Archanjo CJ, Viegas LGF, Hollanda MHBM, Souya CL, Liu D. 2013. Timing of the HT/LP transpression in the Neoproterozoicserido Belt (Borborema Province, Brazil): Constraints from U-Pb (SHRIMP) geochronology and implications for the connections between NE Brazil and West Africa. Gondwana Research, 23(2), 701–714. doi: 10.1016/j.gr.2012.05.005. |
Asaah VA, Zoheir B, Lehmann B, Frei D, Burgess R, Suh EC. 2014. Geochemistry and geochronology of the – 620 Ma gold-associated Batouri granitoids, Cameroon. International Geology Review, 57(11–12), 1485–1509. |
Bella Nké BE, Njanko T, Mamtani MA, Njonfang E, Rochette P. 2018. Kinematic evolution of the Mbakop Pan-African granitoids (western Cameroon–Domain): An integrated AMS and EBSD approach. Journal of Structural Geology, 111, 42–63. doi: 10.1016/j.jsg.2018.03.006. |
Bierlein PF, Groves ID, Goldfarb JR, Dubé B. 2006. Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits. Mineralium Deposita, 40, 874–886. doi: 10.1007/s00126-005-0046-2. |
Bouyo MH, Penaye J, Barbey P, Toteu SF, Wandji P. 2013. Petrology of high pressure granulite facies metampelites and metabasites from Tcholliré and Banyo regions: Geodynamic implication for the central African fold belt (CAFB) of noth-central Cameroon. Precambrian Research, 224, 412–413. doi: 10.1016/j.precamres.2012.09.025. |
Bouyo MH, Zhao Y, Penaye J, Zhang SH, Njel UO. 2015. Neoproterozoic subduction-related metavolcanic and metasedimentary rocks from the Rey Bouba Greenstone Belt of north-central Cameroon in the Central African Fold Belt: New insights into a continental arc geodynamic setting. Precambrian Research, 261, 40–53. doi: 10.1016/j.precamres.2015.01.012. |
Caby R. 1989. Precambrian terranes of Benin-Nigeria and Northeast Brazil and the late Paleogeographical reconstruction of the Pan-African / Brasiliano orogen: Closure of an oceanic domain of intracontiental convergence between major blocks. Precambrian Research, 69, 327–344. |
Dasgupta S, Mukherjee S. 2019. Remote sensing in lineament identification: Examples from western India, In: Billi A, Fagereng A. (eds.) Problems and Solutions in Structural Geology and Tectonics. Developments in Structural Geology and Tectonics book series, Series Editor: Mukherjee S, Elsevier. |
Davis GH, Bnmp AP, Garcia PE, Ahlgren SG. 2000. Conjugate Riedel deformation band shear zones. Journal of Structural Geology, 22(2), 169–190. doi: 10.1016/S0191-8141(99)00140-6. |
Dumort JC. 1968. Notice explicative de la carte géologique de reconnaissance du Cameroun au 1/500000. Feuille Douala Ouest. Direction des Mines et Géologie du Cameroun. 69 pp. (in French) |
Ganwa AA, Frisch W, Mvondo OJ, Njom B. 2007. Relationships between the parameters of geomorphology and structural features in the Pan-African fold belt of Cameroon. Example of Kombé II-Mayabo Area. Journal of Engineering and Applied Sciences, 2(2), 336–341. |
Ganwa AA, Klotzli UST, Hauzenberger C. 2016. Evidence for Archean inheritance in the pre-Pan-African crust of Central Cameroon: Insight from zircon internal structure and LA-MCICP-MS U-Pb ages. Journal of African Earth Sciences, 120, 12–22. doi: 10.1016/j. jafrearsci.2016.04.013. |
Groves DI, Goldfarb JR, Gebre-Mariam M, Hagemann SG, Robert F. 1988. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to orther gold deposit types. Ore Geology Reviews, 13(1–5), 7–27. |
Groves DI, Santosh M, Goldfarb JR, Zhang L. 2018. Structural geometry of orogenic gold deposits: Implications for exploration of world class and giant deposits. Geoscience Frontiers, 9(4), 1163–1177. doi: 10.1016/j.gsf.2018.01.006. |
Kankeu B, Greiling RO, Nzenti JP. 2009. Pan-African strike–slip tectonics in eastern Cameroon-Magnetic fabrics (AMS) and structure in the Lom basin and its gneissic basement. Precambrian Research, 174(3–4), 258–272. doi: 10.1016/j.precamres.2009.08.001. |
Kwekam M, Affaton P, Bruguier O, Liégeois JP, Harmann G, Njonfang E. 2013. The Pan-african Kékem gabbro-norite (West-cameroon), U-Pb zircon age, geochemistry and Sr-Nd isotopes: Geodyanamic implication for the evolution of the central African fold belt. Journal of African Earth Sciences, 84, 70–88. doi: 10.1016/j.jafrearsci.2013.03.010. |
Li XH, Chen Y, Tchouankoué JP, Liu CZ, Li J, Ling XX, Tang GQ, Liu Y. 2017. Improving geochronological framework of the Pan-African orogeny in Cameroon: New SIMS zircon and monazite U-Pb age constraints. Precambrian Research, 294, 307–321. doi: 10.1016/j.precamres.2017.04.006. |
Milési JP, Toteu SF, Deschamps Y, Feybesse JL, Lerouge C, Cocherie A, Penaye J, Tchameni R, Moloto A-Kenguemba G, Kampunzu, HAB, Nicol N, Duguey E, Leistel JM, Saint-Martin M, Ralay F, Heinry C, Bouchot V, Doumnang Mbaigane JC., Kanda Kula V, Chene F, Monthel J, Boutin P, and Cailteux J. 2006. An overview of the geology and major ore deposits of Central Africa: Explanatory note for the 1:4000000 map ‘Geology and major ore deposits of Central Africa’. Journal of African Earth Sciences, 44, 571–595. doi: 10.1016/j.jafrearsci.2005.10.016. |
Misra AA, Bhattacharya G, Mukherjee S, Bose N. 2014. Near N-S paleo-extension in the western Deccan region in India: Does it link strike-slip tectonics with India-Seychelles rifting? International Journal of Earth Sciences, 103, 1645–1680. doi: 10.1007/s00531-014-1021-x. |
Misra S, Mandal N, Chakraborty C. 2009. Formation of Riedel shear fractures in granular materials: Findings from analogue shear experiments and theoretical analyses. Tectonophysics, 471(3–4), 253–259. |
Mukherjee S. 2013. Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. International Journal of Earth Sciences, 102, 1811–1835. doi: 10.1007/s00531-012-0806-z. |
Mukherjee S, Khonsari MM. 2018. Inter-book normal fault-related shear heating in brittle bookshelf faults. Marine and Petroleum Geology, 97, 45–48. doi: 10.1016/j.marpetgeo.2018.06.029. |
Mvondo H, den Brok SWJ, Ondoa JM. 2003. Evidence of symmetric extension and exhumation of the Yaoundé nappe (Pan-African fold belt, Cameroon). Journal of African Earth Sciences, 36(3), 215–231. doi: 10.1016/S0899-5362(03)00017-4. |
Mvondo H, Owona S, Ondoa JM, Essono J. 2007. Tectonic evolution of the Yaoundé segment of the Neoproterozoic Central African Orogenic Belt in southern Cameroon. Canadian Journal of Earth Sciences, 44(4), 433–444. doi: 10.1139/e06-107. |
Neawsuparp K, Charusiri P. 2004. Lineaments analysis determined from Landsat Data: Implication for tectonic features and mineral occurrences in Northern Loei Area, NE Thailand. Science Asia, 30, 269–278. doi: 10.2306/scienceasia1513-1874.2004.30.269. |
Ngako V, Njonfang E. 2011. Plates Amalgamation and Plate Destruction, the Western Gondwana History. In: Closson D (ed.). Tectonics. United Kingdom, INTECH, 358. |
Ngako V, Affaton P, Njonfang E. 2008. Pan-African tectonics in northern Cameroun: Implication for the history of western Gondwana. Gondwana Research, 14(3), 509–522. doi: 10.1016/j.gr.2008.02.002. |
Ngako V, Jégouzo P, Nzenti JP. 1991. Le Cisaillement Centre Camerounais. Rôle structural et géodynamique dans l'orogenèse panafricaine. Comptes Rendus de l'Académie des Sciences, 313, 457–463 (in French with English abstract). |
Ngamy KA, Owona S, Tchakounté JN, Mvondo Ondoa J. 2016. Fabriques en aplatissement et constriction des granitoïdes de Nga Mbappé et de Yoro au nord du Groupe de Yaoundé (CPNE, Cameroun): témoins de la mise en place de granites syn-tectoniques au cours de l’orogénèse Pan-Africaine. Journal of Comunicações Geológicas, 103, 1, 5–16. |
Njome MS, Suh CE. 2005. Tectonic evolution of the Tombel graben basement, southwestern Cameroon. Episodes, 28(1), 37–41. doi: 10.18814/epiiugs/2005/v28i1/004. |
Njonfang E, Ngako V, Moreau C, Affaton P, Diot E. 2008. Restraining bends in high temperature shear zones: The Central Cameroon Shear Zone, central Africa. Journal of African Earth Sciences, 52(1–2), 9–20. doi: 10.1016/j.jafrearsci.2008.03.002. |
Noutchogwé TC, Koumetio F, Manguelle-Dicoum E. 2010. Structural features of South –Adamawa (Cameroon) inferred from magnetic anomalies: Hydrogeological implications. Compte Rendus Geoscience, 342(6), 467–474. doi: 10.1016/j.crte.2010.03.004. |
Owona S, Schulz B, Ratschbacher L, Mvondo OJ, Ekodeck G-E, Tchoua MF, Affaton P. 2010. Pan-African metamorphic event in the southern Yaoundé Group (Oubanguide Complex, Cameroon) as revealed by EMP-monazite and thermobarometry of garnet metapelites. Journal of African Earth Sciences, 59, 125–139. |
Passchier CW, Trouw RAJ. 2005. Microtectonics, 2nd edition. Berlin, Springer-Verlag, Heidelberg. |
Penaye J, Toteu SF, Tchameni R, Van Schmus WR, Tchakounté J, Ganwa A, Miyem D, Nsifa EN. 2004. The 2.1 Ga west Central African Belt in Cameroon: Extension and evolution. Journal of African Earth Sciences, 39(3–5), 159–64. doi: 10.1016/j.jafrearsci.2004.07.053. |
Penaye J, Toteu SF, Van Schmus WR, Nzenti JP. 1993. U-Pb and Sm-Nd preliminary geochronologic data on the Yaoundé series, Cameroon: Re-interpretation of the granulitic rocks as the suture of a collision in the Central african belt. Comptes Rendus de l’Académie des Sciences Paris, 317, 789–94. |
Schreurs G, Colleta B. 1998. Analogue modelling of faulting in zones of continental transpression and transtension. In: Holdsworth RE, Strachn RA, Dewey JF (eds) Continental Transpressional and Transtensional Tectonics.Geological Society, London, Special Publications, 135, 59–79. |
Silva FW, Rosière AC, Buhn B. 2018. The shear zone-related gold mineralization at the Turmalina deposit, Quadrilatero Ferrifero, Brazil: Structural evolution and the two stages of mineralization. Mineralium Deposita, 54, 347–368. doi: https://doi.org/10.1007/s00126-018-0811-7. |
Simeni NAW, Tchaptchet TD, Ngo Belnoun RN, Tchouankoue JP, Ganwa AA. 2017. Structural relationship between brittle deformation and Paleozoic to Mesozoic basalt dykes in the Precambrian basement of the southern continental part of the Cameroon Volcanic Line. International Journal of Geoscience, 8(3), 318–331. doi: 10.4236/ijg.2017.83016. |
Som Mbang MC, Basseka AC, Kamguia J, Etamè J, Tchoukeu NDC, Mouzong PM. 2018. Mapping of deep tectonic structures of central and southern Cameroon by an interpretation of surface and satellite magnetic data. International Journal of Geophysics, 5845670. doi: https://doi.org/10.1155/2018/5845670. |
Stendal H, Toteu SF, Frei R, Penaye J, Njel UO, Bassahak J, Nni J, Kankeu B, Ngako V, Hell JV. 2006. Derivation of detrital rutile in the Yaounde region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa). Journal of African Earth Sciences, 44(4–5), 443–458. doi: 10.1016/j.jafrearsci.2005.11.012. |
Suh CE, Lehmann B, Mafany TG. 2006. Geology and geochemical aspects of the lode gold mineralization at Dimako-Mboscorro, SE Cameroon. Geochemistry: Exploration, Environment, Analysis, 6(4), 295–309. doi: 10.1144/1467-7873/06-110. |
Takodjou WJD, Ganno S, Afahnwie NA, Nomo NE, Mvondo OJ, Nzenti JP. 2016. Use of Landsat 7 ETM+Data for the geological structure interpretation: Case study of the Ngoura-Colomines Area, Eastern Cameroon. Journal of Geosciences and Geomatics, 4(3), 61–72. |
Tchameni R, Doumnang JC, Deudibaye M, Branquet Y. 2013. On the occurrence of gold mineralization in the Pala Neoproterozoic formations, South-Western Chad. Journal of African Earth Sciences, 84, 36–46. doi: 10.1016/j.jafrearsci.2013.03.002. |
Tchaptchet TD, Schulz B, Nzenti JP. 2009. Electron microprobe monazite dating and thermobarometriy of the Neoproterozoic metamorphic events in the Kékem area, central Africa fold of Cameroon. Neues Jahrbuch für Mineralogie Abhandlungen, 186(1), 95–109. |
Tchaptchet TD, 2011. Geology of the Kékem area (Cameroon central domain): Metaamorphic petrology, P-T-t path, EMP (monazite), LA-ICPMS (zircon) dating and implications for the geodynamic evolution of the Pan-African North Equatorial fold belt. Université de Yaoundé I, Thèse doctorat PhD, Yaoundé 109 pages. |
Tchaptchet TD, Wambo NAS, Kouamo NAK, Tchouankoué JP, Cucciniello C. 2017. Geology, mineralogy and geochemistry of the Kékem dyke swarm (Western Cameroon): Insights into Paleozoic–Mesozoic magmatism and geodynamic implications. Comptes Rendus Geoscience, 349(4), 175–85. doi: 10.1016/j.crte.2017.02.005. |
Tcheumenak Kouémo J, Njanko T, Kwékam M, Naba S, Nké BEB, Sandjo AFY, Fozing EM, Njonfang E. 2014. Kinematic evolution of the Fodjomekwet-Fotouni Shear Zone (West-Cameroon): Implications for emplacement of the Fomopéa and Bandja plutons. Journal of African Earth Sciences, 99, 261–275. doi: 10.1016/j.jafrearsci.2014.07.018. |
Tchuimegnie Ngongang NB, Kamgang P, Chazot G, Agranier A, Bellon H, Nonnotte P. 2015. Age, geochemical characteristics and petrogenesis of Cenozoic intraplate alkaline volcanic rocks in the Bafang region, West Cameroon. Journal of African Earth Sciences, 102, 218–232. doi: 10.1016/j.jafrearsci.2014.10.011. |
Tchakounté J, Eglinger A, Toteu SF, Zeh A, Nkoumbou C, Mvondo-Ondoa J, Penaye J, de Wit M, Barbey P. 2017. The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic Belt (Bafia area, Cameroon). Precambrian Research, 299, 210–229. |
Tchakounté J. 2020. Tectonique, Géochronologie et Pétrogenèse du massif de Bapé et de son encaissant (Bafia, Centre-Cameroun): implications géodynamiques pour l’evolution crustale de la bordure sud du bloc Adamaoua-Yadé. Université de Yaoundé I, Thèse doctorat/PhD, Yaoundé, 215 pages. |
Tomkins GA. 2013. On the source of orogenic gold. Geology, 41(12), 1255–1256. doi: 10.1130/focus122013.1. |
Toteu SF, Penaye J, Djomani YP. 2004. Geodynamic evolution of the Pan-African belt in Central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 41(1), 73–85. doi: 10.1139/e03-079. |
Toteu SF, van Schumus WR, Penaye J, Michard A. 2001. New U-Pb and Sm-Nd data from North-Central Cameroon and its bearing on the pre-pan African history of Central Africa. Precambrian Research, 108(1–2), 45–73. |
Toteu SF, Penaye J, Deloule E, van Schmus WR, Tchameni R. 2006. Diachronous evolution of Volcano –sedimentary basins north of the Congo Craton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé Groups (Cameroon). Journal of African Earth Sciences, 44(4–5), 428–442. |
Vishiti A, Suh CE, Lehmann B, Shemang EM, Lionel N, Ngome J, Nshanji NJ, Chinjo FE, Mongwe OY, Petersen S. 2017. Mineral chemistry, bulk rock geochemistry, and S‐isotope signature of lode‐gold mineralization in the Bétaré Oya gold district, south‐east Cameroon. Geological Journal, 53(6), 2579–2596. |
Vishiti A, Etame J and Suh CE. 2019. Features of gold bearing quartz veins in an artisanal mining–dominated terrain, Batouri gold district, Eastern region of Cameroon. Episodes, 42(3), 199–212. doi: 10.18814/epiiugs/2019/019016. |
Zhu J, Li Z, Lin G, Zeng Q, Zhou Y, Yi J, Gong G, Chen G. 2014. Numerical simulation of mylonitization and structural controls on fluid flow and mineralization of the Hetai gold deposit, west Guangdong, China. Geofluids, 14, 221–233. doi: 10.1111/gfl.12069. |
a–Pan-African shear zone network in pre-Mesozoic reconstruction (after Caby R, 1989). SZ = Shear Zone: C = Cameroon area. b–Pan-African structural map of Cameroon from Njonfang E et al. (2008) and location of the study area. 1–Quaternary sediments; 2–Cameroon Line volcanism; 3–Cameroon Line plutonism; 4–Mesozoic sediments (Benue through); 5–Late syntectonic sub-alkaline granitoids; 6–Lom syntectonic basin (meta-sediments, conglomerates, volcanic ashes and lavas); 7–Western Cameroon Domain (WCD: Early syntectonic basic to intermediate calc-alkaline intrusions, 660–600 Ma); 8a–Poli Group (active margin Neoproterozoic supracrustal and juvenile intrusions); 8b–Yaounde Group (intracratonic deposits); 9–Massenya-Ounianga gravity highs (10–30 mGal); 10–Adamawa-Yadé and Nyong Paleoproterozoic remnants; 11–craton and inferred craton; 12–S2 foliation and L2 lineation trends; 13–F2 upright and overturned antiforms; 14–syn-D2 main frontal thrust zone; 15–syn-D1 thrust zone (separates the LP to MPzone in the North from the HP zone in South); 16–syn-D3 sense of shear movement; 17–syn-D2 sense of shear movement. Large grey arrow:syn-D1-3 regional main stress direction. Thick lines- shear zones (SZ): BSZ–Balché SZ; BNMB = Buffle Noir - Mayo Baléo SZ; CCSZ–Central Cameroon SZ; GGSZ– Godé - Gormaya SZ; MNSZ–Mayo Nolti SZ; RLSZ–Rocher du Loup SZ; SSZ–Sanaga SZ; Ma–Magha; Wa–Wakaa. Small squares: BA–Bandja complex.
Sketch of the geological map of the study area, extracted from Dumort JC (1968).
Topographic map of the studied area with lineament identified from hydrographic network. This figure is generated from the SRTM DEM. Alternately, hillshade data derived from DEM may also be used.
Digital elevation model from the Shutter Radar TopographyMission (SRTM) with identified lineaments. Black curved lines show curved foliations.
Lineaments map from the hydrographic network and the SRTM image: Notice that red colored fractures are from hydrographic network and dark colored fractures from SRTM.
Synthetic lineaments map from the hydrographic network (a) and the SRTM image (b). Only regional lineaments selected.
Field photograghs of faults associated to N40°E to N50°E shear zones. Location of snaps for the below sub-figures are indicated in Fig. 5.
Stress regime and shear planes in the study area. This is also as per Passchier CW and Trouw RAJ (2005).