2020 Vol. 3, No. 2
Article Contents

Anas A. Karimov, Marina A. Gornova, Vasiliy A. Belyaev, Aleksander Ya. Medvedev, Nikolay V. Bryanskiy, 2020. Genesis of pyroxenite veins in supra-subduction zone peridotites: Evidence from petrography and mineral composition of Egiingol massif (Northern Mongolia), China Geology, 3, 299-313. doi: 10.31035/cg2020035
Citation: Anas A. Karimov, Marina A. Gornova, Vasiliy A. Belyaev, Aleksander Ya. Medvedev, Nikolay V. Bryanskiy, 2020. Genesis of pyroxenite veins in supra-subduction zone peridotites: Evidence from petrography and mineral composition of Egiingol massif (Northern Mongolia), China Geology, 3, 299-313. doi: 10.31035/cg2020035

Genesis of pyroxenite veins in supra-subduction zone peridotites: Evidence from petrography and mineral composition of Egiingol massif (Northern Mongolia)

More Information
  • Swarms of orthopyroxenite and websterite veins are found within Egiingol residual SSZ peridotite massif of Dzhida terrain (Central Asian Orogenic Belt, Northern Mongolia). The process of Egiingol pyroxenite veins formation is investigated using new major and trace element analyses of pyroxenite minerals, calculations of closure temperatures and composition of equilibrium melt. The pyroxenites show abundant petrographic and geochemical evidence for replacement of the residual peridotite minerals by ortho- and clinopyroxene due to melt-rock interaction. Relics of peridotite olivines are found in pyroxenites, Cr# of spinel increases from peridotites to pyroxenites, and compositions of ortho- and clinopyroxene change from peridotite to pyroxenite. The authors show that calculated equilibrium melts for investigated pyroxenites are very similar to compositions of boninite lavas from the Dzhida terrain. Therefore, formation of pyroxenite veins most likely resulted from percolation of boninite melts through the Egiingol peridotites. Orthopyroxenite veins formed at first, followed by websterite veins. Thus, the authors assume that pyroxenite veins represent the channels for boninitic melts migration in supra-subduction environment.

  • 加载中
  • [1] Akizawa N, Ozawa K, Tamura A, Michibayashi K, Arai S. 2016. Three-dimensional evolution of melting, heat and melt transfer in ascending mantle beneath a fast-spreading ridge segment constrained by trace elements in clinopyroxene from concordant dunites and host harzburgites of the Oman Ophiolite. Journal of Petrology, 57(4), 777–814. doi: 10.1093/petrology/egw020

    CrossRef Google Scholar

    [2] Almukhamedov AI, Gordienko IV, Kuzmin MI, Tomurhuu D, Tomurtogoo O. 2001. Boninites from the Caledonian Dzhida zone, northern Mongolia. Doklady Earth Sciences, 377(3), 333–336.

    Google Scholar

    [3] Almukhamedov AI, Gordienko IV, Kuzmin MI, Tomurtogoo O, Tomurhuu D. 1996. Dzhida zone – fragment of Paleo Asian Ocean. Geotectonics, 4, 25–42.

    Google Scholar

    [4] Arai S. 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chemical Geology, 113(3–4), 191–204. doi: 10.1016/0009-2541(94)90066-3

    CrossRef Google Scholar

    [5] Arai S, Miura M. 2016. Formation and modification of chromitites in the mantle. Lithos, 264, 277–295. doi: 10.1016/j.lithos.2016.08.039

    CrossRef Google Scholar

    [6] Barth MG, Rudnick RL, Horn I, McDonough WF, Spicuzza MJ, Valley JW, Haggerty SE. 2001. Geochemistry of xenolithic eclogites from West Africa, part I: A link between low MgO eclogites and archean crust formation. Geochimica et Cosmochimica Acta, 65(9), 1499–1527. doi: 10.1016/S0016-7037(00)00626-8

    CrossRef Google Scholar

    [7] Batanova VG, Belousov IA, Savelieva GN, Sobolev AV. 2011. Consequences of channelized and diffuse melt transport in supra-subduction zone mantle: Evidence from the Voykar Ophiolite (Polar Urals). Journal of Petrology, 52(12), 2483–2521. doi: 10.1093/petrology/egr053

    CrossRef Google Scholar

    [8] Bénard A, Arculus RJ, Nebel O, Ionov DA, McAlpine SRB. 2017. Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas. Geochimica et Cosmochimica Acta, 199, 287–303. doi: 10.1016/j.gca.2016.09.030

    CrossRef Google Scholar

    [9] Bénard A, Ionov DA. 2012. A new petrogenetic model for low-Ca boninites: evidence from veined sub-arc xenoliths on melt-mantle interaction and melt fractionation. Geochemistry Geophysics Geosystems, 13(6), Q0AF05. doi: 10.1029/2012GC004145

    CrossRef Google Scholar

    [10] Bénard A, Le Losq C, Nebel O, Arculus RJ. 2018. Low-Ca boninite formation by second-stage melting of spinel harzburgite residues at mature subduction zones: New evidence from veined mantle xenoliths from the West Bismarck Arc. Contributions to Mineralogy and Petrology, 173(12), 105. doi: 10.1007/s00410-018-1526-6

    CrossRef Google Scholar

    [11] Bénard A, Nebel O, Ionov DA, Arculus RJ, Shimizu N, Métrich N. 2016. Primary silica-rich picrite and high-Ca boninite melt inclusions in pyroxenite veins from the Kamchatka sub-arc mantle. Journal of Petrology, 57(10), 1955–1982. doi: 10.1093/petrology/egw066

    CrossRef Google Scholar

    [12] Bodinier JL, Garrido CJ, Chanefo I, Bruguier O, Gervilla F. 2008. Origin of pyroxenite-peridotite veined mantle by refertilization reactions: Evidence from the Ronda peridotite (Southern Spain). Journal of Petrology, 49(5), 999–1025. doi: 10.1093/petrology/egn014

    CrossRef Google Scholar

    [13] Borghini G, Rampone E, Zanetti A, Class C, Cipriani A, Hofmann AW, Goldstein SL. 2013. Meter-scale Nd isotopic heterogeneity in pyroxenite-bearing Ligurian peridotites encompasses global-scale upper mantle variability. Geology, 41(10), 1055–1058. doi: 10.1130/G34438.1

    CrossRef Google Scholar

    [14] Bottazzi P, Ottolini L, Vanucci R, Zanetti A. 1994. An accurate procedure for the quantification of rare earth elements in silicates, in: Secondary Ion Mass Spectrometry. Presented at the SIMS IX, Wiley, Yokohama, Japan, 927-930.

    Google Scholar

    [15] Brey GP, Köhler T. 1990. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31(6), 1353–1378. doi: 10.1093/petrology/31.6.1353

    CrossRef Google Scholar

    [16] Cameron WE. 1985. Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contributions to Mineralogy and Petrology, 89(2−3), 239–255. doi: 10.1007/BF00379457

    CrossRef Google Scholar

    [17] Chen L, Tang LM, Li XH, Zhang J, Wang W, Li ZG, Wang H. Wu XC, Chu FY. 2019. Ancient melt depletion and metasomatic history of the subduction zone mantle: Osmium isotope evidence of peridotites from the Yap Trench, Western Pacific. Minerals, 9(12), 717. doi: 10.3390/min9120717

    CrossRef Google Scholar

    [18] Coogan LA, Jenkin GRT, Wilson RN. 2002. Constraining the cooling rate of the lower oceanic crust: A new approach applied to the Oman ophiolite. Earth and Planetary Science Letters, 199(1−2), 127–146. doi: 10.1016/S0012-821X(02)00554-X

    CrossRef Google Scholar

    [19] Dantas C, Ceuleneer G, Gregoire M, Python M, Freydier R, Warren J, Dick HJB. 2007. Pyroxenites from the Southwest Indian Ridge, 9−16 E: Cumulates from incremental melt fractions produced at the top of a cold melting regime. Journal of Petrology, 48(4), 647–660. doi: 10.1093/petrology/egl076

    CrossRef Google Scholar

    [20] Dick HJB, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1), 54–76. doi: 10.1007/BF00373711

    CrossRef Google Scholar

    [21] Dick HJB, Sinton JM. 1979. Compositional layering in alpine peridotites: Evidence for pressure solution creep in the mantle. The Journal of Geology, 87(4), 403–416. doi: 10.1086/628428

    CrossRef Google Scholar

    [22] Dobretsov NL, Buslov MM, Vernikovsky VA. 2003. Neoproterozoic to early ordovician evolution of the Paleo-Asian Ocean: Implications to the break-up of Rodinia. Gondwana Research, 6(2), 143–159. doi: 10.1016/S1342-937X(05)70966-7

    CrossRef Google Scholar

    [23] Downes H. 2007. Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: Ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos, 99(1−2), 1–24. doi: 10.1016/j.lithos.2007.05.006

    CrossRef Google Scholar

    [24] Elbaev AL, Gordienko IV, Bayanova TB, Gorokhovskiy DV, Orsoev DA, Badmatsyrenova RA, Zarubina OV. 2018. U-Pb age and geochemical characteristics of ultramafic-mafic rocks of the dzhida zone ophiolite association (Southwestern Transbaikalia). Doklady Earth Sciences, 478(2), 208–210. doi: 10.1134/S1028334X18020022

    CrossRef Google Scholar

    [25] Frey AF. 1980. The origin of pyroxenites and garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: Trace element evidence. American Journal of Science, 280, 427–449.

    Google Scholar

    [26] Garrido CJ, Bodinier JL. 1999. Diversity of mafic rocks in the Ronda peridotite: Evidence for pervasive melt-rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. Journal of Petrology, 40(5), 729–754. doi: 10.1093/petroj/40.5.729

    CrossRef Google Scholar

    [27] Gordienko IV. 2006. Geodynamic evolution of Late Baikalides and Paleozoids in the folded periphery of the Siberian craton. Russian Geology and Geophysics, 47(1), 51–67.

    Google Scholar

    [28] Gordienko IV, Filimonov AV, Minina OR, Gornova MA, Medvedev AYa, Klimuk VS, Elbaev AL, Tomurtogoo O. 2007. Dzhida island-arc system in the Paleo-Asian Ocean: Structure and main stages of Vendian-Paleozoic geodynamic evolution. Russian Geology and Geophysics, 48(1), 91–106. doi: 10.1016/j.rgg.2006.12.009

    CrossRef Google Scholar

    [29] Gordienko IV, Gorokhovskiy DV, Elbaev AL, Bayanova TB. 2015. New data on the Early Paleozoic gabbroid and granitoid magmatism age within the Dzhida zone of Caledonides (Southwestern Transbaikalia, North Mongolia). Doklady Earth Sciences, 463(2), 817–821. doi: 10.1134/S1028334X15080103

    CrossRef Google Scholar

    [30] Gornova MA, Kuz’min MI, Gordienko IV, Medvedev AY, Almukhamedov AI. 2010. Geochemistry and petrology of Egiingol peridotite assif: Reconstruction of melting environments and interaction with boninite melt. Litosfera, 5, 20–36.

    Google Scholar

    [31] Gornova MA, Kuz’min MI, Gordienko IV, Medvedev AY, Almukhamedov AI. 2008. Specific features of the composition of suprasubduction peridotites with reference to the Egiingol Massif. Doklady Earth Sciences, 421, 782–786. doi: 10.1134/S1028334X08050152

    CrossRef Google Scholar

    [32] Hellebrand E, Snow JE, Dick HJB, Hofmann AW. 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature, 410, 677–681. doi: 10.1038/35070546

    CrossRef Google Scholar

    [33] Jacob D, Jagoutz E, Lowry D, Mattey D, Kudrjavtseva G. 1994. Diamondiferous eclogites from Siberia: Remnants of Archean oceanic crust. Geochimica et Cosmochimica Acta, 58(23), 5191–5207. doi: 10.1016/0016-7037(94)90304-2

    CrossRef Google Scholar

    [34] Johnson KTM, Dick HJB, Shimizu N. 1990. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research, 95(B3), 2661–2678. doi: 10.1029/JB095iB03p02661

    CrossRef Google Scholar

    [35] Ishimaru S, Arai S, Ishida Y, Shiraska M, Okrugin VM. 2006. Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, Southern Kamchatka. Journal of Petrology, 48(2), 395–433. doi: 10.1093/petrology/egl065

    CrossRef Google Scholar

    [36] Kaczmarek MA, Müntener O. 2008. Juxtaposition of Melt Impregnation and High-Temperature Shear Zones in the Upper Mantle; Field and Petrological Constraints from the Lanzo Peridotite (Northern Italy). Journal of Petrology, 49, 2187–2220. doi: 10.1093/petrology/egn065

    CrossRef Google Scholar

    [37] Karimov AA, Gornova MA, Belyaev VA. 2017a. Pyroxenite veins within SSZ peridotites - evidence of melt-rock interaction (Egiingol massif), major and trace element composition of minerals. Geodynamics and Tectonophysics, 8, 483–488. doi: 10.5800/GT-2017-8-3-0269

    CrossRef Google Scholar

    [38] Karimov AA, Gornova MA, Belyaev VA. 2017b. Сhromospinelides from ultramafites and chromitites of Egiingol massif (North Mongolia). Proceedings of the Siberian Department of the Section of Earth Sciences of the Russian Academy of Natural Sciences. Geology, Exploration and Development of Mineral Deposits, 40, 9–29. doi: 10.21285/2541-9455-2017-40-4-9-29

    CrossRef Google Scholar

    [39] Kelemen PB, Hart SR, Bernstein S. 1998. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth & Planetary Science Letters, 164(1), 387–406.

    Google Scholar

    [40] Khedr MZ, Arai S. 2010. Hydrous peridotites with Ti-rich chromian spinel as a low-temperature forearc mantle facies: Evidence from the Happo-O’ne metaperidotites (Japan). Contributions to Mineralogy and Petrology, 159(2), 137–157. doi: 10.1007/s00410-009-0420-7

    CrossRef Google Scholar

    [41] König S, Münker C, Schuth S, Garbe-Schönberg D. 2008. Mobility of tungsten in subduction zones. Earth and Planetary Science Letters, 274(1–2), 82–92. doi: 10.1016/j.jpgl.2008.07.002

    CrossRef Google Scholar

    [42] Laukert G, von der Handt A, Hellebrand E, Snow JE, Hoppe P, Klügel A. 2014. High-pressure reactive melt stagnation recorded in abyssal pyroxenites from the ultraslow-spreading Lena Trough, Arctic Ocean. Journal of Petrology, 55(2), 427–458. doi: 10.1093/petrology/egt073

    CrossRef Google Scholar

    [43] Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV. 2007. The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth and Planetary Science Letters, 259(3-4), 599–612. doi: 10.1016/j.jpgl.2007.05.026

    CrossRef Google Scholar

    [44] Le Roux V, Liang Y. 2019. Ophiolitic pyroxenites record boninite percolation in subduction zone mantle. Minerals, 9, 565. doi: 10.3390/min9090565

    CrossRef Google Scholar

    [45] Li XP, Rahn M, Bucher K. 2004. Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution. Journal of Metamorphic Geology, 22(3), 159–177. doi: 10.1111/j.1525-1314.2004.00503.x

    CrossRef Google Scholar

    [46] Li YB, Kimura JI, Machida S, Ishii T, Ishiwatari A, Maruyama S, Qiu HN, Ishikawa T, Kato Y, Haraguchi S, Takahata N, Hirahara Y, Miyazaki T. 2013. High-Mg adakite and low-Ca boninite from a bonin fore-arc seamount: implications for the reaction between slab melts and depleted mantle. Journal of Petrology, 54(6), 1149–1175. doi: 10.1093/petrology/egt008

    CrossRef Google Scholar

    [47] Liang Y, Sun C, Yao L. 2013. A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks. Geochimica et Cosmochimica Acta, 102, 246–260. doi: 10.1016/j.gca.2012.10.035

    CrossRef Google Scholar

    [48] Marchesi C, Garrido CJ, Bosch D, Bodinier JL, Gervilla F, Hidas K. 2013. Mantle refertilization by melts of crustal-derived garnet pyroxenite: Evidence from the Ronda peridotite massif, southern Spain. Earth and Planetary Science Letters, 362, 66–75. doi: 10.1016/j.jpgl.2012.11.047

    CrossRef Google Scholar

    [49] Morishita T. 2004. Possible non-melted remnants of subducted lithosphere: experimental and geochemical evidence from corundum-bearing mafic rocks in the Horoman Peridotite Complex, Japan. Journal of Petrology, 45(2), 235–252. doi: 10.1093/petrology/egg105

    CrossRef Google Scholar

    [50] Morishita T. 2003. Evolution of low-Al orthopyroxene in the Horoman peridotite, Japan: An unusual indicator of metasomatizing fluids. Journal of Petrology, 44(7), 1237–1246. doi: 10.1093/petrology/44.7.1237

    CrossRef Google Scholar

    [51] Murata K, Maekawa H, Yokose H, Yamamoto K, Fujioka K, Ishii T, Chiba H, Wada Y. 2009. Significance of serpentinization of wedge mantle peridotites beneath Mariana forearc, western Pacific. Geosphere, 5(2), 90–104. doi: 10.1130/GES00213.1

    CrossRef Google Scholar

    [52] Nozaka T. 2005. Metamorphic history of serpentinite mylonites from the Happo ultramafic complex, central Japan. Journal of Metamorphic Geology, 23(8), 711–723. doi: 10.1111/j.1525-1314.2005.00605.x

    CrossRef Google Scholar

    [53] Pagé P, Bédard JH, Schroetter JM, Tremblay A. 2008. Mantle petrology and mineralogy of the Thetford Mines Ophiolite Complex. Lithos, 100(1–4), 255–292. doi: 10.1016/j.lithos.2007.06.017

    CrossRef Google Scholar

    [54] Parkinson IJ, Pearce JA. 1998. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a Supra-Subduction Zone Setting. Journal of Petrology, 39(9), 1577–1618. doi: 10.1093/petroj/39.9.1577

    CrossRef Google Scholar

    [55] Peacock SM. 1987. Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: Implications for subduction zones. Contributions to Mineralogy and Petrology, 95, 55–70. doi: 10.1007/BF00518030

    CrossRef Google Scholar

    [56] Pearce JA, Parkinson IJ. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139, 36–53. doi: 10.1007/s004100050572

    CrossRef Google Scholar

    [57] Pearson DG, Davies GR, Nixon PH. 1993. Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, North Morocco. Journal of Petrology, 34(1), 125–172. doi: 10.1093/petrology/34.1.125

    CrossRef Google Scholar

    [58] Pinus GV, Agafonov LV, Lesnov FP. 1984. Alpine-type hyperbasites of Mongolia. Moscow, Nauka, 456-467 (in Russian).

    Google Scholar

    [59] Rogkala A, Petrounias P, Tsikouras B, Hatzipanagiotou K. 2017. New occurrence of pyroxenites in the Veria-Naousa Ophiolite (North Greece): Implications on their origin and petrogenetic evolution. Geosciences, 7(4), 92. doi: 10.3390/geosciences7040092

    CrossRef Google Scholar

    [60] Saka S, Uysal I, Kapsiotis A, Bağcı U, Ersoy EY, Su BX, Seitz HM, Hegner E. 2019. Petrological characteristics and geochemical compositions of the Neotethyan Mersin ophiolite (southern Turkey): Processes of melt depletion, refertilization, chromitite formation and oceanic crust generation. Journal of Asian Earth Sciences, 176, 281–299. doi: 10.1016/j.jseaes.2019.01.003

    CrossRef Google Scholar

    [61] Seyler M, Lorand JP, Dick HJB, Drouin M. 2007. Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20′N: ODP Hole 1274A. Contributions to Mineralogy and Petrology, 153(3), 303–319. doi: 10.1007/s00410-006-0148-6

    CrossRef Google Scholar

    [62] Shaw CSJ, Dingwell DB. 2008. Experimental peridotite-melt reaction at one atmosphere: A textural and chemical study. Contributions to Mineralogy and Petrology, 155(2), 199–214. doi: 10.1007/s00410-007-0237-1

    CrossRef Google Scholar

    [63] Simonov VA, Almukhamedov AI, Kovyazin SV, Medvedev AY, Tikunov JV. 2004. Conditions of petrogenesis of boninites from Dzhida zone ophiolites, Northern Mongolia. Russian Geology and Geophysics, 45, 651–662.

    Google Scholar

    [64] Sobolev AV, Danyushevsky LV. 1994. Petrology and geochemistry of boninites from the North termination of the Tonga Trench: constraints on the generation conditions of primary high-Ca boninite magmas. Journal of Petrology, 35(5), 1183–1211. doi: 10.1093/petrology/35.5.1183

    CrossRef Google Scholar

    [65] Sobolev AV, Migdisov AA, Portnyagin MV. 1996. Incompatible element partitioning between clinopyroxene and basalt liquid revealed by the study of melt inclusions in minerals from Troodos lavas, Cyprus. Perology, 4(3), 326–336.

    Google Scholar

    [66] Suhr G, Kelemen P, Paulick H. 2008. Microstructures in Hole 1274A peridotites, ODP Leg 209, Mid-Atlantic Ridge: Tracking the fate of melts percolating in peridotite as the lithosphere is intercepted. Geochemistry, Geophysics, Geosystems, 9(3). doi:10.1029/2007GC001726.

    Google Scholar

    [67] Takahashi E, Uto K, Schilling JK. 1987. Primary magma compositions and Mg/Fe ratios of their mantle residues along Mid Atlantic Ridge 29 N to73 N. Okayama University Press, 1−4.

    Google Scholar

    [68] Tamura A, Arai S. 2006. Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos, 90(1−2), 43–56. doi: 10.1016/j.lithos.2005.12.012

    CrossRef Google Scholar

    [69] Varfalvy V. 1997. Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland: Implications for the genesis of boninitic and related magmas. The Canadian Mineralogist, 35(2), 543–570.

    Google Scholar

    [70] Wilshire HG, Shervais JW. 1975. Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States. Physics and Chemistry of the Earth, 9, 257–272. doi: 10.1016/0079-1946(75)90021-X

    CrossRef Google Scholar

    [71] Xiong FH, Meng YK, Yang JS, Liu Z, Xu XZ, Eslami A, Zhang R. 2020. Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite: Implications for evolution of the western Yarlung-Tsangpo suture zone, southwestern Tibet. Geoscience Frontiers, 11(1), 277–292. doi: 10.1016/j.gsf.2019.05.006

    CrossRef Google Scholar

    [72] Yajima K, Fujimaki H. 2001. High-Ca and low-Ca boninites from Chichijima, Bonin (Ogasawara) archipelago. Japanese Magazine of Mineralogical and Petrological Sciences, 30(5), 217–236. doi: 10.2465/gkk.30.217

    CrossRef Google Scholar

    [73] Zhou MF, Robinson PT, Malpas J, Aitchison J, Sun M, Bai WJ, Hu XF, Yang JS. 2001. Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China). Journal of Asian Earth Sciences, 19(4), 517–534. doi: 10.1016/S1367-9120(00)00048-1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(1965) PDF downloads(32) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint